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A B S T R A C T

Knowing river discharge is vital for monitoring the fresh water cycle at the global scale. The Surface Water and 
Ocean Topography (SWOT) satellite mission will map river water surface elevations and inundated areas for 
rivers wider than one hundred meters worldwide. These observations can be used for estimating the river 
discharge. It is the global coverage which makes these observations particularly valuable, however in many cases 
there will be no data on the bathymetry and river bed properties available. That is why the problem of discharge 
estimation using solely the SWOT-type observations has received a noticeable attention recently. 

The attempts to solve this problem have expectedly confirmed that it is highly ill-posed and, therefore, 
additional data is useful. In particular, the use of the mean discharge estimates retrieved from the global scale 
hydrological databases (e.g. the Global Water Balance Model) have been accepted. However, taking into account 
the accuracy of such estimates and the issue of their relevance to the current time period, the problem is still 
posing a serious challenge. For example, in the results obtained by different methods reported up to date, the 
estimated hydrograph may suffer from a significant bias, which often makes a major contribution to the total 
estimation error. 

In this paper a new estimation method is suggested, which is specially designed to reduce the solution bias. 
The concept of this method is similar to the one of the Variational Expectation–Maximization method, however 
its perception and implementation are original and problem-oriented. In our method, the mean values of the 
unknown variables are obtained using the Bayesian estimator, whereas the ‘shape’ functions are updated using 
the variational data assimilation or generated directly using the inverted simplified hydraulic model. The two 
steps constitute an estimation cycle, which can be repeated after information exchange. 

The method has been validated using two available testing sets including 51 cases in total. It has demonstrated 
a much better robustness and reliability than the variational data assimilation method, and quite a promising 
performance in terms of accuracy. Since the proof of the concept was in the focus of this study, the issue of 
computational feasibility was not a priority. Nevertheless, the method in its current form can be applied at local/ 
regional or basin scales. For a possible global scale application, a generalized discharge estimator is suggested, 
where the major computational burden falls on the ‘learning’ stage, which is separated from the discharge 
prediction algorithm.   

1. Introduction

River discharge is a key piece of information for efficient allocation
of water resources, assessment of flood hazards and management of 
human water-related activities (Oki and Kanae, 2006). Despite its 
importance, the publicly available database of in situ river discharge is 
steadily declining over the past decades due to decreasing numbers of 

gauge stations (financial and security reasons), data sharing issues for 
trans-boundary rivers (Biancamaria et al., 2011) and irregular distri-
bution of the ground network (Biancamaria et al., 2016). In fact, the 
number of available runoff gauging stations has decreased by about 75% 
during the period 1970–2015 (Tourian et al., 2017). A number of 
important basins, mainly in developing countries in Africa, Asia and 
South America no longer have any operational gauge stations and real- 
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time access to in situ discharge is mostly available only in developed 
countries (Tourian et al., 2017; Revel et al., 2021). The loss of these 
primary observations impairs our ability to represent and manage river 
systems. 

Remote sensing has been recently gaining attention as a valuable tool 
for the hydraulic/hydrology community attempting to complement the 
ground networks by filling the temporal and spatial gaps (McCabe, 
2017). Although inland water observation from space is a challenging 
research topic due to the complexity of river systems and lakes, recent 
advances in satellite observation technology are expected to enhance 
our knowledge of fresh water resources on the global scale (Marcus and 
Fonstad, 2010). In this respect, the Surface Water and Ocean Topog-
raphy (SWOT) satellite, due to launch in late 2022 (Durand, 2010), is the 
first mission dedicated to hydraulics/hydrology and mesoscale ocean-
ography. It will provide two-dimensional observations of water surface 
elevation (WSE), width, and slope, simultaneously, across its 120-km- 
wide swath using a Ka-band Radar Interferometer (KaRIN) (Bianca-
maria et al., 2016). The fine spatial resolution of SWOT will enable 
observing rivers wider than 50–100 m with unprecedented accuracy, 
generally over 5–10 days intervals depending on the latitude and 
longitude of the river, during a 21 days repeat-cycle orbit (Biancamaria 
et al., 2016). 

Since river discharge is not directly observable, recent studies have 
demonstrated potential approaches for estimating the SWOT discharge 
product from its direct observations. Several complementary approaches 
were designed for gauged and ungauged basins within the SWOT 
Discharge Algorithm Working Group (SWOT DAWG). The proposed al-
gorithms offer increasing levels of complexity in terms of representation 
of the river dynamics and the involved optimization techniques. Among 
them, the so-called Mass conserved Flow Law Inversion (McFLI) algo-
rithms (Durand et al., 2014; Garambois and Monnier, 2015; Gleason and 
Durand, 2020; Hagemann and Gleason, 2017) rely on the assumption of 
mass conservation between a set of consecutive reaches to estimate 
channel friction parameters and a reference cross-sectional area of flow 
(Frasson et al., 2021). Five such algorithms AMHG (Gleason et al., 
2014), GaMo (Garambois and Monnier, 2015), MetroMan (Durand et al., 
2014), MFG and MFCR (Durand et al., 2016) have been validated on the 
testing set including 19 rivers with different hydraulic properties (called 
PEPSI-1), with the discharge estimation accuracy about 35% relative 
root-mean-square error (RRMSE) (Durand et al., 2016). 

The McFLI approaches have shown a promising performance, how-
ever, their implementation and evaluation have revealed some issues 
that could hinder their accuracy and applicability (Andreadis et al., 
2020). In this respect, algorithms based on hydraulic models and data 
assimilation (DA) approaches have been developed to better account for 
the river dynamics with respect to the SWOT spatial and temporal 
coverage. These include the Variational Data Assimilation using the SIC2 

hydraulic model (SIC4DVAR) (Gejadze and Malaterre, 2017; Oubanas 
et al., 2018; Oubanas et al., 2018), the Hierarchical Variational 
Discharge Inference (HiVDI) (Larnier et al., 2020) and the SWOT 
Assimilated Discharge (SAD) (Andreadis et al., 2007; Andreadis et al., 
2020). While SIC4DVAR and HiDVI algorithms assimilate SWOT ob-
servations into one-dimensional unsteady-state Saint–Venant models, 
SIC2 (Simulation and Integration of Control for Canals, (https://sic.g- 
eau.fr/?lang = en) and DASSFLOW Saint–Venant, respectively, using 
variational DA methods, SAD algorithm combines the Ensemble Kalman 
Filter (EnKF) (Evensen, 1994) and gradually varying steady-state flow 
equations to estimate discharge. 

Another validation step was later performed on the testing set 
including 32 rivers (called PEPSI-2), involving some of the above- 
mentioned McFLI and DA algorithms to assess the accuracy of the ex-
pected SWOT discharge product (Frasson et al., 2021). This study has 
explored the factors that control the performance of the discharge esti-
mation algorithms. The results demonstrated that the most influential 
ones are the quality of a priori mean discharge, the accuracy of the flow 
law and the hydraulic variability over the observed period (Frasson 

et al., 2021). 
As the SWOT satellite has not yet been launched, the potential 

benefits of assimilating future SWOT observations into hydrodynamic 
models have been assessed in Oubanas et al. (2018) and Oubanas et al. 
(2020) using observing system simulation experiments (OSSEs). Syn-
thetic SWOT observations were generated using SWOT High Resolution 
simulators to emulate the expected performance of the KaRIN instru-
ment (Frasson et al., 2017; Domeneghetti et al., 2018). Different 
discharge algorithms were evaluated in this framework on several river 
basins. In this respect, SIC4DVAR was tested on the Garonne river 
(Oubanas et al., 2018) as well as the Po and Sacramento rivers (Oubanas 
et al., 2018) to estimate river discharge, bathymetry and friction 
simultaneously. Other studies have attempted multi-satellite assimila-
tion to estimate river discharge, by combining either different altimetry 
data (Tourian et al., 2017; Domeneghetti et al., 2021) or altimetry 
together with SWOT simulations (Oubanas et al., 2020). 

Further experience with SIC4DVAR being applied on the complete 
set of PEPSI cases has revealed some drawbacks of this method. That is, 
the problem of simultaneous estimation of discharge, bathymetry and 
friction coefficients is ill-posed in the sense of the 2nd Hadamard’s 
condition (uniqueness). In practical applications, this issue is also 
known as ‘equifinality’. This implies that the same model outputs at a 
given numerical precision can be produced with multiple (potentially 
infinite) combinations of unknown variables, which require some reg-
ularization to be applied. However, simply penalizing the distance be-
tween the estimate and its prior (which would be a standard 
regularization technique) may not be very useful with this type of ill- 
posedness. That is, the estimate could be totally impacted by the 
choice of the prior/background and background error covariance ma-
trix. This is exactly what has been encountered in numerical tests 
involving SIC4DVAR. Moreover, the validity of the Gaussian assump-
tion, which is the basis of variational DA, has appeared to be highly 
questionable. The mentioned issues are quite common in a variety of 
applications. 

In order to deal with estimation problems of that type we develop a 
new robust estimation method. The method implements the idea of a 
separate treatment of the mean values of the time- or space-dependent 
variables and the corresponding shape functions. The mean values are 
estimated as expectations (probabilistic means) of the corresponding 
low-dimensional posterior distribution (generally non-Gaussian) using 
the direct Bayesian approach, whereas the shape functions are estimated 
using the variational DA approach, subjected to some additional con-
straints. Thus, the robustness is achieved because the conditional 
expectation is almost certainly unique (unlike modes). The two esti-
mation steps are combined within a cycle, which can be repeated after 
information exchange. Overall, the procedure represents a multilevel 
algorithm, where different elements of the solution are subjected to 
different treatment at different levels. In this paper we present an 
adapted version of the method, i.e. the one which has been applied to the 
discharge estimation problem in the SWOT data assimilation context. It 
shall be called the SIC-BVC method, where BVC stands for the Bayesian 
Variational Cyclic algorithm. A rigorous consideration of the BVC 
method in its general form will be reported in a specialized review 
(computational mathematics, computer science). Let us note that SIC- 
BVC is using the SIC model, but also the Integrated Modified Gauck-
ler-Manning–Strickler (GMS) model, which has been developed in this 
study. 

The idea behind our method is similar to the Variational Maximum 
Likelihood method (Beal, 2003; Beal et al., 2003; McLachlan and 
Krishnan, 2007), also referred to as Variational Expect-
ation–Maximization method. This is, essentially, a semi-Bayesian esti-
mation approach, where for a subset of model parameters a Bayesian 
posterior distribution is constructed, while for the remaining parameters 
the maximum likelihood point estimates are evaluated. However, the 
implementation of this basic idea in our method is original. Let us note 
that it should not be confused with the Variational Bayesian method 
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(Blei et al., 2017). 
The averaged accuracy of the discharge estimates obtained by our 

method has been assessed using different performance metrics. It seems 
to be superior in comparison to the accuracy of results obtained by other 
methods on the same testing set and reported up to date. However, the 
method is computationally complex, expensive, and its running may 
presently require human supervision. Thus, the complete setting cannot 
be run ‘blindly’, in close-to-real time and at the global (world) scale. In 
order to make these options available we suggest a generalized 
discharge estimator based on the Integrated Modified Low-Froude GMS 
model mentioned above. This estimator includes the likelihood matrix, 
which incorporates all the complexity of the method. Running the 
estimator with the best currently available likelihood matrix requires 
very little computational resource. The updated likelihood can be ob-
tained by processing the SWOT data in a re-analysis mode, then supplied 
to the user. 

The paper is organized as follows. Section 2 describes the pre- 
processing stage, where a part of the river bathymetry is defined from 
geometrical considerations, given a set of the elevation-width pairs 
observed at different (arbitrarily distributed) spatial locations and time 
instants. This part of the bathymetry is referred as ‘dry’. Section 3 de-
scribes the hydraulic models involved in SIC-BVC method. Section 4 
describes the new discharge estimation method SIC-BVC, which is an 
adapted version of the BVC method, and, also, the generalized discharge 
estimator for the possible real-time global scale use. In Section 6 the 
results of using the SIC-BVC method on the complete PEPSI testing set 
are presented. The main findings are summarized in Conclusions. 

2. Pre-processing SWOT observations 

In this Section we discuss the method for estimating the bathymetry 
using solely the SWOT data. First of all, we distinguish ‘dry’ and ‘wet’ 
parts of the bathymetry. At a given spatial location, the ‘dry’ bathymetry 
describes the river bed above the lowest water level measured by the 
satellite at least once over the total observation period. This part is 
estimated from the SWOT data using a data-driven approach, which 
involves different steps: outlier removal, sorting, smoothing, piece-wise 
linear interpolation with reduced number of points and under some 
constraints. The ‘wet’ bathymetry part is considered to be a rectangular 
channel of an unknown variable depth below the dry part. The width of 
this channel is equal to the width of the dry bathymetry at its lowest 
point (interface between the two parts). 

Since the 1.5D Saint–Venant hydrodynamic model (SIC2) is used for 
hydraulic simulations (Baume et al., 2005; Malaterre et al., 2014), the 
bathymetry has to be defined by a set of cross-sections described, for 
example, in the bed width-elevation format w(xi,z), i = 1,…, Is, located 
along a center line at the corresponding longitudinal abscissas xi. Unlike 
1D models, the 1.5D models allow several connected channels (anab-
ranching or braided rivers), several beds (minor, medium, major or 
storage) inside a channel and in-line or lateral reservoirs to be intro-
duced. In the SWOT context, the braided rivers have been studied in 
Pujol et al. (2020) and Rodriguez et al. (2021), where the authors check 
for a need of any special treatment (in comparison to a single channel 
river), and the validity of the Modified GMS equation in terms of its use 
for the operational discharge product. Presently, in the SWOT RiverObs 
software and the SWORD database (Altenau et al., 2021), the braided 
rivers are represented by a single channel aggregating all sub-channels. 

Thus, the SWOT observations provided after treatment of the pixel 
cloud by RiverObs are of the same type as for a single channel: a set of 
pairs {h*(x,t),w*(x,t)}, where h* is an observed water surface elevation h 
and w* is an observed water surface top width W at different locations xi 
and time instants tj. In addition, the discharges from the global Water 
Balance Model (Wisser et al., 2010) are provided, representing the mean 
values over the period 1961–2010 at the more or less relevant spatial 
locations. These discharges (we denote them as QWBM) are available at 

the reach level from the SWORD database (Altenau et al., 2021). Since 
they are coming from uncalibrated models, they can be used for the so- 
called ‘unconstrained SWOT discharge product’, which is the framework 
of our study. Let us note that other discharge estimates are also available 
in the SWORD database, such as GRADES (Lin et al., 2019; Yuan Yang 
et al., 2021). These estimates, however, can only be used in the so-called 
‘constrained SWOT discharge product’, since they have been produced 
using the calibrated models involving in situ gauging data. 

In terms of different beds inside a single channel, separated either by 
the elevation or width limits, we note that many natural rivers often 
have several such beds with different friction and hydraulic properties. 
One can distinguish the ‘minor’ bed, the ‘medium’ bed having more 
friction (for example, due to the presence of vegetation and debris, 
instead of clean clay and rock) and, sometimes, a ‘major’ or ‘storage’ 
one. In this paper we only consider two beds: the minor and the medium, 
having two different friction coefficients. The mass and momentum 
exchange between these beds are modeled using the Debord formula as 
explained in Section 3.1. Delimitation of the minor and medium beds 
can be defined based on different grounds, such as those in the slope- 
break method (Schaperow et al., 2019; Mercel et al., 2013), for 
example. In this paper, the interface between the minor and medium 
beds coincides with the interface between the dry and wet parts of the 
bathymetry. This simplifying hypothesis helps to formulate a better 
conditioned estimation problem. 

2.1. Dry bathymetry 

As mentioned above, SIC2 needs the bathymetry represented by the 
cross-sections described in the width-elevation format. This implies that 
cross-sections are symmetrical, which is a classical simplification used in 
1D or 1.5D hydraulic modeling. Conveniently, the SWOT observations 
will be provided to the users exactly in this format. Thus, the simplest 
option would be to define the dry bathymetry directly from the raw 
SWOT data. However, realistic SWOT observations will contain errors of 
very different nature. This will result into the following issues. 

First, the observed width w*(x, h*) could be an irregular function of 
h* due to errors in the SWOT data. In this case the directly derived cross- 
section shape would be unusual for natural rivers, which generally must 
be a monotonic increasing function. In terms of hydraulic behavior, the 
oscillating cross-section shape will result into an over-estimated wetted 
perimeter and, therefore, unrealistic values of friction. Besides, in 
addition to the regular (inherent) SWOT noise, there could be outliers, 
which must be removed. The second issue is that the RAM and CPU 
requirements for the Saint–Venant solver could be quite heavy, unless 
we use approximated cross-sections, i.e. those defined by a small num-
ber of the width-elevation points, sufficient to replicate the shape. The 
mentioned reasons justify the pre-processing of the raw SWOT obser-
vations (as provided in the SWORD database) to generate a useful ba-
thymetry approximation. Since this processing algorithm could 
potentially be applied at the global scale to millions of cross-sections 
(nodes) of the SWORD database, the low computational cost and 
robustness of this algorithm have been the essential design constraints. 

The algorithm is a loop over the cross-sections. For each cross-section 
i located at xi the associated data subset {h*(xi, tj),w*(xi, tj)} (i-subset) is 
processed using the following steps. 

1. Removing outliers using a sliding time window (5 time-step 
length) and the 3-sigma test on the time series of w*. 
2. Sorting the i-subset by increasing values of the water elevation h*. 
The ordered i-subsets are presented in Fig. 1. Here the upper plot 
shows the observed elevations h* as a function of index in green, and 
the mid plot – the observed half-width w*/2 as a function of index in 
red. One can notice that the observed width shows strong oscilla-
tions. The magnitude of oscillations is significantly large in the 
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ArialKhan case, PEPSI-2, where the ‘full uncertainty’ case is 
considered (Frasson et al., 2021). 
3. Re-arranging the series of w*

i in such a way that it also becomes a 
monotonically increasing function of the index. This is again done by 
sorting: the smallest width w* is attributed to the smallest h*, the next 
smallest width w* is attributed to the next smallest h*, end so on. The 
result of this procedure (i.e. re-ordered w*) can be seen in the mid 
plot in green. Finally, the bottom plot in Fig. 1 shows the shape of the 
section (parametric curve constructed from the elevation and width 
series) in red for the raw data, and in green for the sorted-filtered 
data. One can consider the sorted-filtered cross-section shape in 
green as a desired approximation of the raw data based shape in red. 
The presented double sorting procedure has the advantage of being 
very fast and robust, while naturally imposing the monotonic in-
crease condition on the function w*(x, h*), ∀x. Some other classical 
smoothing and data filtering procedures available in Matlab (e.g. 
polyfit, rloess) have been tested, but did not show any significant 
advantages in comparison to this simple approach. 
4. Approximating the sorted-filtered cross-section shape (green line 
in the bottom plot) by a piece-wise linear function using a limited 
number of points {wn, zn}, n = 1,…,Np. This problem is not trivial, 
since neither the number of points Np, not their locations on the 

parametric curve are known in advance. An iterative procedure has 
been developed where some intermediate points are added to mini-
mize the distance between the original shape and its piece-wise 
linear approximation. The procedure stops when a minimum dis-
tance is obtained for all points (e.g. 15 cm), or when the allowed 
number of points is reached (e.g. 10 points). For all PEPSI test cases 
we observed that from 5 to 10 points have been sufficient to 
approximate the original shape with less that 15 cm distance error. In 
both cases presented (Mississippi US and ArialKhan) 10 points are 
necessary. The resulting optimized points are presented in the upper 
plot (z series), mid plot (w series) and in the parametric form w(z) in 
blue line with circles. Then, the additional 2 points of this approxi-
mation are extrapolated to provide a freeboard (part of the cross- 
section above the largest observed water level). These are shown at 
the bottom plot in magenta line with circles. 

The procedure being applied to all sections at different locations 
gives an estimation of the dry bathymetry along the channel under 
consideration, as presented in Fig. 1. In the Pepsi 1/2 tests the river case 
includes a sequence of contiguous reaches, where the ‘good’ and ‘bad’ 
ones are distinguished. The ‘bad’ reaches are usually those with an 
obstruction (dam, drop, weir, lock) and/or with a strong tidal influence. 

Fig. 1. Bathymetry at cross-section 17 of the Mississippi river (PEPSI-1), and at cross-section 89 of the Arial Khan river (PEPSI-2).  
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To the best of our knowledge, the algorithms presented in Durand et al. 
(2016) and Frasson et al. (2021) consider only ‘good’ reaches. Moreover, 
the discharge is computed for each one separately, then the results are 
averaged. In contrast, for a given river case we reveal the longest 
sequence of contiguous ‘good’ reaches, which defines the stretch of the 
river to be considered in the modeling and estimation process. 

The presented algorithm can be run at different spatial scales without 
any further modification, from one to a series of reaches. A low cost 
version this algorithm is also implemented in the Confluence platform at 
the 1-Reach level. Several alternatives are possible and will also be 
tested in the future. The selection of reaches as well as other treatments 
described in this section are done fully automatically. 

2.2. Wet bathymetry 

Defining the wet bathymetry (unobserved part of the river bed) is a 
very different task. This problem has been investigated by many authors 
either based on geomorphology or hydraulic geometry methods (Leo-
pold and Maddock, 1953; Gleason et al., 2014; Neal et al., 2021), or 
hydraulic based methods such as Modified GMS equation methods 
(uniform or non-uniform), or others. A literature review is available in 
Neal et al. (2021) explaining the advantages and drawbacks of different 
methods. Some methods such as the hydraulic geometry, curve fitting or 
slope break methods do not split the bathymetry into the dry and wet 
parts, but rather take into account the zone bellow the bank full depth 
limit. 

In our method, we define the wet bathymetry as a rectangular 
channel below the dry part, with unknown bottom elevation zb(x) and 
known width w(x) = w1(x), where w1(x) is the width of the first (lowest) 
point of the estimated dry bathymetry. The corresponding elevation 
z1(x), also being the elevation of the interface between the dry and wet 
parts, serves as a reference level, with respect to that the bottom 
elevation of the wet part (and of the whole cross-section) is defined as 
follows: 

zb(x) = z1(x)+ b(x) (1)  

where b(x) < 0 is a strictly negative update to be estimated. The wet 
bathymetry is shown in light-blue in Fig. 1, bottom plot, and in Fig. 2. 

Let us denote p*
g(x) – the optimized set of points {wn(x), zn(x)}, n = 1,

…,Np(x) describing the dry bathymetry at location x. Since the wet 
bathymetry is defined by b(x), the whole bathymetry is denoted as pg(x)

= (b(x), p*
g(x))

T. These notations will be used throughout the text. We 
also keep in mind that x is a discrete variable xi, i = 1,…,Is, however the 
index is dropped when possible to simplify notations. 

3. Hydraulic models involved 

3.1. Saint–Venant hydraulic model 

The hydraulic model is defined on a set of closed-line segments or 
connected ‘reaches’. The spatial discretization along reach number ir 
produces a set of coordinates xir ,is , also called longitudinal abscissas (or 
‘stations’), each having the associated global index i and its own position 
vector r→i = (x′

i, y
′

i, z
′

i) in the global coordinate system (bathymetry). 
Given n→i is a predominant flow direction at xir ,is , a hydraulic cross- 
section Si is defined by a set of points on a plane n→i⋅( r→− r→i) = 0, 
describing the bed profile. For each cross-section this data allows us to 
compute for any given water level h: the wetted area function A(h,pg), 
the wetted perimeter function P(h,pg), the hydraulic radius function R(h,
pg) and the top width function W(h, pg), where pg are geometric pa-
rameters of the corresponding cross-section. For a given reach, pg is a 
function of the longitudinal abscissa x. 

For a ‘regular’ section, the shallow water flow in the longitudinal 
direction x is described by the Saint–Venant equations: 

∂A
∂t

+
∂Q
∂x

= Ql, (2)  

∂Q
∂t

+
∂Q2
/

A
∂x

+ gA
∂h
∂x

= − gASf +KlQlv, (3)  

t ∈ (0, T], x ∈ (0,L)

where Q(x, t) is the discharge, h(x, t) is the water level, v(x, t) = Q/A is 
the mean velocity, Ql(x, t) is the lateral discharge, Kl(x) is the lateral 
discharge coefficient and Sf is the friction slope term dependent on the 
Strickler coefficient k(x) (inverse of the Manning coefficient): 

Sf =
Q|Q|

k2A2R4/3 . (4) 

The initial condition for Eqs. 2,3 is 

h(x, 0) = h0(x), Q(x, 0) = Q0(x). (5) 

Boundary conditions are defined at the boundary nodes: the inflow 
discharge Q (t) is used for the upstream node, and the elevation hL(t) – 
for the downstream node. Let us underline here that no rating curve is 
used as a boundary condition in this study. 

In the classical (single bed) formulation, the friction term is defined 
as in (4). However, in modeling natural rivers several beds with different 
friction coefficients are often considered. These beds usually correspond 

Fig. 2. Bathymetry around cross-section 17 of the Mississippi river (reach 6, PEPSI-2).  

I. Gejadze et al.                                                                                                                                                                                                                                 



Journal of Hydrology xxx (xxxx) xxx

6

to different lateral zones of the river sections and to different depths. In 
the SIC hydrodynamic model, we have the minor (mn) and medium 
(md) beds, interacting via the mass and momentum exchange according 
to the Debord formulas (Nicollet and Uan, 1979), which have an 
empirical nature. In HEC-RAS model one can have multiple beds, 
described by the Einstein formulas (known as Divided Channel Method 
(DCM)) to combine the contribution of different beds with different 
Manning coefficients. The latter approach neglects any flow interactions 
between beds and, therefore, is less accurate. 

The two-bed (or Debord) formulation is based on the following 
equations: 

Q = Qmn +Qmd, (6)  

where 

Qmn = ϕkmn Amn R 2/3
mn S1/2

f := DmnS1/2
f ,

Qmd = kmd
(
A2

md + AmnAmd(1 − ϕ2)
)1/2R 2/3

md S1/2
f := DmdS1/2

f ,

ϕ =

{
ϕ0, r > 0.3

0.5(1 + ϕ0) + 0.5(1 − ϕ0)cos(πr/0.3), r⩽0.3 ,

ϕ0 = 0.9
(

kmn

kmd

)− 1/6

, r =
Rmd

Rmn
.

Here, Dmn and Dmd and called the conveyance variable of the minor 
and the medium bed, respectively. By definition kmn > kmd. We note that 
the friction slope Sf is supposed to be the same in both the minor and the 
medium beds. This is a classical assumption that is also made in the DCM 
method. By summing the equations for Qmn and Qmd we obtain: 

Q = (Dmn +Dmd)S1/2
f .

Thus, the Saint–Venant equations in the two-bed formulation remain 
the same while replacing the friction term (4) by: 

Sf =
Q|Q|

(Dmn + Dmd)
2 . (7) 

Let us note that 

A(x, t) := A(h(x, t), b(x), p*
g(x)),

D⋅(x, t) := D⋅(h(x, t), k⋅(x), b(x), p*
g(x)),

where b(x) and p*
g(x) are defined in Section 2. Thus, we denote the 

Saint–Venant model by an operator M SV which maps the input vector 

X =
(

Q (t), hL(t),Q0(x), h0(x), kmn(x), kmd(x), b(x), p*
g(x)

)T
,

x ∈ [0, L], t ∈ [0, T]
(8)  

into the Saint–Venant solution {Q,h}: 

(Q, h)T
= M SV(X), Q := Q(x, t), h := h(x, t), x ∈ [0,L], t ∈ [0, T]. (9)  

3.2. Modified Gauckler-Manning–Strickler models 

The GMS formula for the friction slope (4) is often inverted to 
compute the discharge given some hydraulic parameters: 

Q = kAR2/3S1/2
f . (10) 

Since the friction (energy or head) slope Sf is difficult to measure (we 
would have to measure the depth but also the velocity, so in this case we 
already would have the discharge estimation), it is often replaced either 
by the bed slope − ∂zb/∂x, or by the water slope − ∂h/∂x. The resulting 
approximations to Eq. (10) should be called the modified ‘Uniform Flow’ 
and ‘Low-Froude’ GMS equations, respectively. 

In natural rivers the Uniform Flow is rarely a good approximation, 
since the bed level and width are not regular, and the river water surface 
elevations are rather following M1 or M2 backwater curves (Cunge 
et al., 1980). However, the modified Low-Froude GMS equation can be 
considered as a good approximation when the Froude number is small 
(e.g. Fr⩽0.3). In practice, this equation is likely applicable in a broader 
range of cases. 

The latter is often the case for large rivers (e.g. see in Durand et al., 
2016 where the Froude number ranges are provided for the Pepsi-1 test 
cases). 

3.2.1. Modified Low-Froude GMS model, single-bed formulation 
Following the previous assumption the Eq. (10) becomes: 

Q = kAR 2/3sign
(

−
∂h
∂x

)⃒
⃒
⃒
⃒
∂h
∂x

⃒
⃒
⃒
⃒

1/2

. (11) 

If we assume that the water slope is always negative, then the 
equation above reads as follows: 

Q = kAR 2/3
(

−
∂h
∂x

)1/2

. (12)  

3.2.2. Modified Low-Froude GMS model, two-bed formulation 
Following previous definitions, in the case of two-bed this formula-

tion becomes: 

Q = Qmn +Qmd = (Dmn +Dmd)

(

−
∂h
∂x

)1/2

. (13) 

Let us note that 

D⋅(x, t) := D⋅(h(x, t), kmn(x), kmd(x), b(x), p*
g(x)).

Thus, we denote the Modified Low-Froude GMS two-bed model by an 
operator M M2 which maps the input vector 

X =
(

h(x, t), kmn(x), kmd(x), b(x), p*
g(x)

)T
,

into the local (at point x) discharge Q: 

Q = M M2(X), Q = Q|x(t), t ∈ [0, T]. (14)  

3.2.3. Integrated Modified Low-Froude GMS, single bed formulation 
One can see that Eq. (12) includes the local slope ∂h(x)/∂x. In 

practice, this slope can be evaluated by taking the numerical derivative 
of the observed surface elevation, for example, using the forward 
derivative 

h*(x + δx) − h*(x)
δx

.

In reality, h* may contain a significant error. This could become a 
critical issue when dealing with reaches having a small bed slope. 
Increasing δx (to get a more stable estimation of the derivative ∂h(x)/∂x) 
is limited because the bathymetry may significantly vary over the in-
terval [x,x + δx]. In order to resolve this issue we consider the following 
approach. 

Let us rewrite (12) in the form 

1
k(x)A(x, t)R2/3(x, t)

=
1

Q(x, t)

(

−
∂h*(x, t)

∂x

)1/2

.

We assume that a) Q(x, t) > 0 and b) Q(x, t) ≈ Q(t),∀x ∈ [x,x + δx]. 
First, the expression above is squared 

1
k2(x)A2(x, t)R4/3(x, t)

= −
1

Q2(x, t)
∂h*(x, t)

∂x
,

then integrated over the interval [x,x + δx]
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∫x+δx

x

k− 2(x)A− 2(x, t)R− 4/3dx =

∫x+δx

x

−
1

Q2(x, t)
∂h*(x, t)

∂x
dx.

Since Q(t) does not depend on x, the right integral becomes 

h*(x, t) − h*(x + δx, t)
Q2(t)

.

Next, we introduce 

δh*(t) = max[0, h*(x, t) − h*(x + δx, t)]

Then, for Q(t) we can finally write 

Q(t) =
(δh*(t))1/2

( ∫ x+δx
x k− 2(x)A− 2(x, t)R− 4/3(x, t)dx

)1/2 . (15) 

The advantage of the presented approach is that one can use δx big 
enough to get δh* significantly larger than the observation error and to 
ensure that h*(x,t) > h*(x + δx,t), ∀t. Obviously, the condition Q(x, t) >
0 may not be satisfied for estuarial zones, where the tidal effects are 
strong; yet, it can be satisfied for the residual flow (Dyer, 1973). Let us 
note, that the expression similar to (15) could be derived for the two-bed 
formulation (13). 

Let us note that 

A(x, t) := A(h*(x, t), b(x), p*
g(x)), R(x, t) := R(h*(x, t), b(x), p*

g(x))

Thus, we denote the Integrated Modified Low-Froude GMS model as 
an operator M MI which maps the input vector 

X =
(

h*(x, t), k(x), b(x), p*
g(x)

)T
, x ∈ [a, a+ δ] ∈ [0, L],

into the interval-averaged discharge Q: 

QMI(t) = M MI(X, a, δ). (16)  

4. Discharge estimation methodology 

In the ‘idealized’ problem setup the observations h*(xi, tj) and w*(xi,

tj) are provided at time instants tj = (j − 1)δt, where δt = const is the 
‘satellite revisiting period’, covering the total observation period t ∈ [0,
T]. While the uniform temporal sampling has been a feature of the 
testing set (provided to all members of the DAWG), our method is 
designed for the general case of a non-uniform sampling. 

Consider again the input vector of the Saint–Venant model (8): 

X =
(

Q (t), hL(t),Q0(x), h0(x), kmn(x), kmd(x), b(x), p*
g(x)

)T
,

x ∈ [0, L], t ∈ [0, T].

Out of the full input set, the dry bathymetry p*
g is the component 

which is considered to be known (actually computed as described in 
Section 2.1). Taking into account the spatial and temporal scales 
involved, the influence of the initial conditions Q0(x), h0(x) is considered 
negligible. Thus we define them as a steady-state solution for certain 
averaged conditions. In the ‘idealized’ case we may also consider the 
downstream elevation as an observable quantity, i.e. hL(tj) = h*(L, tj). 
All other components of the input vector X must be estimated. These 
include Q (t), b(x), kmn(x) and kmd(x). The presented estimation problem 
is ill-posed in terms of uniqueness (the 2nd condition of Hadamard). In 
order to solve this problem we use the idea of separate treatment of 
‘means’ and ‘shapes’, described below. 

4.1. Representation of unknown variables 

Let us denote u := u(ψ) the mean value of a function u(ψ) over its 
domain ψ ∈ [ψ lb, ψub], where superscripts ‘lb’ and ‘ub’ stand for ‘lower 
bound’ and ‘upper bound’, respectively. Then, we represent the 

unknown functions as products 

Q (t) = Q Q 1(t), b(x) = bb1(x)
w*

w*(x)
, kmn(x) := k(x) = kk1(x), (17)  

where Q , b and k are the means (scalars), and Q 1(t), b1(x) and k1(x) are 
the ‘shape’ functions, such that 

1
T

∫T

0

Q 1(t)dt = 1,
1
L

∫L

0

b1(x)
w*

w*(x)
dx = 1,

1
L

∫L

0

k1(x)dx = 1.

Representation (17) is possible because all considered means are 
sign-definite: 

Q > 0, b < 0, k > 0.

Moreover, we assume that the means are subjected to the box con-
straints: 

Q
lb ⩽ Q ⩽ Q

ub
, b lb ⩽ b ⩽ bub

, k lb ⩽ k ⩽ kub
. (18)  

4.2. Shape functions 

In the suggested algorithm the mean values of the distributed vari-
ables are estimated using the direct Bayesian approach, whereas the 
shape functions are estimated using the variational approach. However, 
for the discharge estimation problem the approximate shape function 
Q 1(t) can be generated using the Integrated Modified Low-Froude GMS 
model, defined over the initial part of the reach x ∈ [0,δ], where δ ≪ L: 

Q 1(t) ≈ Q1(t) := QMI(t)/QMI (19)  

where 

QMI(t) = M MI(X, 0, δ), (20)  

X =
(

h*(x, t), kk1(x), bb1(x), p*
g(x)

)T
, x ∈ [0, δ]. (21) 

It is easy to see that Q1 := Q1(k1,b,b1), but does not depend on k, so 
any nonzero value can be used as a model input, for example k = 1. The 
shape function for bathymetry (17) is chosen in the form b1(x)w*/w*(x)
in order to achieve the equal update of the wet cross-sections A(x, t)
along the reach, due to the change of b (for b1(x) = 1). 

4.3. Cost functions and likelihood function 

For estimating the means of the distributed variables we define a 
cost-function involving the Saint–Venant model, assuming the outflow 
elevation hL(t) is equal to the observed elevation at the last section h*(L,
t); and the minor and medium bed friction are the same kmn(x) = kmd(x)
= kk1(x) (in fact, any ratio between kmn and kmd can be used, given 
kmd < kmn holds). Let H be an observation operator which maps the 
Saint–Venant model output into the observation space Y , whereas Y* ∈

Y is the vector of observations. In the particular case considered, this 
vector directly includes the observed elevations h*(x, t), given at time 
instances ti and spatial locations xj. More generally, Y* could be a 
function of the primary SWOT data. Thus, the cost function is defined as 
follows: 

J0(Q ,Q1, k, k1, b, b1) = ‖HM SV(X) − Y*‖
2
, (22)  

where 

X =
(

Q Q1(t), h*
L(t), kk1(x), bb1(x)w*/w*(x), p*

g(x)
)T

,

x ∈ [0, L], t ∈ [0,T],
(23)  

and Q1 := Q1(k1, b, b1) according to (19). 
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The posterior expectation of Q (t) is given by the 3D integral 
involving the likelihood function L and the prior distribution ρ(⋅) of the 
means Q ,b,k: 

Q̂ (t) =
1
‖⋅‖

∫⋅

⋅

∫⋅

⋅

∫⋅

⋅

Q Q1(t)L [J0(Q ,Q1, k, k1, b, b1),α1]

ρ(Q , b, k))dQ dbdk.
(24) 

Since the inflow discharge (or the reach-averaged discharge) is 
considered as the major variable of interest, the integration quality over 
Q must be sufficiently high, which means a small integration step. 
Instead, one can substitute the 3D integral by a 2D integral as follows 

Q̂ (t) =
1
‖⋅‖

∫⋅

⋅

∫⋅

⋅

Q
′

Q1(t)L [J0(Q
′

,Q1, k, k1, b, b1), α1]

×ρ(Q
′

, b, k) dbdk,

(25)  

where 

Q
′

= argmin
Q

J0(Q ,Q1, k, k1, b, b1). (26) 

In practice, implementation of (25) is more accurate and less 
expensive than computing the integral over Q . The likelihood function is 
defined as follows: 

L [J0(Q
′

,Q1, k, k1, b, b1), Ĵ0, α1]

= exp

[

−
m

4α1

(
J0(Q

′

,Q1, k, k1, b, b1)

Ĵ0
− 1
)2
]

,

(27)  

where 

Ĵ0 = min
b,k

J0(Q
′

(k, b),Q1, k, k1, b, b1). (28) 

Parameter α1 in (27) controls the likelihood decay rate and is similar 
(not equivalent!) to the regularization parameter in Tikhonov’s formu-
lation (Tikhonov and Arsenin, 1977). Its value is evaluated using the L- 
curve approach (Hansen and O’Leary, 1993) as described in Section 4.7. 

For estimating the shape functions we define the standard variational 
DA cost-function involving the Saint–Venant model 

J1(X) = ‖HM SV(X) − Y*‖
2
+ α‖C− 1/2σ− 1(X − X*)‖

2
, (29)  

where 

X =
(

Q (t), hL(t), kmn(x), kmd(x), b(x), p*
g(x)

)T
, x ∈ [0,L], t ∈ [0, T]. (30) 

The penalty term in (29) includes the prior/background (known) 
approximation of X* and, also, the correlation matrix C and the variance 
σ of the background error, which are very difficult to specify in hydraulic 
application. This is why the formulation contains parameter α. 

4.4. Finite dimensional Bayesian estimates 

Let us discretize uniformly the plane {b, k} with steps 

Δb = (bub
− blb

)
/

n1, Δk = (kub
− klb

)
/

n2,

and consider the integration sample points 

bi = bub
− (i − 1)Δb, kj = klb

+(j − 1)Δk, i = 1,…, n1, j = 1,…, n2.

Then, integral (25) can be approximated by a sum: 

Q̂ (t) =
1

‖C0‖

∑n1

i=1

∑n2

j=1
Q

′

i,jQ1,i(t)L
[
J0,(i,j), Ĵ0, α1

]
ρ(Q

′

i,j, bi, kj), (31)  

where 

Q
′

i,j = argmin
Q

J0(Q ,Q1,i, kj, k1, bi, b1), Q
lb⩽Q

′

i,j⩽Q
ub;

i = 1,…, n1, j = 1,…, n2,
(32)  

Q1,i(t) = Q1(k1, bi, b1) (according to (19)–(21)), and J0,(i,j) is the corre-
sponding value of the cost function achieved in one-directional mini-
mization (32) and, according to (28) 

Ĵ0 = min
i,j

J0,(i,j).

The scaling constant in (31) is 

C0 =
∑n1

i=1

∑n2

j=1
L
[
J0,(i,j), Ĵ0,α1

]
ρ(Q

′

i,j, bi, kj). (33) 

Next, we define the prior of Q (t) as follows: 

Q pr(t) =
1

‖C1‖

∑n1

i=1

∑n2

j=1
QMI,(i,j)(t)ρ(QMI,(i,j), bi, kj), (34)  

where 

C1 =
∑n1

i=1

∑n2

j=1
ρ(QMI,(i,j), bi, kj), (35) 

Above, the Integrated Modified GMS model output QMI is defined by 
(20) with 

X =
(

h*(x, t), kjk1(x), bi b1(x), p*
g(x)

)T
, x ∈ [0, δ].

This prior estimate is used for optimal choice of regularization 
parameter α1. 

Unlike Q1(t) (which depends on b) the shape functions b1(x) and 
k1(x) do not depend on b or k, so one can compute their posterior ex-
pectations: 

(
̂b, ̂k)T

=
1

‖C0‖

∑n1

i=1

∑n2

j=1
(b, k)T

L
[
J0,(i,j), Ĵ0,α1

]
ρ(Q

′

i,j, bi, kj). (36) 

Therefore, 

b̂(x) = b̂b1(x), k̂(x) = k̂k1(x). (37) 

These estimates will be used in the variational DA step as the back-
ground values. 

Finally, one can compute the variance for Q̂ (t) by the following 
formula 

Var[Q ](t) =
1

‖C0‖

∑n1

i=1

∑n2

j=1

(
Q

′

i,jQ1,i(t) − Q̂ (t)
)2

×L
[
J0,(i,j), Ĵ0,α1

]
ρ(Q

′

i,j, bi, kj),

(38)  

where Q̂ (t) is given by (31). The variance is used for choosing the 
optimal value of regularization parameter α1. It can be used, of course, 
as a posterior uncertainty measure. 

Remark: In practice, the sweep over the 2D trial plane {b, k} can be 
interrupted before reaching the plane bounds to reduce the computa-
tional cost. It has been noticed that in many cases (e.g. for rivers having a 
significant bed slope) the cost function 

Ĵ0,i = min
j

J0,(i,j) (39)  

is a monotonically increasing function of index i (depth), starting from 
some value i*. This implies that the likelihood which corresponds to 
Ĵ0,i > ∊Ĵ0,i* , where ∊ is a chosen constant (e.g. ∊ = 10), has become too 
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small to noticeably contribute to the sum in (31) and, therefore, the i- 
loop can be stopped. Then, the lower bound for b is subsequently 
redefined as 

blb
= bi.

4.5. Specification of the prior PDF 

First assumption is that the prior joint PDF is a product of marginal 
distributions, for example 

ρ(Q
′

i,j, bi, kj) = ρ(Q
′

i,j)ρ(bi)ρ(ki).

Since we can guess on the bounds of the means based on physical 
considerations and/or available data from side sources, for the prior PDF 
we use the β-type distribution defined over the interval [0,1] and 
dependent on two shape parameters. A change of variables allows a PDF 
with the desired mode μ and spread σ to be constructed. Thus, for any 
scalar variable ψ, by ρ(ψ) we actually mean 

ρ(ψ) := ρ
(

ψ − ψlb

ψub − ψlb, μψ , σψ

)

,ψ ∈ [0, 1], μψ ∈ [0, 1], σψ > 0. (40) 

Let us note that ρ(ψ) approaches the uniform distribution with σ→∞, 

for any μ. In particular, for Q
′

we use 

μQ =
QWBM − Q lb

Qub
− Q lb , (41)  

where 

Q lb
= QWBM

/
5., Q ub

= 5QWBM . (42) 

This results into a highly skewed PDF presented in Fig. 3. In the 
special case of computing the bounds for the posterior Q̂ (t) in (31) we 
use μQ = ∊ (for the lower bound) and μQ = 1 − ∊ (for the upper bound), 
with a small enough σQ. Concerning b and k, the parameters are chosen 
such that the resulting PDFs are close to the uniform distribution, see 
again in Fig. 3. 

4.6. Variational estimation 

4.6.1. Basic formulation 
Variational estimation is a step of the cycling algorithm intended for 

improving ‘shapes’ of certain unknown distributed variables, and for 
reducing the impact of other unknown distributed variables considered 
as nuisance parameters. It is based on minimization of (29) with respect 
to Xa⊂X 

X ′

a = argmin
Xa

J1(Xa, X⧹Xa),

under box constraints 

Xlb
a < X ′

a < Xub
a .

The practical way of solving minimization problem (29) involving 
the parameter search procedure is based on the iterative regularization 
method (Alifanov et al., 1996; Gejadze and Malaterre, 2017; Kalten-
bacher et al., 2008). This implies that the original cost function is 
reformulated using the change of variables 

X̃a = C− 1/2σ− 1(Xa − X*
a)

in the following form: 

X̃
′

a = argmin
X̃a

J1(X̃a, X⧹Xa), (43)  

where 

J1(X̃a, X⧹Xa) = ‖HM SV(X*
a + σC1/2X̃a, X⧹Xa) − Y*‖

2
, (44)  

that is, without an explicit penalty term. Then, minimization is per-
formed using a ‘regular’ minimization method (e.g. CG or quasi- 
Newton). Since the uniform convergence (monotonic increase of the 
solution norm with iterations) is expected, the iteration number serves 
as a regularization parameter. The box constraints are reformulated as 
follows 

a − b
2

< X̃
′

a <
a + b

2
, (45)  

where 

C1/2a = σ− 1(Xub +Xlb), |C1/2|b = σ− 1(Xub − Xlb). (46) 

With this approach one can still use a simple box constrained mini-
mization method, such as LBFGS-B (Byrd et al., 1995). Other technical 
details on the variational DA approach involving the SIC2 model 
(SIC4DVAR) can be found in Gejadze and Malaterre (2017). 

4.6.2. Control vector 
Let us consider the full input set of the Saint–Venant model (8). Some 

components of the input vector are completely unknown, some are 
known approximately, some are measured directly (but not perfectly) or 
deduced from SWOT measurements involving another procedure. 
Technically, all components can be included into the control vector 
(active subset of the full input set) in the variational DA framework. 
However, to benefit from such inclusion one must know the relevant 
background covariance matrix. This is rarely possible in practice, so a 
‘sufficient’ control vector has to be chosen. In particular, we define this 
vector as follows: 

Xa = (Q (t), hL(t), kmd(x), b(x))T
. (47) 

The explanation for this choice is as follows: 
Q (t) – the upstream discharge. It is the variable of interest, i.e. the 

major expected output of estimation, thus included into the control 
vector; 

hL(t) – the downstream water surface elevation. It is an observed 
variable in the given idealized setup, where h(x, t) is provided with a 
regular time step and over the spatial domain of interest. Thus, we 
consider hL(ti) = h*(L, ti), while hL(t ∕= ti) is obtained by interpolation. 
In reality the observations could be irregularly distributed over the 
spatio-temporal domain, in which case simple interpolation would not 
be sufficient to recover hL(t). Thus, it is better to consider hL(t) as one of 
the unknowns. Included into the control vector; 

Q0(x), h0(x) – the initial conditions. For the given spatio-temporal 
scales have no big impact on the solution. Have to be chosen such that 
the initial shock does not lead to the loss of stability of the Saint–Venant 
solver. Not included into the control vector; 

Fig. 3. Probability density function for ρ(Q), ρ(b) and ρ(k).  
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b(x) – the depth of the wet bathymetry. Only the range for this 
variable can be guessed, e.g. bmin < b(x) < 0. Included into the control 
vector as a major unknown variable alongside Q (t); 

kmn(x) – the Strickler coefficient attributed to the minor bed or wet 
bathymetry. Only the range for this variable can be guessed based on 
physical considerations, e.g. 10 < kmn(x) < 60. However, one may 
expect a strong equifinality between b(x) and kmn(x). So, it is not 
included into the control vector. 

kmd(x) – the Strickler coefficient attributed to the medium bed or dry 
bathymetry. Similarly to kmn(x), the range of it can be guessed based on 
physical considerations, e.g. 10 < kmd(x) < kmn(x). If the cross-section 
profile for the medium bed is different from rectangular, less equifin-
ality between kmd(x) and b(x) should be expected. Also, kmd(x) is more 
likely to vary along the reach than kmn(x) due to change of vegetation 
and land cover. Included into the control vector; 

p*
g(x) – medium bed or dry bathymetry. It is deduced from SWOT 

observations using the algorithm described in Section 2. Not included 
into the control vector. 

4.6.3. Special constraints 
The role of the variational DA step in the suggested cycling algorithm 

is to improve ‘shapes’ of some distributed controls, whereas their 
(temporal or spatial) mean values are obtained using the direct Bayesian 
estimator, Section 4.4. To be in agreement with this concept, the vari-
ational DA step is not allowed to change significantly the mean values of 
the estimated controls. Implementation of this rule gives additional in-
tegral constraints. For example, for Q (t) one can consider the following 

|Q
′

(t) − Q̂ (t)|⩽∊ Q̂ (t) (48)  

where Q̂ (t) is the output of the Bayesian estimator given by (31), and ∊ 
is a constant. In the framework of iterative regularization, this constraint 
is implemented as an additional stopping rule for the minimization 
process. In numerical modeling ∊ = 0.1 has been used. 

4.6.4. Background covariance matrix 
There is little information on the properties of the error functions in 

our circumstances. It is clear, however, that for each stand-alone case 
(particular reach of a certain river) this error has rather a systematic 
nature. That is why the background covariance is simply considered as a 
tool helping to achieve a robust uniform convergence in viable di-
rections, rather than reach the minimum as quickly as possible. 

The correlation matrix C is block-diagonal, each block being asso-
ciated with one component of the control vector. In theory, the mini-
mization process for (44) must converge to the same minimum point for 
any C and σ, but via different trajectories (sequences of updates). For 
example, the larger the correlation is, the smoother are the subsequent 
updates. The convergence trajectories play a very important role in 
solving ill-posed problems, especially those with non-uniqueness. The 
important thing is the relative relationship of the correlation radii and σ 
for different components. 

Concerning the standard deviation vector σ we use the method 
described below. This method is rather heuristic, thus no theoretical 
justification is presently available. However, it performs surprisingly 
well in numerical tests. Consider the Modified Manning Low-Froude 
two-bed model (14) with the input vector 

X =
(

h*(x, t), kk1(x), kmd(x), bb1(x), p*
g(x)

)T
. (49) 

First, the variance Var[Q](x, t) is represented using the total-effect 
global sensitivity indices s in the form 

Var[Q](x, t) = sh(x, t)Var[h] + sk(x, t)Var[kmd] + sb(x, t)Var[b],

where 

sh(x, t) = E
[

∂M M2(X)
∂h

]2

, sk(x, t) = E
(

∂M M2(X)
∂kmd

)2

, sb(x, t)

= E
[

∂M M2(X)
∂b

]2

,

and E stands for the expectation (probabilistic mean) taken over the trial 
plain {b, k}. It is also assumed that the error variance in the input var-
iables does not depend on time or space. Next, we accept the ‘equal 
contribution’ principle, which means that 

1
3

Var[Q](x, t) = sh(x, t)Var[h] = sk(x, t)Var[kmd] = sb(x, t)Var[b]

Consider, for example, the first relationship and compute its spatio- 
temporal mean 

1
3
Var[Q] = sh Var[h], (50)  

where 

sh = E

⎡

⎣ 1
LT

∫T

0

∫L

0

(
∂M M2(X)

∂h

)2

dxdt

⎤

⎦. (51) 

From (50) we obtain 

Var[h] =
Var[Q]

3sh  

and, finally 

σ[h] = σ[Q]
̅̅̅
3

√
(sh)

1/2 . (52) 

Following the same logic we obtain the relationships similar to (52) 
for σ[k] and σ[b], involving sk and sb expressed via the relevant de-
rivatives. In practice, these are computed by running the adjoint of the 
Modified Manning two-bed model (14). Finally, we notice that only the 
relative weights of different components of the control vector are 
important, so we can put σ[Q] = 1. Let us note that σ[⋅] is a constant for 
each component of the control vector. 

4.7. Algorithm summary 

Here we provide the summary of the SIC-BVC algorithm applied for 
solving the discharge estimation problem in this study. A simplified 
flowchart is also presented in Fig. 4 to facilitate understanding of the 
algorithm. In practical computations just two cycles are used, only the 
minor bed depth shape b1(x) is updated between cycles. 

Put b1(x) = 1 and k1(x) = 1. 
Start cycles n = 1,…  

• 1. Scale ‘shape’ estimates 

bn
1(x) = bn(x)

/
bn (53)    

• 2. Trials step: compute cost function for different b and k 

Define J̃min = 1032. 
Bathymetry loop i = 1,…,n1 

Update bi = bub − (i − 1)Δb. 
Generate the shape function Q1,i(t) = Q1(1, bi, bn

1(x)) according to 
(19). 

Friction loop j = 1,…,n2 

* Update kj = klb + (j − 1)Δk 
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* Solve the 1D constrained minimization problem using the Brent 
method (Brent, 1973) 

Q
′

i,j = argmin
Q

J0(Q ,Q1,i, kj, kn
1, bi, bn

1), Q
lb ⩽ Q

′

i,j ⩽ Q
ub (54)  

keeping in memory both Q
′

i,j and the corresponding values of the cost 
function J0,(i,j)

End friction loop 
Compute J̃i according to (39). 
If J̃i < J̃min then J̃min = J̃i. 
Check stopping criteria: 

if J̃i > 10J̃min then put blb
= bi− 1,n1 = i − 1; exit bathymetry loop. 

End bathymetry loop 
Define the global minimum Ĵ0 = J̃min.  

• 3. Direct Bayesian estimation step: computing Q̂ (t), b̂(x), and k̂(x)

Compute Q pr(t) according to (34). 
Optimal regularization parameter search loop: l = − l1, l2 

For given α = m/2l compute Q̂ (t) according to (31), Var{Q (t)} ac-
cording to (38), b̂(x) and k̂(x) according to (37, 36) and, finally, 
J0,l(Q̂ (t), k̂, k1, b̂, b1) according to (22) involving 

Xl =
(

Q̂ (t), h*
L(t), k̂(x), b̂(x)w*

/
w*(x), p*

g(x)
)T

,

x ∈ [0,L], t ∈ [0,T].

Compute the probabilistic (Mahalanobis) distance between the prior 
Q pr(t) and posterior Q (t): 

sl =

∫T

0

(Q̂ (t) − Q pr(t))2

Var{Q (t)}
dt. (55) 

End l-loop 
Build parametric curve (analogue to L-curve) using points 

{J0,l(⋅)/Ĵ0 − 1, sl}, l = − l1,l2, and detect the ‘corner’. The corresponding 

l = l* gives the optimal value α* = m/2 l. 
For given α = α*: 

- compute Bayesian posterior estimates Q̂ (t), b̂(x) and k̂(x)
- construct priors for variational DA, i.e. the background vector X*

a for 
(44) 
- compute weights σ[h], σ[b] and σ[kmd] for variational DA  

• 4. Defining constraints for variational DA 
For the control vector Xa, defined in (47), compute the box con-

straints for the transformed vector X̃a using (45)-(46), given σ[⋅],C 
and the local bounds Xlb

a and Xub
a (see Section 5a).  

• 5. Variational DA step 
Update X*

a – the best available approximation of the control vector 
Xa, by solving the minimization problem (43) for the cost function 
(44), subjected to box constraints (45)-(46), using the LBFGS-B al-
gorithm. In formulas (43)–(46) we use: 

X⧹Xa =
(

Q0(x), h0(x), k̂(x), p*
g(x)

)T
, (56)  

Xa = (Q (t), hL(t), kmd(x), b(x))T
, (57)  

X*
a =

(
Q̂ (t), h*

L(t), k̂(x), b̂(x)
)T
. (58)  

Stop iterations if condition (48) is violated. 

End cycles (n-loop) 

4.8. Generalized discharge estimator 

The presented algorithm includes several steps of different 
complexity. The least expensive discharge estimate can be obtained by 
(34)-(35), i.e. without running the Saint–Venant model. A significantly 
more expensive estimate is given by Eqs. (31)–(33), which involve the 
likelihood function (matrix). Here one must compute the cost function 
(22) for different b and k, which implies running the Saint–Venant model 
up to n0 × n1 × n2 times, where n0 is the number of minimization steps 

Fig. 4. SIC-BVC algorithm: flowchart.  
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allowed for the 1D minimization by the Brent algorithm (n0 = 10 is used 
in this study). This step is computationally expensive, however quite 
straightforward to implement and perfectly scalable. The most complex 
step is the variational DA, which requires the adjoint of the 
Saint–Venant solver, and substantial memory for keeping the model’s 
evolution trajectory. The latter could impose a strong limitation, given 
that the DA period can cover years of observations. 

Given a possible need of producing the discharge estimates in the 
global scale and in close-to-real time regime, one may suggest the esti-
mator in the form: 

Q̂ (t) =
1

‖C‖

∑n1

i=1

∑n2

j=1
QMI,(i,j)(t)L +

[i, j] ρ(QMI,(i,j))ρ(bi)ρ(kj), (59)  

where 

C =
∑n1

i=1

∑n2

j=1
L

+
[i, j]ρ(QMI,(i,j))ρ(bi)ρ(kj), (60)  

and L +
[⋅] is a generalized likelihood function (matrix) defined as fol-

lows: 

L
+
[i, j] = L

[
J0,(i,j), Ĵ0, α*] Q

′

i,j

QMI,(i,j)

ρ(Q
′

i,j)

ρ(QMI,(i,j))
. (61) 

The above formulation is obtained as a result of simple manipula-
tions with Eqs. 34,35. In (59), the product 

ρ* = ρ(QMI,(i,j))ρ(bi)ρ(kj)

can be interpreted as a ‘prior’ PDF, and 

L
+
[i, j] ρ*  

as a ‘posterior’ PDF of the integrated Modified Manning model output 
QMI,(i,j)(t). Here, the terms ‘prior’ and ‘posterior’ are used rather 
conventionally, since QMI,(i,j) is already conditioned on observations h*(x,
t), according to Eqs. 20,21. 

The advantage of representation (59)-(61) is that any currently 
available likelihood function can be used for the real-time discharge 
estimation, including the trivial case L +

[i,j] = 1, which gives the ‘prior’ 
estimate according to (34)-(35). The likelihood itself can be updated 
independently and retrospectively, subjected to availability of compu-
tational resources. Besides, the spatial interval where QMI(t) is defined 
does not need to be limited to the initial part of the reach [0,δ < L], but 
may include any subinterval from [0,L]. 

A few examples of the ‘prior’ and ‘posterior’ PDFs, as well as the 
likelihood functions are presented in Fig. 5. This figure provides a good 
illustration on how the Bayesian estimator works. The results are typical 
for the PEPSI testing set. One can see that the ‘prior’ PDF covers quite a 
significant part of the trial plane {b,k}, whereas the area covered by the 
‘posterior’ PDF is comparatively smaller. This means the uncertainty is 
reduced due to assimilation of observations into the Saint–Venant 
model. Let us remember that the ‘posterior’ PDF is the product of the 
‘prior’ and the likelihood function, which depends on the cost function. 
One can observe that in some cases (e.g. ArialKhan, Mississippi Int, Seine 
Us) the likelihood function has no distinctive maximum point. This 
justifies using as an estimate the expectation of the posterior PDF, rather 
than its mode (minimum of the cost function). An exceptional case is 
Seine US, where the area of the nearly equal likelihood actually overlaps 
the area covered by the ‘prior’ PDF. This is an exhibition of the extreme 
ill-posedness/equifinality. 

4.9. Direct Bayesian estimation algorithm: L-curve 

At step 3 of the algorithm (‘Direct Bayesian estimation’) the optimal 
value of parameter α is sought using the L-curve approach. Originally, 

this approach was developed for the classical Tikhonov regularization 
method, where the regularization parameter is a multiplier to the pen-
alty term. It has been proved in Hansen and O’Leary (1993) that for a 
linear control-to-observation operator the value of the penalty term is a 
monotonically decreasing function of the residual norm with a distinc-
tive ‘corner’. The optimal parameter value is the one which corresponds 
to this corner. 

In our method, however, there are differences to the classical case. 
First, parameter α is placed inside the likelihood. Second, as a function of 
the residual norm the probabilistic distance (55) is considered. Finally, 
the Saint–Venant model is nonlinear. As a result, one may encounter the 
L-curve shapes which does not follow the expected regular behavior. 
Several examples are shown in Fig. 6. Two cases in the upper part of the 
figure (Cumberland and Seine, PEPSI-1) represent the shapes which 
have been encountered in testing most frequently. In the Cumberland 
case one can see a monotonically decreasing function, however without 
a distinctive corner. In this case, the optimal parameter corresponds to 
the point where the local derivative is equal to the average slope. In 
contrast to the previous case, in the Seine case a very distinctive corner is 
observed, however the behavior of the curve is not regular. In particular, 
the ‘edge effect’ can be seen. It has been found that this effect is usually 
related to the truncation of the bathymetry loop (see remark in Section 
4.4), and disappears when the range of b is sufficient. Two cases in the 
lower part (Seine DS and Seine US, PEPSI-2) represent irregular cases, 
which constitute the minority. However, these are presented to 
demonstrate that an automated search for the optimal parameter may 
not be easy. Presently, this is done via an expert assessment. 

5. Validation procedure 

5.1. General description, performance metrics and constraints 

The developed algorithm has been validated on the PEPSI testing set. 
For each ‘case’, i.e. a selected stretch of a river, the SWOT-type obser-
vations and the reference ‘true’ discharge have been provided to the 
members of the SWOT DAWG, as well as the corresponding QWBM. Let us 
mention again that QWBM represents the mean discharge over the his-
torical period from 1961 to 2010 with no relation to the testing period. 

In the presented method we introduce some additional constraints of 
a very general nature. Concerning the mean Strickler coefficient k, we 
assume it ranges from 10 to 60 (0.0167 to 0.1 for Manning), which is a 
reasonable assessment for natural rivers (Barnes, 1967). Concerning the 
mean wet bathymetry depth b, we assume it changes from zero to − 20m. 
This should be true for the majority of rivers, except very large ones 
which are generally better known. The PDF of these parameters is nearly 
uniform. Concerning the mean upstream discharge Q , we assume it 
belongs to the β-distribution with the mode at QWBM, the lower bound 
QWBM/5 and the upper bound 5QWBM. This gives a sufficiently wide in-
terval for Q to vary. Such highly skewed distributions are often used in 
hydrology to characterize the rainfall. Since the river discharge is a 
derivative of the rainfall over the catchment, this choice of PDF seems 
relevant. The local bounds Xlb

a and Xub
a used at the variational DA step are 

0 < Q (t) < 2Q̂ (t),

h*
L(t) − 1m < hL(t) < h*

L(t) + 1m,

10 < kmd(x) < k̂(x),

2b̂(x) < b(x) < 0.

These are consistent with constraints suggested for the mean values. 
Despite the fact that the observations have been generated numeri-

cally, this is not an identical twin experiment setup. We do not know 
which models have been used for each case, what values of numerical 
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parameters (for example, discretization steps) have been taken, what 
interpretation of the bed geometry has been accepted. For PEPSI-1, we 
corrupt observations by adding the Gaussian noise with zero expectation 
and a given variance (as in Durand et al., 2016). For PEPSI-2, the 
datasets without noise and including noise are directly provided, called 
‘ideal’ and ‘uncertainty’ sets, respectively. For the latter, the noise is 
generated by means of a specially developed model, based on under-
standing of errors arising in the measuring instrument due to the 
methodology of collecting the primary data (Durand et al., 2020; Fras-
son et al., 2021). 

Let y(t) be an arbitrary function of time. In order to compare this 
function with a given reference value yref (t) the following metrics are 
used: 

- normalized bias (NBIAS): 

NBIAS =
y

yref
− 1   

Fig. 5. Prior PDF (left), likelihood function (center) and posterior PDF (right).  
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- Nash–Sutcliffe efficiency (NSE): 

NSE = 1 −
1

var[yref (t)]
1
T

∫T

0

(y(t) − yref (t))2dt   

- relative root mean square error (RRMSE): 

RRMSE =

⎛

⎝1
T

∫T

0

(
y(t)

yref (t)
− 1

)2

dt

⎞

⎠

1/2   

- normalized root mean square error (NRMSE): 

NRMSE =
1

yref

⎛

⎝1
T

∫T

0

(y(t) − yref (t))2dt

⎞

⎠

1/2   

- normalized root mean square error invariant (NRMSEI): the same 
as above with scaling factor 

yref = (y2
ref )

1/2
.

RRMSE has been used in PEPSI-1 tests (Durand et al., 2016). This 
metric has later been abandoned in favor of NBIAS, NRMSE and NSE in 
PEPSI-2 tests (Frasson et al., 2021). Here we provide RRMSE only to 
enable comparison of our results on PEPSI-1. Concerning NRMSE used in 
Frasson et al. (2021), we notice that it is not very suitable for signals 
characterized by long periods of low variability (e.g. Brahmaputra). 
Thus, we suggest another metric called NRMSEI (where I stands for 
‘invariant’). Again, for comparison we present our results in terms of 
NRMSE. Let us note that NSE is not a useful performance criteria when 
the variability of the function is small against its mean value. 

In validation we compare either the upstream discharge y(t) := Q (t), 
or the spatially averaged (reach-averaged) discharge 

y(t) := Q(t) =
1
L

∫L

0

Q(x, t)dx, (62)  

where Q(x, t) is the Saint–Venant solution (9), given the model input 
vector as follows: after the direct Bayesian estimation step (step 3) 

X =
(

Q̂ (t), h*
L(t),Q0(x), h0(x), k̂(x), k̂(x), b̂(x), p*

g(x)
)T

, (63)  

and after the variational DA step (step 5): 

X =
(

Q
′

(t), h
′

L(t),Q0(x), h0(x), k̂(x), k
′

md(x), b′

(x), p*
g(x)

)T
. (64) 

One can see that Q(t) depends on the upstream discharge Q (t), but 
also on the estimates of b(x), kmn, kmd(x) and hL(t). 

6. Results 

.1 The results of solving the discharge estimation problem are 
generalized in terms of the performance metrics (see Section 5.1), which 
are presented in Tables 1,2 and visualized using the box-plots in 
Fig. 7–10. First, in Fig. 7 the advantage of using the posterior expecta-
tion instead of the posterior mode (i.e. the optimal solution) is demon-
strated. Here we compare the accuracy of the ‘prior’ (34), the posterior 
expectation (31) and the posterior mode of the upstream discharge after 
Step 3 of the Algorithm. The mode is defined as follows: 

Q
′

(t) = Q
′

i′ , j′ Q1,i′ (t),

Fig. 6. L-curve examples.  

1 The complete results of solving the discharge estimation problem can be 
presently downloaded from:https://www.dropbox.com/s/6wmji9wv5g0vx7l/ 
discharge_P1.tar.gz?dl=0, https://www.dropbox.com/s/lzw1jksl66ut0xi/ 
discharge_P2.tar.gz?dl=0. 
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where 

(i′, j′) = argmax
i,j

L
[
J0,(i,j), Ĵ0,α*]ρ(Q

′

i,j, bi, kj).

Let us note that what we call ‘prior’ here is an estimate already 
conditioned on observations h*(x, t) via M MI model. Moreover, it in-
corporates some results of running the Saint–Venant model, since the 
range of the minor bed depth b could have been reduced during the 
depth loop, see remark in Section 4.4. Nevertheless, this is the simplest 
and the least expensive useful output of our method. Thus, it is worth 
comparing this estimate with more advanced and expensive ones. 

One can conclude looking at Fig. 7 that, on average, the expectation 
is a noticeably better estimate of the upstream discharge than the mode, 
for all metrics. This proves the key idea of our method: evaluate the 
posterior expectation of the temporal/spatial means of the distributed 
parameters rather than the optimal values (modes). Secondly, in 
average, the accuracy of the ‘prior’ seems to be comparable to the ac-
curacy of the mode, given a reasonable range for b is defined. Since the 
‘prior’ is much less computationally expensive than the optimal solu-
tion, this gives an interesting hint on the possible future developments. 

Next, Fig. 8 shows the performance of the full Algorithm, with 
metrics being computed using the spatially averaged discharge, ac-
cording to (62)-(64). Here we present the averaged performance: A – 
after 1 cycle, PEPSI-1/2; B – after 2 cycles, PEPSI-1/2; C – after 2 cycles, 
PEPSI-2 testing set only. Case C is considered separately to facilitate 
comparison with the results reported in Frasson et al. (2021). A drop in 
the estimation quality in comparison to the complete PEPSI set is due to 
the presence of the short duration cases in PEPSI-2 (T = 11 days, see 
Table 2), for which the estimation accuracy is usually less good than for 
the long duration cases. One can see that the accuracy of the spatially- 
averaged discharge estimate is improved after the second cycle. This 
result confirms the idea of the Bayesian Variational estimation cycles, 
where the information exchange is limited to the updated shape func-
tions (b1(x) in our case). Clearly, running another cycle means the 
proportional rise of the computational cost. 

Next, in PEPSI-2 we investigate how the accuracy of the estimated 
discharge depends on the observation period (period between snapshots, 
satellite revisiting period). This period is considered constant, so one can 
equally speak in terms of the snapshot frequency. It is obvious that when 
the snapshot frequency drops, certain frequencies in the water surface 
temporal evolution become unobservable. These are naturally lost in the 
final solution for Q (t). Thus, the performance metrics largely depend on 
the frequency content of the discharge hydrograph. That is why the 
metrics are computed at the observation instants only, similarly to 
Frasson et al. (2021). As before, the metrics are based on the spatially 
averaged discharge. Only the ‘long duration’ cases are included in this 
test (overall 19 cases, see Table 2). The results are presented in Fig. 9. 
Here, one can see that: a) the estimation accuracy degrades when the 
snapshot frequency drops; b) this degradation occurs mainly during the 
transition from 1-day to 4-days period; c) further increase of the period 
(from 4 to 10 days) does not lead to any noticeable degradation, at least 
in terms of the NSE and NRMSE metrics. The likely explanation of this 
behavior may be related to the fact that all test cases considered in this 
paper have the characteristic time less than 2 days. However, if the 
observation frequency is less than the characteristic frequency of the 
dynamical system, no benefit from using the unsteady model of this 
system could be attained. This is the difference between the 1-day and 
(4–7-10)-day cases. Given that the SWOT satellite revisiting period will 
generally range from 5 to 10 days, it makes sense to use the steady-state 
SV model instead of the unsteady SV model (which is also much less 
expensive computationally). On the other hand, it is possible to imagine 
that in the future the information may come from a several satellites, so 
the observation period could be significantly reduced. 

In the previously described results involving PEPSI-2 the exact SWOT 
observations from the ‘ideal’ testing set have been used. In the final tests 

we have used the noisy observations from the ‘full uncertainty’ testing 
set. The results are presented in Fig. 10. One can see that the box-plot 
medians with and without noise (A and B, respectively) remain nearly 
the same, whereas the box size (distance between 1st and 3rd quartiles 
of the sample) is even reduced when using the noisy data. Moreover, 
NBIAS is smaller in this case. While these results look somewhat 
encouraging, the number of test cases including noise is too small to 
draw any definitive conclusions. 

There are several cases within PEPSI-1/2 where the true discharge 
does not fit into the accepted interval [QWBM/5, 5QWBM], see Tables 1,2. 
These are Tanana (PEPSI-1), and MiddleRiver, Olentangy, SanJoaquin 2, 
Padma (all PEPSI-2). All cases except Padma are the ‘short period’ cases 
(12 days) and represent the tails of the box-plots. As a rule, if the like-
lihood function has no distinctive ‘bell’, the estimate is strongly domi-
nated by the prior, see upper and mid plots at Fig. 12 for example. Here, 
the likelihood function has a flat plateau covering most of the trial plane 
and, subsequently, the posterior PDF is not too different from the prior 
PDF. Thus, the estimation accuracy is totally determined by the quality 
of the prior PDF (QWBM plus bounds on Q defined via QWBM using (42)). 
For example, this quality is satisfactory in the Grant Line Canal case, and 
unsatisfactory in the MiddleRiver case, with the corresponding estima-
tion results. In contrast, the estimation accuracy for Padma is much 
better than one may expect given the accuracy of the prior mean 
discharge (QWBM/Qtruth = 0.072). There are two reasons for that. First, 
the mean discharge prior PDF is originally skewed toward larger 
discharge values. Second, the likelihood function, see the bottom plot at 
Fig. 12, has a distinctive ridge at b = − 5m. This likelihood transforms 
the prior PDF in a way which implies an additional discharge increase. 
Overall, the plots like those presented in Fig. 5 or Fig. 12 are useful for 
explaining the estimation results. 

By request of Reviewers we additionally present some materials 
which facilitate comparison of SIC-BVC to other SWOT DAWG algo-
rithms. First, Fig. 11 shows the performance of SIC-BVC, MetroMan and 
HiVDI algorithms in terms of NSE, NRMSE and NBIAS metrics. We also 
provide Table 3, which contains the values of NRMSE achieved by our 
method and by MetroMan, HiVDI, GeoBam and SADS, for each case from 
the PEPSI-II testing set. 

Considering Fig. 11 one can conclude that the suggested SIC-BVC 
algorithm yields noticeably more accurate and more stable estimates 
than either MetroMan or HiVDI. The latter two are, in turn, the most 
accurate among all SWOT DAWG algorithms. Saying that we have to 
underline that a straightforward comparison of the results may not be 
fully legitimate. One thing is that the results by SWOT DAWG algorithms 
over the PEPSI-II testing set were obtained in a ‘blind’ experiment, 
which means no information about the reference (‘true’) discharge was 
available to tune the algorithms. In contrast, this information was 
available to us at the algorithm development stage and, therefore, could 
have influenced some of the design solutions implemented. Other points 
are rather technical. First, the SWOT DAWG algorithms work at the 
reach level, then the discharge estimates are averaged over all ‘good’ 
reaches. In the SIC-BVC algorithm we are looking for a longest sequence 
of adjacent ‘good’ reaches to define a continuous spatial domain where 
the hydraulic model is set up. Therefore, if there exist ‘good’ reaches 
outside this sequence, these are excluded from our analysis. Second, our 
results include the ArialKhan case, which means that the boxplots for the 
MetroMan and HiVDI performance presented in our paper in Fig. 11 may 
slightly differ from those presented in Frasson et al. (2021). 

While the actual impact of the mentioned factors is difficult to access, 
we strongly believe it may not change the overall picture. 

7. Conclusions 

Our recent experience with the variational DA method applied for 
estimating the river discharge in the SWOT mission context has 
confirmed that the problem of simultaneous estimation of the upstream 
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discharge hydrograph and spatially distributed hydraulic parameters 
may have multiple solutions. In practice, this often appears in the form 
of a bias, which is fully dependent on the chosen priors and the back-
ground covariance matrix. 

Thus, for resolving this problem, a new robust method has been 
developed. The method includes a separate treatment of the temporal/ 
spatial mean values and the ‘shape’ functions, representing (in product) 
the unknown input variables. The mean values (mean upstream 
discharge over the full observation period, mean weighted depth of the 
‘wet’ bathymetry and mean Strickler coefficient) are estimated using the 
Bayesian method as expectations over the 2-dimensional posterior PDF, 
whereas the ‘shape’ functions – using the variational DA method and the 
Integrated Modified Low-Froude GMS model. Looking for the 

expectation instead of a mode is a key expedient to construct a robust 
estimator. This is due to the fact that, unlike the modes, the conditional 
expectation of any PDF with finite variance is unique almost surely. 

The Bayesian estimation step by itself combines minimization of the 
cost function with respect to the mean discharge with integration over 
the trial plane (mean weighted depth versus mean Strickler). Besides, 
the novel elements include using a ‘regularization’ parameter, which 
controls the decay rate of the likelihood, rather than that of the prior 
PDF (the latter corresponds to the standard Tikhonov approach), plus 
adaptation (or generalization) of the L-curve principle for the optimal 
choice of this parameter. 

Other important methodological findings include: 

Table 1 
Performance, PEPSI-1.   

Case T(days) Qtruth Qwbm NBIAS RRMSE NRMSE NRMSI NSE  

1 Connecticut 160 634.23 394.11 − 0.012 0.120 0.179 0.139 0.951  
2 Cumberland 160 905.43 511.39 0.102 0.399 0.161 0.128 0.957  
3 Ganges 365 12155.68 10943.69 − 0.212 0.187 0.350 0.240 0.891  
4 Garonne US 365 155.88 54.68 − 0.075 0.223 0.079 0.067 0.984  
5 Garonne DS 365 482.34 528.48 − 0.170 0.122 0.177 0.145 0.936  
6 Kanawha 365 626.17 305.00 − 0.215 0.218 0.254 0.212 0.852  
7 Mississippi DS 160 15190.27 8928.31 − 0.394 0.457 0.395 0.373 − 0.294  
8 Mississippi US 160 5412.42 3383.44 − 0.310 0.365 0.310 0.293 0.220  
9 Ohio 250 4001.73 2459.92 0.131 0.243 0.139 0.109 0.969  
10 Platte 24 151.52 56.86 − 0.136 0.928 0.284 0.231 0.841  
11 Po 365 1499.88 841.81 − 0.274 0.423 0.283 0.207 0.908  
12 Sacramento DS 152 272.01 377.00 0.171 0.148 0.285 0.239 0.808  
13 Sacramento US 302 206.19 377.00 − 0.090 0.134 0.132 0.112 0.955  
14 Seine 360 300.29 205.54 − 0.111 0.101 0.147 0.126 0.940  
15 Severn 90 105.09 104.85 0.268 0.866 0.275 0.187 0.935  
16 StLawrence DS 140 9606.80 9586.54 0.282 0.329 0.322 0.320 − 8.050  
17 StLawrence US 140 9606.80 7753.74 − 0.124 0.132 0.127 0.126 − 0.398  
18 Tanana 98 1443.00 344.77 − 0.718 0.725 0.721 0.714 − 24.68  
19 Wabash 160 972.89 565.30 − 0.183 0.403 0.226 0.189 − 0.878   

Table 2 
Performance, PEPSI-2.   

Case T(days) Qtruth Qwbm NBIAS NRMSE NRMSI NSE  

20 ArialKhan 360 808.06 2459.00 0.438 0.471 0.315 0.820  
21 AshSlough 12 38.47 36.06 0.160 0.186 0.169 0.845  
22 BerendaSlough 12 16.04 36.06 0.236 0.364 0.320 0.552  
23 Brahmaputra 105 1982.82 5162.40 0.332 0.527 0.214 0.945  
24 ChowchillaCan 12 21.67 36.21 0.280 0.308 0.146 0.973  
25 FresnoRiver 12 52.12 45.95 − 0.052 0.088 0.081 0.957  
26 GrantLineCan 12 212.25 243.76 0.553 0.565 0.549 − 4.415  
27 IowaRiver 365 158.11 147.00 0.127 0.174 0.114 0.977  
28 Jamuna 250 22024.50 16623.00 − 0.130 0.140 0.106 0.973  
29 Kushiyara 365 1170.53 2133.00 − 0.149 0.206 0.149 0.954  
30 MariposaBypass 12 108.33 75.57 − 0.062 0.120 0.111 0.920  
31 MercedRiver 12 94.64 75.57 − 0.001 0.190 0.176 0.789  
32 MiddleRiver 12 24.44 171.76 7.907 8.151 7.863 − 889.2  
33 Mississippi In 160 5480.35 2459.00 − 0.306 0.311 0.294 0.185  
34 Missouri DS 480 923.55 498.00 − 0.274 0.298 0.268 0.621  
35 Missouri MS 480 1016.97 498.00 − 0.382 0.420 0.370 0.388  
36 Missouri US 480 1032.98 498.00 − 0.400 0.450 0.393 0.346  
37 Ohio Section 1 220 1604.93 2459.00 0.406 0.477 0.367 0.668  
38 Ohio Section 2 220 2316.96 2459.00 0.017 0.055 0.044 0.995  
39 Ohio Section 3 220 2703.67 2459.00 − 0.103 0.151 0.120 0.962  
40 Ohio Section 4 220 3419.83 2459.00 0.057 0.072 0.056 0.992  
41 Ohio Section 5 220 3803.56 2459.00 0.225 0.251 0.198 0.898  
42 Ohio Section 7 220 5349.49 2459.00 − 0.494 0.603 0.476 0.397  
43 Ohio Section 8 220 7590.86 2459.00 − 0.378 0.436 0.342 0.694  
44 Olentangy 12 2.64 26.35 7.563 7.603 6.241 − 118.4  
45 Padma 360 29444.72 2133.00 − 0.358 0.472 0.361 0.687  
46 SanJoaquin 12 222.29 154.96 − 0.108 0.172 0.156 0.864  
47 SanJoaquin 2 12 29.32 154.96 1.291 1.425 1.253 − 5.927  
48 Seine DS 360 300.29 205.53 − 0.100 0.181 0.155 0.909  
49 Seine US 360 192.72 205.53 0.329 0.372 0.314 0.655  
50 Stanislaus Riv 12 105.30 154.96 0.031 0.123 0.113 0.911  
51 Tuolumne Riv 12 228.58 154.96 − 0.324 0.346 0.345 − 27.9   
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Fig. 7. Performance metrics for the upstream discharge Q (t) after Step 3 at first cycle: A – ‘Prior’, B – posterior mode (optimal solution), C – posterior expectation. 
PEPSI-1/2. 

Fig. 8. Performance metrics involving the spatially averaged discharge (62): A – PEPSI-1/2 after 1 cycle, B – PEPSI-1/2 after 2 cycles, C – PEPSI-2 after 2 cycles.  
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Fig. 9. Performance metrics involving the spatially averaged discharge (62), for different snapshot period: A – 1 day, B – 4 days, C – 7 days, D – 10 days. PEPSI-2.  

Fig. 10. Performance metrics involving the spatially averaged discharge: A – without noise and B – including noise. PEPSI-2.  
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- the Integrated Modified Low-Froude GMS model M MI, which is 
used for generating the hydrograph shape function (dependent on 
the mean depth). The generalized discharge estimator, suggested in 
Section 4.8 is also based on this model; 
- the method for automatic construction of the simplified back-
ground covariance matrix required for the variational DA step, via 
the sensitivity analysis performed during the Bayesian step, as pre-
sented in Section 4.6.4. 

In building the algorithm we tried to avoid any design solutions 
which may be considered as those introducing additional a priori in-
formation to the SWOT data. In particular, we do not use: 

a) the rating curve, neither as a downstream boundary condition, 
nor elsewhere; 
b) a local value of the minor bed elevation at any point along the 
river; 
c) any information which may come from the geomorphological 
classification of the area where the river case is defined. 

We do use the mean discharge from the QWBM database and the 
following assumptions concerning the bounds: 

a) mean upstream discharge varies from QWBM/5 to 5QWBM; 
b) mean weighted depth varies from 0 to − 20m; 
c) mean Strickler varies from 10 to 60. 

Let us note that the first assumption is equivalent to introducing the 
quantiles of the distribution of QWBM. Those were not available during 
this study, but could be calculated by processing the QWBM database, if 
the full access to it is obtained. Assumptions b) and c) are simply a 
common sense assumptions likely to be valid for the majority of natural 
rivers. 

The method has been validated on the PEPSI-1/2 testing set, which 
has also been used by other authors in the SWOT-type data assimilation 
context. First to mention, the method is more robust, reliable and 
convenient to use than the (standing alone) variational DA method. In 
particular, there have been much less occurrence of critical errors due to 
intractable hydraulic conditions (supercritical flow, dry bed, etc). There 
is no longer a need to specify the priors, the background covariance 
matrix and the bounds, which all come from the Bayesian step (step 3 of 
the Algorithm). Overall, the variational DA is playing a complementary 
role in this algorithm, since the discharge shape function is sufficiently 
well reproduced using the model M MI described in Section 3. Of course, 
such a convenient shape generator may not be available in general. On 
the other hand, at the Bayesian step the algorithm presently requires an 

Fig. 12. Prior pdf (left), likelihood function (center) and posterior pdf (right).  
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Fig. 11. Performance metrics by different methods involving the spatially averaged discharge: A – SIC-BVC, B – MetroMan, C – HiVDI. PEPSI-II ideal cases. Top 
subplots – 1 day snapshot period, bottom subplots – 4 days snapshot period. 
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expert assessment of the L-curve. 
In terms of accuracy, the SIC-BVC algorithm shows a superior per-

formance (measured in NSE, NRMSE and NBIAS) in comparison to all 
SWOT DAWG algorithms reported in Frasson et al. (2021). For example, 
on the PEPSI-2 testing set, it gives about 25 − 30% improvement over the 
MetroMan, which itself shows the best performance among other SWOT 
DAWG algorithms. Moreover, our results on the complete PEPSI-1/2 
testing set are better than those obtained on the PEPSI-2 set alone. 

In terms of accuracy, the SIC-BVC algorithm shows a superior per-
formance (measured in NSE, NRMSE and NBIAS) in comparison to all 
SWOT DAWG algorithms reported in Frasson et al. (2021). For example, 
on the PEPSI-2 testing set, it gives about 25 − 30% improvement over the 
MetroMan, which itself shows the best performance among other SWOT 
DAWG algorithms. Moreover, our results on the complete PEPSI-1/2 
testing set are better than those obtained on the PEPSI-2 set alone. 
The above comparison is made with a few reservations, presented in the 
last paragraph of Section 6). We also admit a possibility that the 
mentioned SWOT DAWG algorithms could have been evolved, since the 
results reported in Frasson et al. (2021) were actually obtained. Intui-
tively, the accuracy of our method is approaching the limit, given the 
available data. This accuracy is clearly worse that the one that could be 
achieved using gauge measurements, however it may suffice for certain 
scientific and practical purposes. 

This study has been focused on the proof of the concept of the new 
method, thus the issue of computational feasibility has not got much 
attention. We assess that the method in its present form can be used at a 
regional scale in a ‘hind cast’ or ‘reanalysis’ mode. For the global scale 
application in real or close-to-real time mode we suggest the generalized 
discharge estimator described in Section 4.8, which will use the ‘best 
currently available’ likelihood matrix. The computation of this matrix is 
a separate ‘learning’ process which may not necessarily be synchronized 
with data streams. There are also a few possible ways of reducing the 
computational cost of the likelihood matrix. One of them is to use the 
steady-state Saint–Venant solver instead of the transient solver (work in 

progress). The importance of having the full complexity algorithm for 
the upcoming development of simplified versions is obvious: one can see 
what approximations could be accepted without a significant deterio-
ration in the estimation accuracy. 
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