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Mitochondrial function in intestinal epithelium
homeostasis and modulation in diet-induced
obesity
Thomas Guerbette1, Gaëlle Boudry1,* ,3, Annaïg Lan1,2,3
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ABSTRACT

Background:Systemic low-grade in� ammation observed in diet-induced obesity has been associated with dysbiosis and dis
testinal homeostasis. This latter relies on an ef� cient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that a
their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption
derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC.
Scope of review:This review presents the current general knowledge on mitochondria, before focusing on IEC mitochond
role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from thal
metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of bo
colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-indu
Major conclusions:HFD consumption provokes a metabolic shift toward fatty acidb-oxidation in the small intestine epithelial cells and
colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acidb-oxidation and/or the presenc
deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could e
the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial
induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown an
nisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.

� 2022 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by).
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1. INTRODUCTION

Overweight and obesity are de� ned as abnormal or excessiv
accumulation that presents a risk to health owing to an
imbalance between calories consumed and calories expe
cording to recent reports from the World Health Organizat
1.9 billion adults were overweight and 650 million obese
Four million overweight or obese people die each year fr
ciated complications, such as cardiovascular diseases or c1].
Those obesity-associated metabolic disorders are likely to
result of systemic low-grade in� ammation [2,3]. Indeed, because
the major endocrine function of adipose tissue notably in
production, excessive fat accumulation in obese subjects
metabolic in� ammation of numerous tissues such as liver, m
brain [4,5]. However, disturbances of intestinal homeost
particular an increased permeability of the intestinal
concomitant with intestinal microbiota alterations of its co
and/or metabolic activities, as described in animal model6e 8] as
well as in humans [9], also participate in the onset an
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perpetuation of systemic low-grade in� ammation [10]. Intestina
homeostasis relies on complex interactions between the m
the intestinal epithelium, and the host immune system, that
intestinal barrier function maintenance. This barrier is nota
of a monolayer of intestinal epithelial cells (IEC), associated
other by tight junctions, and a mucus layer that protects
surface. In physiological situations, the intestinal barrier a
� lter that absorbs nutrients in the small intestine and wa
electrolytes in the colon. Those absorption processes invo
porters that require high amounts of energy. In addition, the
epithelium constantly renews itself every 4e 5 days. This renewal
ensured by intestinal stem cells (ISC), nested at the bott
testinal crypts, which undergo continuous asymmetric
generating progenitor cells that differentiate as they migra
crypt-villus axis in the small intestine, or up the crypt in th
and� nally die by anoikis. A balance between proliferation/a
contributes to intestinal homeostasis whereas disruption
equilibrium and increased apoptosis is associated with defe
intestinal barrier [11].
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Abbreviations

CAT Catalase
CLD Cytosolic lipid droplet
CPT1 Carnitine palmitoyltransferase 1
DRP1 Dynamin-related protein 1
ER Endoplasmic reticulum
ETC Electron transport chain
FADH Flavin adenine dinucleotide
GO_BP Gene ontology biological process
GPX Glutathione peroxidase
GTP Guanosine triphosphate
HDAC Histone deacetylase
HFD High fat diet
HK1 Hexokinase 1
HIF1a Hypoxia-inducible factor 1a
HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2
HSP Heat shock protein
IEC Intestinal epithelial cells
IMM Inner mitochondrial membrane
IMS Intermembrane space

ISC Intestinal stem cells
LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5
MFN Mitofusin
Miro Mitochondria Rho-GTPase
mt Mitochondria
mTOR Mitochondrial target of rapamycin
NAD Nicotinamide adenine dinucleotide
NRF Nuclear respiratory factor
OMM Outer mitochondrial membrane
OXPHOS Oxidative phosphorylation
Parkin RBR E3 Ubiquitin Protein Ligase
PGC1 Peroxisome proliferator activated receptorg coactivator-1
PINK1 Phosphatase and tensin homolog-induced kinase 1
PPAR Peroxisome proliferator-activated receptor
PUMA p53 upregulated modulator of apoptosis
ROS Reactive oxygen species
SCFA Shortchain fatty acids
SIRT Sirtuin
SOD Superoxide dismutase
TCA Tricarboxylic acid cycle

Review
Because of the energy needed for rapid epithelial turnove
dependent transporters, and junctional cell permeability r
as well as mucus glycoproteins and antimicrobial peptides
the intestinal epithelium requires great amounts of energy. H
the gastrointestinal tract represents only 5% of the total bod
but consumes 20% of the whole-body oxygen [12]. Energy is produc
by mitochondria, in the form of ATP via oxidative phosp
(OXPHOS). Mitochondrial function plays therefore a pivota
testinal homeostasis. However, IEC mitochondrial function
be impaired by high fat diet (HFD) consumption notably th
trients, such as fatty acids, or metabolites produced by
microbiota, that may act as metabolic perturbators of IEC.
drial dysfunction is thus de� ned as any mechanism that reduce
� ciency of OXPHOS and leads to decreased levels of cellu
The objectives of this review are� rst to resume the current knowle
on mitochondria, then focus on mitochondrial function in IEC
control of intestinal homeostasis and highlight the known
metabolites, originating from the diet or gut bacterial metab
IEC mitochondrial function. The� nal objective is to summarize
current literature on the impact of HFD on mitochondrial func
and discusses the possible link between mitochondrial dysfu
altered intestinal homeostasis in diet-induced obesity.

2. GENERAL DESCRIPTION OF MITOCHONDRIA

2.1. Structure
Mitochondria are 0.5e 1 mm long by 0.5e 1 mm large organelles th
are delimited by two phospholipid bilayers: an inner mito
membrane (IMM) and an outer mitochondrial membran
separated by an intermembrane space (IMS) (Figure 1). The OMM
separates the mitochondrial content from the cytosolic spa
lows the communication of mitochondria with its environmen
through mitochondria-associated membranes (MAM) whi
functional and physical communication between mitochond
endoplasmic reticulum (ER). The OMM also constitutes an
interface between the mitochondria and the cytosol. While pr
ions smaller than 5 kDa diffuse through the OMM via porin
molecules, such as pre-proteins which possess a mito
2 MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Els
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targeting signal, translocate across the OMM via binding
locases of OMM complex [13]. Proteins internalized into the m
chondria include heat shock proteins (HSP) or proteins invo
tricarboxylic acid cycle (TCA),b-oxidation and/or OXPHOS. On th
hand, the IMM is an impermeable membrane that allows
� cking. It houses the electron transport chain (ETC) co
involved in ATP production via OXPHOS. Inward folds, ca
extend IMM thus increasing surface for ATP generation and
protein and metabolite exchanges through IMM translocase16].
Mitochondria are also mobile organelles able to move alon
bules via a mitochondrial Rho-GTPase (Miro), which anch
motor to the mitochondrial surface, forming a dynamic netw17].

2.2. Mitochondrial genome
Mitochondria possess their own genome, a circular double
mtDNA (w 16.6 kb in humans) housed inside the matrix. Mi
drial genome is made of hundreds to thousands of mtDNA
cell depending on the tissue [18], only transmitted maternally, alth
this has been recently challenged [19]. Strong evidences suggest
the number of mitochondria and mtDNA copies is functi
cellular energy requirements since high energy demand
require an enhanced number of mitochondria and more
mtDNA than low energy demand [20].

2.3. Mitochondrial dynamics: biogenesis,� ssion, fusion, and
control quality

2.3.1. Biogenesis
Mitochondrial biogenesis is the process through which pr
mitochondria grow and divide. It contributes to maintain
metabolic homeostasis by providing a pool of healthy mitoch
eliminating damaged mitochondria. Mitochondrial biogenes
proteins encoded by both mitochondrial and nuclear geno
volves peroxisome proliferator-activated receptor gammag)
coactivator1a (PGC1a), a co-transcriptional factor which d
biogenesis especially by activating nuclear respiratory fact
and 2. NRF1 and NRF2 are both transcriptional factors whi
the mitochondrial transcription factor A (TFAM), which in t
evier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1: Mitochondrial structure and dynamics.This schematic representation of mitochondrial architecture shows inner mitochondrial membrane (IMM) folded in cristae,
which houses the mitochondrial electron transport chain, and surrounds the mitochondrial matrix. Outer mitochondrial membrane (OMM) separates the intermembrane space from
the cytosol. Mitochondrial dynamics involvesfusionand� ssion. Fusion of two mitochondria into a bigger one is notably mediated in the OMM by mitofusin(MFN) 1andMFN2
isoforms, which form homo or heterodimers, and by optic atrophy 1 (OPA1) in IMM which facilitates inner membrane merging. At the opposite, mitochondrial� ssionprovides
smaller mitochondria from a bigger one and occurs where endoplasmic reticulum (ER) makes contacts with mitochondria, creating the� ssion apparatus composed of OMM protein,
such as mitochondrial dynamics proteins of 49 and 51 kDa, and GTPase Dynamin-related protein 1 (DRP1) on sites where ER attach. DRP1 then translocates to the OMM,
multimerizes, forming a ring structure around the organelle which� nally splits both membranes. Once mitochondrial� ssion is completed, the healthy mitochondrion is reintegrated
to the tubular network whereas the downregulation of fusion mediators isolates damaged mitochondria. Damaged mitochondria, are characterized by the phosphatase and tensin
homolog-induced kinase 1 (PINK1) accumulation on the OMM and are recognized by the cytosolic RBR E3 ubiquitin protein ligase (Parkin) that phosphorylates PINK1, triggering
OMM protein ubiquitination and recruiting mitophagasomes machinery. The phagosome fuses with a lysosome and proceeds to mitochondrial degradation via lysosomal proteases
and lipases to� nally eliminate damaged mitochondria by mitophagy. (For interpretation of the references to colour in this� gure legend, the reader is referred to the Web version of
this article.)
transcription and replication of mtDNA. NRF1 and NRF2 also
expression of nuclear genes encoding ETC subunits an
required for mitochondrial functions [21]. Mitochondrial biogenesis
be in� uenced by cellular factors, among which oxidative st
proliferation or differentiation state [22].

2.3.2. Fusion and� ssion
Mitochondria are submitted to processes of fusion and� ssion. Th
� ssion is the phenomenon by which a mitochondrion div
smaller daughter mitochondria. During cell division, it there
ates the necessary number of organelles for redistribu
daughter cells. Fission can also occur to facilitate the aut
depolarized mitochondria, characterized by a low mito
membrane potential and impaired ATP production [23]. Fusion allow
the cell to generate the correct number of mitochondria fo
cells on one hand while on the other hand, it is a process
each mitochondrion compensates defects of each other [24]. Fusion
machinery indeed allows mtDNA, protein and membrane c
exchanges between mitochondria which thus provide essen
to ensure mitochondrial function [25]. While a balance between� ssion
and fusion maintains a stable mitochondria number within
regulating mitochondrial morphology and bioenergetic fun
changes in mitochondrial fusion or� ssion balance can occur a
cellular response to stress. An imbalance of fusion over� ssion result
in elongated and tubular mitochondria, constituting a mito
tubular network, whereas an imbalance towards� ssion generate
fragmented mitochondria [26], often associated with decreased
production and considered as pathological [27,28]. While alterations
mitochondrial morphology is associated with impairment
chondrial energy production [29e 32], mitochondrial metabolism
MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Elsevier GmbH
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turn controls mitochondrial morphology. In case of metabo
mitochondria tend to fuse in order to increase their oxidativ
thus maximizing OXPHOS and energy production [33]. Mitochondria
function is thus strongly connected to mitochondria morph
changes in mitochondria morphology (e.g. shape, cristae
impact mitochondria bioenergetic state andvice versa[34].

2.3.3. Mitochondrial quality control
2.3.3.1. Mitochondrial unfolded protein response.One mechanis
of mitochondrial quality control is the mitochondrial unfolde
response (mtUPR). This pathway is triggered by the accum
misfolded proteins in mitochondria caused, for example, by
reactive oxygen species (ROS) production [35]. mtUPR is thus able
reduce mitochondrial proteotoxic stress and reestablish p
meostasis by increasing the mitochondrial chaperone and
pool through their transcription by the nuclear activation of
scription factor C/EBP homologous protein (CHOP) [35]. Mitochondria
proteotoxic stress also induces the expression of NRF1, i
mitochondrial biogenesis [35]. mtUPR also displays regulatory
based on the sirtuin (SIRT) 7 and NRF1 interplay, in wh
chondrial protein folding stress, in response to nutrient de
induces SIRT7 expression which in turn repressed NRF1 a
diminished mitochondrial activity and biogenesis to avoid
[36]. This mechanism thus promotes cell quiescence and n
stress resistance [36].
mtUPR also displays a mitochondrial stress resistance mac
involves the mitochondrial deacetylase SIRT3 in a CHOP-i
manner [37]. SIRT3 axis of mtUPR has indeed been shown
oxidative damages in stressed mitochondria by inducing th
sion of the antioxidant enzyme superoxide dismutase (SOD
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3
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Review
the activation of the nuclear transcription factor FOXO3, an
ates the elimination of irreparable mitochondria by a
mitophagy targets [35].
mtUPR thus regulates the activation of genes involved in
pathways, ROS scavenging machinery and mitochondrial
that sustains the reestablishment of protein homeostasis a
metabolism to withstand mitochondrial stress and maint
chondrial network integrity [38].

2.3.3.2. Mitophagy.Autophagy is a catabolic pathway
removes cytoplasmic components, including damaged org
lysosomal degradation. Applied to mitochondria, this proces
mitophagy (Figure 1) and results in the elimination of dam
mitochondria, marked by depolarized IMM or excess of
proteins beyond the mtUPR repair limit, to prevent exces
chondrial ROS (mtROS) generation and cell toxicity [39]. Mitophag
seems to be also connected to mitochondrial motility. Wa
suggested that, during mitophagy, combination of PINK1 a
activities contributes to isolate the damaged mitochondria
kinesin network by the proteasomal degradation of Miro [40] as well as
down-regulation of fusion mediators, decreasing probabilit
chondria to fuse with others [41].

2.4. Mitochondrial bioenergetics
Mitochondria is considered as the powerhouse of the cell w
vides energy in the form of ATP. This energy is produce
OXPHOS which consists in oxidation of the redox cofacto
amide adenine dinucleotide (NADH) and� avin adenine dinucleo
(FADH2) coupled with the phosphorylation of ADP into ATP.
NADH and FADH2 is obtained through catabolic pathways such
acidb-oxidation via the Lynen helix or carbohydrate catabolis
includes glycolysis, or through amino acid catabolism (Figure 2). Those
Figure 2: Schematic view of mitochondrial bioenergetics in intestinal epith
tricarboxylic acid cycle (TCA) that generates NADH and FADH2, whose oxidation in co
metabolic crossroad since it can be obtained through carbohydrate catabolis
also generates NADH and FADH2 in each round. Amino acid catabolism also fuels
ketoglutarate.
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pathways give rise to acetyl-CoA that enters in the TCA, also
Krebs cycle, in which each oxidative decarboxylation gener
Acetyl-CoA is thus considered as a metabolic crossroad.
During their oxidation, NADH and FADH2 transfer their electro
initiating the electron� ux through the ETC, also known as
ratory chain (Figure 3). This chain is made of 5 enzymatic
plexes: NADH dehydrogenase (Complex I), succinate deh
(Complex II), ubiquinol cytochrome c oxidoreductase (Co
cytochrome c oxidase (Complex IV) and ATP synthase (
[42]. Electron transfer through ETC complexes is accompa
proton pumping, from mitochondrial matrix toward IMS t
erates electrical and chemical gradients. Those gradien
drive the transport of protons from IMS to the matrix thro
synthase and constitute a proton driving force that dr
rotation of ATP synthase subunits. This mechanical ene� nally
allows chemical synthesis of ATP from condensation of
phosphate and ADP.

2.5. Mitochondrial ROS generation
Mitochondria are the most abundant source of ROS. ROS
peroxide radicals (O2

� -) and downstream products such as hy
and peroxide compounds, like hydrogen peroxide (H2O2). OXPHOS
indeed not totally ef� cient as 0.2e 2% of the electrons leak out, no
from complexes I and III, and interact with O2 to produce RO
especially O2

� - [43] (Figure 3). Some mitochondrial enzymes
constitute, to a lesser extent, a source of mtROS. First, th
located pyruvate anda-ketoglutarate dehydrogenases are re
� avoproteins that constitute a source of O2

� - and H2O2 through electro
transfer by their� avin subunit [44]. Then, mitochondrial fatty acib-
oxidation is also a source of ROS whether by favoring elec
from the ETC via complexes I and III and electron transfer� avoprotei
and oxidoreductase [45] or from enzymes involved in the mitoch
elial cells.Electron transport chain (ETC) is fueled through catabolism of Acetyl-CoA in the
mplexes I and II of the ETC initiates electron transfer between complexes. Acetyl-CoA is a
m as well as fatty acidb-oxidation in the Lynen helix, including butyrate and fatty acids from diet, that
TCA notably through conversion of glutamine into glutamate and then dehydrogenation intoa-
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Figure 3: Electron transport chain (ETC) and Reactive Oxygen Species (ROS) generation.ETC is made of 5 enzymatic complexes:NADH dehydrogenase(Complex I),
succinate dehydrogenase(Complex II),ubiquinol cytochrome c oxidoreductase(Complex III),cytochrome c oxidase(Complex IV) andATP synthase(Complex V). By
respectively binding to complex I and II, NADH and FADH2 provides each two electrons to the ETC during their oxidation. These electrons are transferred, via several iron sulfur
clusters, to lipid soluble redox coenzymes Q (CoQ). Then, coenzyme Q reduction transfers electrons to Complex III which are in turn transferred to cytochrome c (Cyt c) molecules.
Cytochromes c next provide electrons to Complex IV that catalyzes the reduction of 2 O2 molecules into H2O. In each complex, except Complex II, energy of passing electrons is
accompanied by proton pumping from matrix to the intermembrane space (IMS). Accumulation of protons in the IMS generates a potential difference (electrical and chemical
gradients) across the inner membrane. Those gradients in turn drive the transport of protons from IMS to the matrix through complex V, also known as ATPsynthase, and
constitutes a proton-driving force that drives the rotation of Complex V subunits. This mechanical energy� nally allows chemical synthesis of ATP from condensation of inorganic
phosphate and ADP. Electron leaks from complexes I, toward mitochondrial matrix, and III, into the matrix and into the IMS, interact with O2 and generate superoxide anions. The
latter may then be converted into H2O2 and H2O by antioxidant enzymes (SOD1/2: superoxide dismutase 1/2; GPX: glutathione peroxidase; GR: glutathione reductase; GSH: reduced
glutathione; GSSG: oxidised glutathione; CAT: catalase) in the cytosol or within IMM or mitochondrial matrix.
b-oxidation such as the� avoprotein long-chain acyl-CoA dehy
nase [46]. To a lesser extent, ROS are also produced in o
compartments notably through cytosolic oxidases, such a
oxidase [47], within the peroxisomes via their oxidases [48], through
ER cytochrome P450 [49] and also from membrane enzymes, s
the family of NADPH oxidases Nox and Duox [50].
To balance ROS concentration, cells possess an endogen
dant enzymatic machinery (Figure 3). Exogenous antioxidants, su
dietary vitamins and minerals, also exert a role in ROS ba51].
However, an excess of ROS generation leads to cellular da
lipid peroxidation and protein oxidation as well as DNA a
damages, that ultimately triggers programmed cell death [52]. mtDNA
because of its structure, is more susceptible to ROS d
resulting in single or double mtDNA breaks or DNA base
such as bypasses of the thymine and formation of thymine g53].
Moreover, TCA enzymes are also vulnerable to ROS inju54,55]
making mitochondria the primary target of ROS-induce
damages. It is noteworthy that ROS also display bene� c roles in tissu
homeostasis. As second messengers, they are involved
intracellular transduction pathways and control the action o
activated protein kinases [56].
MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Elsevier GmbH
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3. MITOCHONDRIAL FUNCTIONS IN INTESTINAL EPIT
CELLS

3.1. Epithelial renewal dynamics in small intestine and co
The small intestine epithelium is characterized by elongate
towards lumen, called villi, composed of differentiated IEC a
invaginated domains called crypts, which contain ISC
epithelium only displays crypts and a� at epithelial surface.
The intestinal epithelium is in constant turn-over and self-ren
4e 5 days. Crypt-based columnar ISC are located at the bot
crypts, intercalated between Paneth cells in the small inte
harbor leucine-rich repeat containing G protein-coupled r
(Lgr5) gene as a speci� c marker [57]. Here, they continuously und
asymmetric division generating transit-amplifying cells.
continuous and rapid cycles of proliferation, these progen
gradually move upward the crypt and� nally differentiate in
absorptive IEC (enterocytes or colonocytes) or secretory ce
goblet or enteroendocrine cells). Paneth cells remain within
intestinal crypts where they pursue their role of antimicrobia
and stem cell maintenance since they participate to the ni
ronment of Lgr5þ cells. An equivalent to Paneth cells in the c
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 5
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Reg4þ cells which also play a role in epithelial niche for IS58].
Finally, at the top of the villus in the small intestine, or at th
epithelial surface, senescent cells lose their attachment to
ment membrane and neighboring cells, and fall into the l
anoikis [59].
Because intestinal epithelium is exposed to pathogens an
components derived from diet or microbiota, which may tr
damages and apoptosis, epithelial renewal is essential to
testinal homeostasis through intestinal barrier integrity [60]. Yet, this
process requires high amount of energy directly prov
mitochondria.

3.2. Intestinal epithelium zonation associated with differen
metabolic activity along the crypt/villus axis
As they migrate upward the crypt-villus axis, enterocytes
zonated cell states associated with different functions, dep
the extra-cellular environment and gene expression, and thu
metabolic activities. By tracing Lgr5þ ISC progenies, it appears
most genes are not continuously expressed along the crypt-
suggesting that enterocytes are not terminally differentiat
their migration along the villi, but rather continuously transdi
[61]. Heatmaps and zonation pro� les of genes involved in the
sorption of distinct nutrient classes highlight a zonation o
absorption machineries along the crypt-villus axis in mouse
Mid-villus enterocytes display amino acid and carbohydrate
and metabolism machinery, whereas villus tip cells have
expressions of genes involved in lipid absorption and ch
secretion [61] (Figure 4).
Figure 4: Intestinal epithelium zonation and metabolic activities along the c
display a metabolic gradient associated with different mitochondrial activities
rely on glycolysis to rapidly provide energy needed for proliferation, in assoc
lactate. Then, IEC migration upward the crypt/villus axis is accompanied wi
rapamycin (mTOR), and higher OXPHOS activities to support essential func
andL-glutamate to fuel OXPHOS while differentiated colonocytes mostlyb-oxidize micro
at the top of colonic crypts, enhanced metabolic activities� nally generate reactive o
anoikis.
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In connection with the intestinal epithelium zonation, IEC
metabolic gradient associated with their proliferation and p
transitions during their migration along the crypt-villus axi
cells tend to have a high glycolytic phenotype whereas Lþ ISC
display both high glycolytic and OXPHOS activities as show
NADþ � uorescence analyzes in mouse small intestine throu
dimensional phasor� uorescence lifetime microscopy [62]. On the
contrary, differentiated enterocytes at the top of the villi [63] or colo-
nocytes at the top of the crypts [64] use OXPHOS to ful� ll their ener
getic needs (Figure 4). In line with this metabolic grad
mitochondrial biogenesis and activity are also regulated
crypt-villus axis. In rat small intestine IEC from villi contai
twice more mitochondria than IEC from crypts. Those mit
also seem larger in villi than in crypts [65]. Moreover, in intesti
organoids, IEC differentiation has been linked to an increa
chondrial number [62].
Finally, ROS can regulate cell phenotypic shift along the c
axis. Immunohistochemistry analysis of mouse small inte
veals that p38, a MAP kinase sensitive to redox status and
IEC differentiation, is activated at the bottom of intestin
whereas it is less active in differentiated villi. In mouse sma
organoids, p38 is activated during crypt formation and differe
responses to ROS signaling [66]. Furthermore, impairing OXPH
mouse small intestine organoids, by blocking ETC com
treating them with antioxidants, altered crypt formation [61]. Taken
together those results suggest that mitochondrial function
ROS signaling and p38 activity, drives crypt formation
differentiation.
rypt/villus axis. As intestinal epithelial cells (IEC) migrate up along the crypt/villus axis, they
that play a major role in intestinal homeostasis. Intestinal crypts house intestinal stem cells (ISC) that

iation with oxidative phosphorylation (OXPHOS) in the small intestine, supported by Paneth cell-derived
th higher mitochondrial content and PGC1a expression, notably induced by the mammalian target of
tions such as nutrient absorption. Enterocytes from small intestine mainly rely onD-glucose,L-glutamine
biota-derived butyrate thus protecting ISC against its anti-proliferative effect. At villi tips or
xygen species (ROS) accumulation in mature IEC which contributes to trigger apoptosis by

evier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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3.3. Mitochondrial function in the control of ISC homeosta
Strong evidences suggest that cell metabolism is a key re
pluripotency and differentiation: metabolism could control
fate and even determine cellular phenotype [67]. Generally, cells
active proliferation state perform high glycolytic activity and
OXPHOS level [68], assimilable to the“Warburg effect”, a metaboli
alteration of cancer cells characterized by important glyco
lowed by lactic acid fermentation [69]. As highly proliferative c
Lgr5þ cells exhibit high glycolytic activity. However, they als
relatively high mitochondrial activity and use lactate to produ
sustained OXHPOS as observed in mouse small intestine
[62]. Indeed, besides supporting ISC stemness by providing
growth factor, Paneth cells also support Lgr5þ cell metabolic state
providing glycolysis-derived lactate. Thus, in the small intes
show different but cooperative metabolic activities (Figure 4). Yet,
recent works demonstrated that fatty acidb-oxidation play a major r
in ISC maintenance and stemness [70,71] mediated by the tra
scription factors HNF4A and HNF4G [72], both regulators of intest
fatty acid oxidation. Furthermore, PRDM16, a transcription
promotes fatty acidb-oxidation through PPAR activation, is ne
for the survival of the stem-cell-derived progenitor cells in up
of the small intestine [73].
Paneth cells being absent in the colon, colonic ISC perform
the conversion of glucose into lactate through anaerobic
even in presence of O2, thus harboring a Warburg-like metab
[68]. Moreover, a metabolic barrier is established in ma
colonic crypts, also called“butyrate paradox”, that protect ISC from
anti-proliferative effect of butyrate. This short-chain fatty ac
produced by the gut microbiota, can indeed inhibit ISC prol
physiological concentrations through the inhibition of histo
tylase (HDAC), and increasing FOXO3 binding on negative
cell cycle genes and inhibiting proliferation of ISC [74]. Theoreticall
since colonic ISC display higher rates of glycolytic act
OXPHOS [68], butyrate would not be ef� ciently oxidized and wo
accumulate in the cytoplasm and inhibit consequently pr
[74]. However, colonocytes at the top of the crypt preferentia
butyrate thus limiting its amount at crypts basis, where ISC a
and favoring ISC proliferation [74] (Figure 4).
Furthermore, mitochondria are able to modulate ISC stem
proliferation via mtUPR and notably through mitochondrial H75]. To
assess its role in intestinal homeostasis, the mitochondrial
HSP60, required for the folding and assembly of proteins im
mitochondria [76], was deleted in mouse intestinal epithelium
resulted in mtUPR activation and mitochondrial function imp
association with a loss of stemness and cell proliferation i
de� cient jejunal crypts [75], suggesting a critical role for mitoc
drial function and mtUPR in maintaining stemness and pro

3.4. In� uence of intracellular signaling on mitochondrial
bioenergetics zonation
As mitochondrial biogenesis modulator, PGC1a can act as a metabo
regulator of IEC fate by increasing OXPHOS and fatty acidb-oxidation
[77]. PGC1a is predominantly expressed at the top of the villi
less in proliferative crypts) along with PPAR-g [78], with which it in
teracts to trigger gene expression. As an epithelial nuclea
primarily synthesized in differentiated colonocytes and ac
butyrate, PPARg triggers mitochondrialb-oxidation of fatty acids a
oxygen consumption through OXPHOS, further contributing
OXPHOS activity at the top of crypts [64,79]. PPARg and PGC1a thus
seem to contribute to the intestinal metabolic gradient along
villus and crypt axes.
MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Elsevier GmbH
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Moreover, along the crypt-villus axis, the mammalian targe
mycin (mTOR) increases levels of mtDNA and the expressio
involved in OXPHOS in IEC, through nutrient signaling, suc
acids and glucose, and growth factors, such as insulin grow
[80,81]. Also, the transcriptional repressor protein Yin Yang 1
mTOR play critical roles in intestinal epithelium repair and IS
since their deletion in mice impairs stem cell renewal [82,83]. In
muscle stem cells, mTOR has been shown to mediate the
formation between PGC1a and YY1 resulting in increased mito
drial biogenesis and OXPHOS gene expression [84]. Whether this als
applies in IEC need further investigations.

3.5. Mitochondrial function and apoptosis through PGC1a-driven
ROS accumulation
The overexpression of PGC1a and enhanced OXPHOS in differe
IEC is also accompanied by increased mtROS production. H
the intestine, contrarily to other tissues where it induces the e
of antioxidant enzymes [85], PGC1a overexpression enhances m
chondrial activity and ROS accumulation, without displaying
on ROS scavenging [86]. Furthermore, accumulation of intrac
free radicals decreases antioxidant mitochondrial enzyme
(SOD, GPX and CAT) in anin vitromodel of pig enterocytes [87]. This
raises the question of mitochondrial injury consequences on
homeostasis.
While PGC1a does not display antioxidant properties in the
intestine, PGC1b, a PGC1a homolog, localized all along the e
crypt-villus axis in the small intestine and crypts in the colon
OXPHOS but also protects the intestinal epithelium aga
driven damages by stimulating antioxidant enzymes pr
such as SOD2 and GPX4 [88]. Indeed, overexpressingPgc1b in
mouse resulted in higher enterocyte lifespan and increas
susceptibility whilePgc1b knockout mice were protected ag
intestinal carcinogenesis [88]. Hence, this transcriptional fa
coactivator orchestrates the balance between enhanced
drial activity and protection against ROS over-production
entire epithelium in the small intestine and colon. Yet, enzym
antioxidant machinery, such as SOD2 and CAT, are poorly
in villi tips [89] compared to crypt base, while prooxidant en
such as glutathione transferase/reductase, are highly expr
[89]. Thus ROS accumulation ultimately fosters cell apopto
top of the crypt-villus axis [77].

3.6. Energetic substrates of IEC
IEC are polarized cells facing the intestinal lumen on one si
milieu interieuron the other side. While themilieu interieurcompo-
sition is relatively stable in healthy individuals thanks to s
meostasis regulatory mechanisms, the composition of the lu
can change drastically depending on the diet, time of the da
microbiota composition and activities. Indeed, the comp
ingested meals as well as diet patterns directly modify th
composition of the small intestine. Moreover, and although t
of microorganisms is globally inhibited by bile acids and p
secretions in the small intestine [90], the role of jejunal bacteria
nutrient absorption, and especially lipid absorption, is more
recognized [91,92]. As for the colon, it constitutes an importan
of bacterial fermentation. Hence, in the colon, undigested o
digested dietary carbohydrates [structural polysaccharides o
walls, oligosaccharides (galactooligosaccharides or fr
saccharides [93]), resistant starch [94]], dietary proteins and lipid
substrates from endogenous sources (digestive secretions
cells, and mucins) are metabolized by gut bacteria, resulting
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 7
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luminal composition, depending on dietary factors and/or m
composition [95].
This particularity of the IEC environment leads to a large po
energetic substrates for those cells (Figure 2). In general, enterocy
mostly useD-glucose,L-glutamine andL-glutamate as substrates
oxidative metabolism [96,97], and colonocytes produce energy
substrates originating either from the lumen, such as SCF
butyrate, or to a lesser extent from blood origin, such asD-glucose
acetoacetate andL-glutamine [98]. However, many substrates
metabolites, directly originating from the diet or from gut
transformation, are also used as energetic fuels and mod
mitochondrial function (Table 1).

4. ROLE OF MITOCHONDRIAL DYSFUNCTION IN DIET
OBESITY INTESTINAL HOMEOSTASIS DISTURBANCES

4.1. Impact of HFD on IEC mitochondrial function

4.1.1. In the small intestine
4.1.1.1. Metabolic switch towards lipid catabolism.Depending o
the diet composition, the small intestine is“metabolically� exible” [99].
In response to excessive fat consumption, it increases fat a
esteri� cation into triacylglycerol and export into chylomicro100],
even after a short-term exposure of 3 days in humans [101]. Tri-
acylglycerol that have not been exported are stored in cyto
droplets (CLD) within the enterocytes, up to 18 h in humans102,103]
and 12 h in mice [104], and can be remobilized later, notably
glucose ingestion [105,106]. Functional analysis and network
tation performed on CLD fractions from obese (60% kcal from
weeks) and lean (10% kcal from fat) mice subjected to oi
revealed that lipid catabolism is the second most enrich
ontology biological process (GO_BP) and is more pres
proximal parts of the small intestine in both obese and lean
oral gavage [107]. Those enriched GO_BP include proteins inv
mitochondrialb-oxidation (Acyl-CoA Dehydrogenase Very Lo
Acetyl-CoA Acyltransferase 2, Hydroxyacyl-CoA Dehydro
functional Multienzyme Complex Subunit Alpha and Electro
Flavoprotein Subunit Beta) and are overexpressed in CLD
enterocytes from obese mice [107,108].
In response to increase dietary fat absorption, the small in
marked by metabolic adaptations towards fatty acidb-oxidation [109e
111]. Interestingly, three days of HFD consumption (60% kca
is suf� cient to decrease nearly by half the gene expressio
glucose transporter Slc5a1 and of hexokinase 1 (Hk1) in j
lated enterocytes [111], suggesting a decrease in glucose meta
in enterocytes of HFD mice. On the other hand, protein exp
HMGCS2, a mitochondrial enzyme involved in ketogenesi
increased in the jejunum of HFD-fed mice. Ketogenesis is
from acetyl-CoA generated via fatty acidb-oxidation to produce ene
from lipids, in a context of TCA intermediate deprivation. Thi
a metabolic re-programming of jejunal enterocytes from
towards lipid metabolism, from 3 days after HFD consumptio111] to
20 weeks of HFD [110]. To predict metabolic� ux variations
response to increased dietary lipid intakes, a constraint-ba
bolic model of mitochondria from murine enterocyte was d
[112]. Simulations and protein transcript analysis predicte
crease inb-oxidation in response to increased ratio of lipid/c
drate in the diet. Kondo et al. besides showed that 2 week
consumption in C57BL/6 J mice increased carnitine p
transferase (CPT) activity, that allows fatty acid entran
mitochondria, and the levels of [Ue 14C]palmitic acidb-oxidation i
8 MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Els
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mitochondrial fractions of jejunal epithelial cells from HFD
[109].
Despite the fact that fatty acids are sparsely used as energeti
by enterocytes in physiological states [97], increasedb-oxidation ca
be seen as a mechanism to counteract excessive lipid storag
in hepatocytes in a context of nonalcoholic fatty liver diseas113].

4.1.1.2. Role of IEC lipid metabolism in the onset of obeThe
ability to catabolize dietary fatty acids in enterocytes seem
associated with protection against obesity development. By
levels of expression of fatty acid metabolism-related genes i
to a HFD between C57BL/6 J mice and an obesity-resistant s
it appears that expressions were higher in HFD-fed A/J mice
activity displayed increased expression in A/J mice compa
HFD-fed C57BL/6 J mice [109]. Moreover, intestine-speci� c deletion o
HDAC3 protects mice fed a HFD from obesity [114]. HDAC3 deleti
increased fatty acidb-oxidation in IEC from duodenum compa
wild-type mice. After 17 weeks on HFD, mice lacking intestin
had less triglyceride storage in their enterocytes than contr
HFD and similar bodyweight than mice fed a standard d114].
Likewise, hypothesizing that enterocyte lipid metabolism pla
role in controlling obesity development and metabolic a
Ramachandran et al. developed a mutant mouse model w
expresses the mitochondrial transporter CPT1a in their e
(iCPT1mt). iCPT1mt mice fed a HFD exhibited increased lb-
oxidation in IEC compared to� oxed mice (Cpt1mt� /� ). Althoug
iCPT1mt HFD mice developed obesity, with similar body w
than control mice, their visceral fat mass was reduced,
displayed improved glycemic control compared HFD Cpt1m� /� [115].
Moreover, overexpression of SIRT3 in enterocytes increase
activities in jejunal enterocytes after oral gavage with oleic a
mice, with notably lower concentrations of palmitoyl-CoA,
increasedb-oxidation [116]. Furthermore, SIRT3 overexpression
improves mouse glucose homeostasis and protects agai
resistance under HFD [116]. Besides, SIRT3, in association with
is also able to enhance fatty acidb-oxidation by promoting very
chain acyl-CoA dehydrogenase activity and its binding to ca
mitochondrial membranes [117].
Taken together, these data indicate that enhancing fattyb-
oxidation in the jejunum of HFD mice improves body glu
meostasis, prevents insulin resistance, and reduces fat ma

4.1.1.3. Lipid catabolism and risks of oxidative stress.Despite th
fact that enhanced fatty acidb-oxidation improves glucose ho
stasis and reduces adiposity, it could however induce oxida
[118,119]. Fatty acidb-oxidation indeed constitutes a source of
as described in2.5. Furthermore, HFD consumption has been l
reduced concentrations of glutathione and antioxidant enzy
and CAT) in duodenal homogenates from rats fed a HFD (45
for 4 weeks. Additionally, increased ROS detection has bee
in duodenal homogenates of mice fed a HFD (21% kcal fat) f
[118] and in the ileum of rats fed a high-fat/high-sucrose di
kcal from fat) for 17 weeks [119]. Interestingly, genetically obese
do not show any difference in ROS detection in the intestine
to control mice suggesting that oxidative stress is related to
high sucrose consumption rather than obesity itself in the
testine [119].

4.1.1.4. Mitochondria function from IEC of small intestine
Although several studies have pinpointed the metabolic swi
fatty acid metabolism that occurs in IEC from the small intes
evier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com



Table 1e Effects of dietary and gut microbial-derived metabolites on mitochondrial function of intestinal epithelial cells.

Metabolite Luminal concentration Origin Target tissue Fatea and effect on IEC mitochondria

Glucose 300 mM in intestinal chyme [147] Diet Small intestine (from lumen)/Colon
(from bloodstream)

� Aerobic metabolism: conversion into pyruvate in the cytosol and OXPHOS of
pyruvate [148]

� Anaerobic glycolysis in presence of limited amount of oxygen [148]

L-glutamine and
L-glutamate

L-glutamate found at 0.1 mM before
meal to 2.6 mM (3 h after meal
containing 50 g of puri� ed bovine
serum albumin) [149]

Diet Small intestine (from lumen)/Colon
(from bloodstream)

� L-glutamine:� rst converted intoL-glutamate and ammonia via the mitochon-
drial phosphate-dependent glutaminase [150], then cytosolic transamination
intoL-glutamate.

� L-glutamate: hydrolysis via peptidase to release glutamate, then transamination
with oxaloacetate to forma-ketoglutarate andL-aspartate, both oxidized by
TCA cycle and OXPHOS [12,150]

Indole Up to 1 mM in human feces [151] Produced by gut microbiota from
tryptophan [151]

Colon � At 1 mMin vitroon GLUTag cells: blocking of mitochondrial complex I activity of
entero-endocrine cells thus impairing OXPHOS [152]

� At 2.5 mMin vitroon HT-29 Glc� /þ : decreases mitochondrial oxygen
consumption and maximal respiration, provokes oxidative stress [153]

H2S In the large intestinal lumen, H2S is
present at concentrations ranging
from 1.0 to 2.4 mM [154] and
human fecal sul� de concentrations
can reach 3.4 mM in association
with high-meat diet [155]

Bacterial metabolite mainly produced
through cysteine catabolism by gut
bacteria [156]

Colon � Detoxi� cation through oxidation by the mitochondrial sul� de oxidized unit in
HT-29 Glc� /þ and in human colonic biopsies [157]

� Under 20mM in vitroon HT-29 Glc� /þ cells, ATP production through H2S
oxidation [157]

� At concentrations ranging from 37.5mM to 62.5mM in vitroon HT-29 cells,
decreases colonocytes oxygen consumption in a reversible way via reduction
of cytochrome c oxidase activity and increase in proton leak thus impairing ATP
production and promotes glycolysis [158]

� At 0.1 mMin vitroon HT-29 and HCEC cells: limited renewal of oxidized
coenzymes, essential for ETC activity, through the decrease in NADþ /NADH
ratio [159]

� At millimolar concentrationsin vitroon HT-29: inhibitions ofL-glutamine and
butyrate mitochondrial oxidation as a consequence of the H2S-driven
inhibition of the cytochrome c oxidase activity [158]

P-cresol Around 0.4 mM in human feces
[160]

Produced fromL-tyrosine by gut
microbiota [160]

Colon � At concentrations above 0.8 mMin vitroon HT-29 Glc� /þ : mitochondrial
dysfunction by increasing proton leak through IMM, causing impairment of
ATP production and concomitant production of anion superoxide [161]

� At 1.6 mM on rat normal colonocytes: inhibits oxygen consumption [161]

4-hydroxyphenylacetic acid
(HO-PAA)

Micromolar concentrations [162] Produced fromL-tyrosine by gut
microbiota [162]

Colon At 1 mMin vitroon HT-29 Glc� /þ :: decreased mitochondrial complex I activity
and colonocytes mitochondrial respiration, increased ROS levels [163]

Ammonia (NH4
þ and NH3

þ ) Up to 30 mM in human feces [164] Deamination of amino acids and urea
hydrolysis by bacteria [165]

Colon � At millimolar concentrations in rat colonocytes: decrease in basal oxygen
consumption [166] and inhibition of SCFAb-oxidation, possibly by blocking the
TCA enzyme malate dehydrogenase in case of low glucose availability [167]

� At 60 mMin vitroon Caco-2: decreased expressions of genes encoding
mitochondrial ETC subunits, reduced cellular ATP level, mitochondrial
membrane potential and TCA intermediate contents associated with the
emergence of oxidative stress and epithelial barrier disruption [168]

Butyrate From 11 mM to 25 mM per kg of
intestinal content [169]

Anaerobic bacterial fermentation of
undigested carbohydrates obtained from
dietary� bers but also of several amino
acids, derived from undigested proteins
or endogenous sources [170]

Colon � Preferred energetic fuel of colonocytes, contributing to 70% of their energy
requirements, through mitochondrialb-oxidation and TCA cycle [79,171]

� Inhibition of other substrates oxidation, such as acetoacetate,L-glutamine and
D-glucose in rat isolated colonocytes [98]

(continued on next page)
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HFD, no precise description of mitochondrial function wit
enterocytes is available so far. In CLD fractions from obese
from fat for 12 weeks) and lean (10% kcal from fat) mice sub
oil gavage, the most enriched GO_BP terms include protei
in mitochondrial ATP synthesis [107]. Consistent with the fact
proteins involved in mitochondrialb-oxidation were mostly foun
CLD fractions from enterocytes of obese mice, the authors
that enterocytes may adapt against excessive fatty acid ab
associating CLD and mitochondria, thus favoring fatty acid
to compensate their storage [107]. As for mitochondrial dynamics
in silicomodel of mouse enterocyte exposed to increased rat
carbohydrate in the diet suggested that mitochondrial fu
� ssion were unaltered in enterocytes in a context of HFD co
[112] although noin vivonor in vitroanalysis of mitochondrial
namics has been yet performed to corroborate those pr
Finally, 20 weeks of HFD consumption decreased by halfPgc1a
gene expression of jejunal enterocytes [115,116]. However, preci
mechanisms that could explain the drop ofPgc1a have not bee
elucidated so far but could possibly be linked to HFD-induce
stress, notably through enhanced lipid catabolism. Moreo
Pgc1a is the master regulator of mitochondrial biogene
decreased expression could affect mitochondrial numb
enterocyte bioenergetics. However, altered mitochondrial bi
response to HFD in intestine has not yet been demonstrate

4.1.2. In the colon
While the impact of HFD on IEC mitochondrial function in the
poorly described, several recent works show that HFD cons
associated with alterations of mitochondrial function in co
The� rst indication was the observation of swollen mitochon
decreased complexes II and III activities of freshly isola
chondria from colonic IEC of mice fed a HFD (60% kcal f
weeks [120]. The time of HFD consumption or fat content of
does not seem to be crucial in this effect since shorter H
sumption periods and lower fat content diets also resulted i
colonic dysfunction. Indeed, four weeks of a 45% kcal fat HF
a 50% decrease in epithelial ATP levels and lower expressio
encoding for ETC subunits andSirt3compared to colonocytes f
control mice [121]. Likewise, HFD (60% kcal fat) consumption
weeks resulted in decreased ATP levels in mouse coloni
diminished expression of mRNA mitochondrial markers en
subunits V1 and S1 of mitochondrial complex I in these ce122].
Furthermore, elevation of intracellular lactate levels in isol
nocytes [121] and decreased pyruvate dehydrogenase activi
catalyzes the conversion of pyruvate to Acetyl-CoA [121,122], sugges
a switch of colonocyte metabolism from OXPHOS toward g
To explain colonocyte mitochondrial dysfunction, the author
mechanisms linked to dietary fatty acid metabolism. Altho
acidb-oxidation, especially long chain and saturated fatty ac
ROS production and mitochondrial bioenergetic impairme
hepatic level [123,124], these alterations remain unclear in t
testine.In vitromodels of IEC treated with palmitic acid to mim
consumption all concluded on a negative effect of palmiti
mitochondrial function and an increase in ROS level (Table 2). How-
ever, fatty acid absorption primarily or even exclusively happ
small intestinal level and not at the colonic level [125]. Thus, othe
mechanisms than increased dietary fatty acid metabolism h
investigated to explain colonic mitochondrial dysfunction i
mice. Among possible mechanisms, deleterious microbia
lites have been proposed (seeTable 1) as well as bile acids. Inde
HFD consumption is correlated with elevated concentratio
evier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com
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Table 2e In vitrostudies evaluating the effects of palmitate on mitochondrial function in different intestinal cell lines.

Concentration Duration Cell line Results Reference

100mM 24 h HCT-116 � Increased ROS production
� Decreased mitochondrial membrane potential
� Altered mitochondrial network
� Treatment with n-acetyl-L-cysteine, a known ROS inhibitor, improved those defects

[134]

500mM 24 h NCIe H716 � Decreased maximal respiration and spare respiratory capacity
� Alterations of mitochondrial membrane potential

[120]

From 1 mM to 2.5 mM 24 h Caco-2 � Decreased ATP production rate from OXPHOS
� Diminished expression of genes encoding subunits V1 and S1 of mitochondrial complex I (2.5 mM)

[122]

Abbreviation: OXPHOS: oxidative phosphorylation, ROS: reactive oxygen species.
acids in stools, which can reach a fecal concentration of 0.
humans fed a HFD [126]. In HT-29 colon cancer cells, deoxycho
increases mtROS generation, possibly by inhibiting comp
mitochondria as reported in isolated rat liver mitochondria [127,128].
This excessive concentration of ROS generated by bile
potentiate mitochondrial damages. Furthermore, HFD cons
associated with the emergence of sulphate reducing D
brionaceae in mice [129,130] and in obese humans [131]. Among
Desulfovibrionaceae,Bilophila wadsworthiagrowth is mediated by
taurine-conjugated bile acid [129]. Taurine is indeed used
B. wadsworthiaas a� nal electron acceptor of the ETC for an
respiration which forms sul� de [132] and then, via dissimilatory su� te
reductase, hydrogen sul� de (H2S) [133]. Obese humans are a
characterized by the growth ofDesulfovibrio pigerthat degrades gl
cans from the host intestinal mucosa into H2S through sulfa
reduction [131]. Considering the deleterious effects caused
concentrations of H2S on mitochondrial function of IEC (Table 1), HFD
may potentiate mitochondrial dysfunction by favoring the
sulfur-reducing bacteria and H2S formation.
In conclusion, several lines of evidence point to mito
dysfunction in colonocytes while in-depth analysis of mito
function in enterocytes has not been reported so far.

4.2. Possible link between HFD-induced mitochondrial dys
and alterations of epithelial homeostasis

4.2.1. Intestinal epithelial cell mitochondrial dysfunction a
alteration of IEC renewal and apoptosis
As described earlier, alterations of mitochondrial function in IE
major consequences on intestinal epithelium homeostas
enhanced apoptosis or impairment of ISC metabolism and p
This applies also to HFD-induced mitochondrial dysfunctio
parallel to the oxidative stress and mitochondrial alterations o
colonocytes of mice fed a HFD for 12 weeks, an increase by 5
upregulated modulator of apoptosis (PUMA) expression wa
although no other apoptotic markers have been studied [134]. Likewise
HCT-116 cells treated for 24 h with 100mM palmitic acid exhibi
hallmarks of apoptosis, characterized by increased protein ex
cleaved Caspase-3 and PUMA (Table 2).
High fat diet consumption has also been shown to impact I
through a mechanism potentially involving the mitochondr
extracted from the jejunum of mice fed a HFD (60% kcal
months generated more organoids than those extracted
jejunum of low fat diet-fed mice (10% kcal fat) [71]. Organoids fro
HFD-fed mice jejunum also exhibited higher expression o
involved in fatty acidb-oxidation, notably through increases ind
MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Elsevier GmbH
www.molecularmetabolism.com
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and PPARa expressions. This enhanced PPAR-fatty acidb-oxidation
program was responsible of stemness enhancement whe
acidb-oxidation impairment, through deletion or inhibition o
suppressed those effects [71]. Furthermore, in mouse proximal
intestine organoids andDrosophila,deletion of the mitochondrial
ruvate carrier, impairing TCA cycle to the bene� t of fatty acidb-
oxidation, is suf� cient to increase ISC proliferation whereas it
expression suppress it [135]. Even though mitochondrial functio
not been precisely evaluated in these models, the involv
mitochondria is possible since fatty acidb-oxidation is strongly link
to mitochondrial function and ROS generation.

4.2.2. Intestinal epithelial cell mitochondrial dysfunction an
disruption of intestinal barrier function
Chronic HFD consumption induces intestinal barrier disrupt
through tight junction restructuring [136]. The exact mechanis
leading to altered barrier function under HFD is still debated an
explained by tight junction disruption, in� ammation, alterations of mu
layer, dysbiosis and oxidative stress linked to fatty acid and
[137]. A role of mitochondrial dysfunction is also conceivable
impairment of mitochondrial function in T84 cells by dinitrop
sults in increased superoxide detection and concomitant tra
and internalization ofEscherichia colithat is corrected when us
MitoTEMPO, an antioxidant speci� cally targeting mtROS [138]. More-
over, in their HFD-induced obesity model marked by increase
detection in mouse colonocytes, suggesting the emergence
stress, Li et al. observed an increasedin vivointestinal permeabi
[134]. Moreover, expression of the tight junction protein occ
decreased in HFD-fed mouse colonocytes and HCT-116 af
acid treatment [134]. Likewise, hypothesizing that HFD-derived
production participates to intestinal barrier disruption, Wat
supplemented their HFD with S3QELs, a suppressor of c
derived superoxide. After 16 weeks, mice fed the S
supplemented HFD were protected against increasedin vivointestina
permeability and decreased expression of genes encoding tig
proteins in colonocytes compared to non-supplemented mic139].
Another feature of HFD-induced alteration of intestinal barri
is the reduction of several secreted factors involved in
mechanisms, such as expression of antimicrobial peptides140,141].
Thea-subunit of hypoxia-inducible factor (HIF) interacts witb-
subunit of HIF and both act as O2-sensors. Those transcriptional
tors target, among others, genes involved in production of
bial peptides, such as humanb defensin-1 [142], intestinal trefo
factor peptides [143] and mucin-3 [144], as well as in creati
metabolism, which appears to be essential in epithelial barrie
[145]. Since OXPHOS requires high amount of oxygen, it par
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 11
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the physiological hypoxia observed in healthy colon and sma
along the crypt-villus axis, from the highest O2 pressure in the crypts
the lowest at the top of the villi. Thus, HFD-induced alte
mitochondrial function and subsequent possible changes
level could participate to the altered defense mechanisms
under HFD through altered HIF signaling.

4.2.3. Intestinal epithelial cell mitochondrial dysfunction a
dysbiosis
Dysbiosis in diet-induced obesity has been thoroughly des
incriminated in metabolic alterations in obesity [7]. The relationsh
between O2 level and microbiota composition has alread
described using broad-spectrum antibiotics in mice. The
epithelial hypoxia and destabilization of HIF expression p
expansion of facultative anaerobic bacteria, like Enterob
such asE. coli,concomitantly with the inhibition of obligate an
growth, including butyrate-producers [64,146]. Recently, Yoo et
showed that this also applies to chronic HFD consumptio
HFD-induced mitochondrial bioenergetics defects lead to
oxygen bioavailability in the colonic lumen favoring the ex
facultative anaerobic bacteria such as Enterobacteriaceae.
with 5-ASA to increase mitochondrial bioenergetics am
epithelial hypoxia and reduced the� tness advantage ofE. coliin HFD
Figure 5: Proposed mechanisms of mitochondrial dysfunction of colonocyt
chondrial dysfunction in colonocytes, possibly mediated by fatty acid metabo
shape (swollen mitochondria), and decreased ATP production as a conseq
oxidative stress which may generate epithelial barrier alterations through tigh
OXPHOS levels is linked to O2 leaks into the intestinal lumen, inducing�� loss of epithe
including butyrate, the preferred energy fuel for colonocytes, leading to dec
systemic low-grade in� ammation.

12 MOLECULAR METABOLISM 63 (2022) 101546� 2022 The Authors. Published by Els
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creased
nsion of
reatment
liorated

fed mice [122]. Moreover, by stimulating the increase in mitoc
number and respiratory capacity (shown by greater cyto
oxidase activity), PGC1a improves the aerobic energy productio
favoring epithelial hypoxia and development of obligate
bacteria [143].

5. CONCLUSION

Because of the high amount of energy required to ens
epithelial turnover, nutrient transport and maintenance of
barrier, intestinal epithelium homeostasis largely depends
chondrial activity, notably via OXPHOS. Moreover, as IEC
ward the crypt-villus axis, they encounter different metabo
associated with different mitochondrial activities due to
cooperation which ensures epithelial homeostasis. To fu
production, metabolites provided from the diet or bacterial
tion are used by IEC as substrates. Yet, dietary changes,
particularly HFD consumption, seem to modulate mitochon
tion, as recently described in colonocytes. However, the m
involved in these defects have not been described yet, althou
authors hypothesized a role of dietary fatty acidb-oxidation (Figure 5).
In addition, mitochondrial function in IEC in response to lipid
is not clear in the small intestine. Data indicate that enhanced
es induced by saturated fatty acids from diet.�� High fat diet consumption induces mito-
lism, although this can be debated, and characterized by perturbations of mitochondrial dynamics and

uence of altered OXPHOS activities.�� Mitochondrial dysfunction is associated with the emergence of
t junction restructuring and IEC apoptosis, which could increase intestinal permeability.�� Decreased

lial hypoxia, colonic dysbiosis and decreased short-chain fatty acid (SCFA) concentrations,
reased levels of ATP.�� Taken together, those alterations could promote bacterial translocation and

evier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com
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catabolism could be a mechanism that compensates lipid
enterocyte and ameliorates glucose homeostasis and reduc
Yet, although fatty acidb-oxidation is increased few days afte
consumption, it is still unclear how this catabolic pathway ev
longer periods of HFD consumption and how it affects mit
function of small intestine epithelial cells. Nevertheless, exce
acid oxidation may aggravate HFD-induced oxidative stress
in turn alter epithelial barrier, favoring low grade in� ammation and m
promote tumorigenicity. Getting a better understanding of
drial function in IEC under HFD would help to identify mit
target/regulators in order to prevent intestinal alterations
emergence of metabolic disorders.
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