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Abstract: A variety of remote sensing applications call for automatic optical classification of satellite
images. Recently, satellite missions, such as Sentinel-2, allow us to capture images in real-time of the
Earth’s scenario. The classification of this large amount of data requires increasingly precise and fast
methods, which must take into account not only the spectral features dependence of each individual
image but also that of the temporal ones. Copulas are an excellent statistical tool, able to model joint
distributions between even random variables. In this paper, we propose a new approach for Satellite
Image Time-Series (SITS) land cover classification, which combines the matrix factorization to reduce
the dimensionality of the data and the use of copulas distribution to model the dependencies. We
will show how the use of particular copulas can improve the accuracy of classification compared
to the latest methodologies used for the classification task, such as those using Neural Networks.
Experiments were conducted at a study site located on Reunion Island, using Sentinel-2 SITS data.
Results are compared to those achieved by several approaches commonly used to address SITS-based
land cover mapping and show that the use of copulas, in combination with the matrix factorization,
achieved the highest classification yield compared to competing approaches.

Keywords: satellite image time series; land cover classification; Sentinel-2; matrix factorization;
copulas; machine learning

1. Introduction

Nowadays, in the remote sensing environment, there are many instruments for Earth
observation (EO). The continuous research in the improvement of satellite technologies
allows the acquisition of numerous data through the use of various sensors on board.
Furthermore, it is also possible to collect data temporally with an ever-increasing spatial
resolution. This type of data is usually called Satellite Image Time Series (SITS) and allows
the monitoring of an area of the Earth at different times with the aim of detecting changes,
preventing environmental disasters or simply classifying the land cover. Among the numer-
ous satellite missions, Sentinel-2 (https://scihub.copernicus.eu/) is a mission elaborated
by the European Space Agency (ESA) as part of the Copernicus program and is one of the
most recent. The use of SITS represents an enormous advantage if compared to the study of
single images, as a temporal analysis associated with the spatial one allows differentiated
applications in many fields of study. In the literature we can find applications of this kind of
data for ecology [1,2], agriculture [3–5], mobility, health, risk assessment, land management
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planning [6], forest [7,8] and natural habitat monitoring [9,10]. When the analysis to be car-
ried out concerns the classification of the Land Cover (LC), the employment of SITS offers
added value in determining the composition of the different classes over time [11]. A study
with SITS can be found in [4], where an object-based Normalized Difference Vegetation
Index (NDVI) time series analysis is taken into consideration in order to obtain relatively
homogeneous land units in terms of phenological patterns and, successively, to classify
them based on their land-cover characteristics. In [6], the authors present a methodology
for the fully automatic production of LC maps at a country scale using high-resolution
optical image time series with the application of the Random Forest (RF) algorithm. The
use of heterogeneous data, on the other hand, is presented in [5], where a combination of
SAR and optical SITS are employed to achieve better results for the classification of an agri-
cultural area. Another example of the application of SITS classification can be found in [1]
for grassland areas. In the classification task through the use of SITS, there are methods
that make use of the classic benchmark algorithms of the machine learning through the
concatenation of images. Among these, the two most performing are the Random Forest
(RF) and the Support Vector Machine (SVM) [6,12–14]. In recent years, deep learning-based
classification [15] of the Sentinel-2 time series has become a popular solution for classifica-
tion and LC mapping. The best-performing architectures make use of convolutional neural
networks (CNN) [15] and recurrent neural networks (RNN) [16]. An application for LC
classification with SITS is explained well in [17], where the authors employed an approach
based on RNN. Instead, a more complex architecture that achieves very high results in
terms of accuracy is presented in [18], where a combination of CNN and RNN called
“DuPLO” is developed in order to extract even more representative features. In [19], a deep
learning approach, namely Temporal Convolutional Neural Networks (TempCNN), has
been developed where convolutions are applied in the temporal dimension, this allows the
results to outperform those obtained with the application of a simple CNN. Recently, in [20],
the authors have proposed self-supervised learning for patch-based representation learning
and classification of SITS and have adopted a transformer encoder by using a time series of
pieces of images as input to learning the spatial-spectral-temporal characteristics. Given
the excellent results achieved by Neural Networks (NN) in classification tasks, there are
several works in the literature that employ different deep learning architectures. However,
the less extensive literature in the machine learning field takes into account the use of a tool
called the copula. Copula functions are suitable tools in statistics for modeling multiple
dependencies, not necessarily linear, in several random variables and are more adopted,
especially in finance [21]. In [22], there is an extensive analysis of the correlation between
the copula and the machine learning; more recently, ref. [23] provided an overview of the
use of copulas for both time series analysis and supervised and unsupervised classification
applications. In [24], the authors compare the task of supervised classification by using NN
and a Bayesian classifier based on Elliptic and Archimedean copulas. The results show that
copula-based Bayesian classifiers are a viable alternative to NN in terms of accuracy while
keeping the models relatively simple. In [25], an experiment for the classification of a single
image was performed by using a classifier based on the Gaussian Copula. Moreover, some
works have engaged the use of copulas in combination with the NN [26–29]. Considering
the analysis of SITS data, few works already exist that exploit copulas to analyze such kinds
of data. In this work, therefore, we propose an approach for LC classification, using copulas,
in particular, the Bernstein copula presented in [30]. In more detail, the strategy aims to
demonstrate its effectiveness in comparison with the already established techniques for
supervised classification with SITS. We develop an algorithm that uses the combination of
two methodologies, one for dimensionality reduction and the other for classification with a
copula-based approach. The choice of carrying out a preliminary stage for the reduction of
dimensionality was guided by the fact that in the literature, this method is widely used and
allows the main information about the dataset to be preserved even if these are projected
in a space with a reduced size. Among the various techniques for this task, the most
useful are Principal Component Analysis (PCA) [31–33], Singular Value Decomposition
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(SVD) [34–36] and Independent Component Analysis (ICA) [37,38]. There exist also some
recent variants of SVD, for example, in [39], where the authors have used a Non-Negative
Matrix Factorization (NNMF) to reduce the dimensionality of hyperspectral images for
Saliency Detection. The same strategy was presented in [40] by using the Autoencoder
Neural Network (ANN). Typically, in these approaches, different kinds of distances [41]
are evaluated in order to calculate the reconstruction error (RE) between the reduced image
and the original one.

In the second stage, copulas theory [42,43] is used to produce the LC map. There are
several copula functions [44] that can model the dataset under study well and in the task of
classification, each class can be modeled with a different copula. In this work, the results
were found by testing different copulas, and the best ones, as we shall see, were obtained
using the Bernstein copula, introduced in 2004 by Sancetta and Satchell [30]. This copula
was built on the basis of Bernstein’s polynomials and had the advantage of arbitrarily
approximating any copula.

In order to demonstrate the best performance achieved by this methodology, we have
performed the experiments on a real-world SITS dataset, called Reunion Island, used in [18],
and we have compared the results with the same state-of-the-art competitors engaged in the
same paper. The rest of this research work is structured as follows: Section 2 introduces the
mathematical theoretical background of matrix factorization and copula employed in the
LC classification of Reunion Island SITS, Section 3 describes the methodologies for building
the copula-based classifier, Section 4 presents the description of the dataset, Section 5 goes
into detail of the implemented algorithm, Section 6 gives the details of the experimental
design, Section 7 provides an in-depth discussion of the results. Finally, Section 8 draws
some conclusion and the future direction.

2. Mathematical Background

In this section, we will briefly introduce the mathematical tools useful to conduct the
experiments of this work. In particular, we will introduce the concept of matrix factorization
and that relating to copulas and how these can be used in the task of classification.

2.1. Singular Value Decomposition

The low-rank matrix dimensionality reduction process represents a branch of unsuper-
vised mathematical techniques dedicated to the principle of parsimony, capable of creating
a low-dimensional structure out of the original data in which the most important informa-
tion are preserved [36,45,46]. The SVD is one of the most powerful tools for decomposing a
matrix. It has the advantage that it always exists for any matrix, is numerically stable, is
data-driven and can be used in different domains where the data can be reorganized in the
form of a matrix. The use of copulas for classification requires the reduction of the data to
which the classification is applied. Copulas are efficient for data of small size but become
computationally expensive when working with a large number of features. It is, therefore,
mandatory to reduce the size of the problems to be handled.

When dealing with HS images, the application of SVD allows us to build a low-
dimension approximation of data in terms of the most significant spectral features. In a
formalized way, we consider X ∈ Rn×d, representing a real matrix of dimension n× d and
with rank r, where, we can assume that n ≥ d and, therefore, r ≤ n. The equation of SVD is:

X = UDVT

where U is a matrix of dimension n × n unitary (a square matrix U is unitary if
UUT = UTU = I), D is a rectangular matrix of dimension n× d and VT is a unitary square
matrix of dimension d× d [46]. When n is greater than d, the matrix D may be written as:

D =

[
Σ
0

]
, with Σ = diag(σ1, . . . , σd).
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The elements on the diagonal of Σ are non-negative and arranged in non-increasing order.
The truncated form of SVD is used to represent X, that is:

X = UDVT =
[
Ud Ud

⊥][Σ
0

]
VT = UdΣVT .

The matrix Ud contains the first d principal columns of U. The matrix Ud
⊥ contains

the columns that generate a vector space that is orthogonal and complementary to that
generated by Ud. The diagonal elements of the matrix Σ, σ1, . . . , σd are called singular
values. The column of U and V are called left and right singular values, respectively [46].
The rank of X represents the number of singular values. The SVD low-rank approximation
of X is obtained considering the principal r singular values. Moreover, the Schmidt’s
approximation theorem [47] states that the optimal rank-r approximation to X, in the least
squares sense, is given by the rank-r SVD truncation UrΣrVr

T , which corresponds to a sum
of rank-1 matrices:

arg min
X̃ s.t. rank(X̃)=r

‖X− X̃‖p = UrΣrVr
T =

r

∑
i=1

σiuivT
i

Here, Σr contains the principal r× r sub-block of Σ; ‖ · ‖p is the 2-norm or the Frobenius
norm, and ui, vi are the columns of the matrices U, V. When dealing with HS and MS
images, the application of SVD is very useful. Natural images present a simple and intuitive
example of this inherent compressibility.

Deciding how many singular values to keep, i.e., where to truncate, is one of the
most important and non-trivial choices when using SVD [46]. There are many factors,
including specifications on the desired rank of the system, the magnitude of noise and the
distribution of the singular values. Frequently, SVD is truncated to an r rank that captures
a predetermined amount of variance or energy in the initial data, such as 90% or 99% [46].
Even if brute, this approach method is commonly used. The amount of overall variance
explained by the i-th pair of SVD vectors is given by

R2
i =

σ2
i

∑j σ2
j

.

This can also be computed as the ratio of the Frobenious norm of the rank-1 recon-
structions to the norm of the original data matrix:

R2
i =
‖σiuivT

i ‖2
F

‖X‖2
F

=
σ2

i

∑j σ2
j

where ui and vi are i-th columns of U and V, respectively. It is also possible to use the ratio
of the 2-norm of rank-1 reconstruction to the 2-norm of the original data matrix:

Ei =
‖σi+1ui+1vT

i+1‖2

‖X‖2
=

σi+1

σ1

we observe that Ei = ‖X−UiΣiVT
i ‖2/‖X‖2, i = 1, n is the relative error in the approxima-

tion of the original matrix using the 2-norm, so it gives information about the quality of the
approximation. Truncation may be viewed as a hard threshold on singular values, where
the rank one matrices with R2

i or Ei larger than a threshold τ are kept, while the remaining
matrices are truncated.
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Other strategies can often be visually detected, such as a “knee” or “elbow” in the scree
plot of variance versus singular (component) values in order to determine which ones may
denote singular values that represent important features from those that represent noise.

2.2. Copulas

In statistical theory, copulas are the mechanism that allows the dependency structure
in a multivariate distribution to be isolated [42]. In particular, we can build any multivariate
distribution by specifying the marginal distributions and the copula separately. Although
the copula functions have been widely used to model linear and non-linear dependencies,
especially in the field of finance and economics, there are not many uses for these tools in
the field of remote sensing, where the study of dependencies is often non-linear and needs
to be analyzed [48–50]. The complete treatment of the copulas was made in [42–44]; here,
we briefly retrieve only the fundamental concepts:

Definition 1. A copula C is a joint distribution function of a standard uniform of random variables.
That is,

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud),

where Ui ∼ U(0, 1) for i = 1, . . . , d.

The theorem that we reported below represents the main tool when dealing with
copulas. Due to Abe Sklar, from whom it takes the same name, establishes the close
relationship between a joint distribution and the copula function.

Theorem 1. (Sklar’s theorem) [48,49]. Consider a distribution function F with dimension d and
with marginals F1, F2, . . . , Fd, then there exists a copula C such that for all x in Rd

,

F(x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)),

here R is the extended real number line [−∞, ∞]. If F1(x1), F2(x2), ..., Fd(xd) are all continuous,
then C is unique.
Otherwise, C is uniquely determined by Ran(F1)× Ran(F2)× . . .× Ran(Fd), which is the Carte-
sian product of the ranges of the marginal cdf’s.

According to Theorem 1, any joint distribution function F with continuous marginals
F1, F2, . . . , Fd has an associated copula function C. Moreover, the associated copula C is
a function of the marginal distributions F1, F2, . . . , Fd. As a direct result of Theorem 1, it
can be stated that the join density f of dimension d with marginals f1, f2, . . . , fd are also
related [25]:

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))×
d

∏
i=1

fi(xi), (1)

where c is the density of the copula, C. Equation (1) shows that the product of marginal den-
sities and a copula density builds a d-dimensional joint density. Notice that the dependence
structure is given by the copula function, and the marginal densities can be of different
distributions. Generally, the usual way of constructing multivariate distributions has the
restriction that the marginals must be of the same type. Instead, with copulas, one can
overcome this imposition by separately analyzing the marginals from the joint distribution.
This makes the tool very flexible.
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2.3. Families of Copulas

There are different kinds of copula families present in the literature [42–44]:

• Elliptical Copulas: In this class, we find copulas that describe the dependencies of
elliptical multivariate distributions. The copula functions belonging to this class are
called Gaussian and Student-t copulas.

Gaussian Copula: The form of this copula is related to the joint standard Normal
distribution:

C(u1, u2 . . . ud) = ΦΣ(Φ−1(u1), Φ−1(u2) . . . Φ−1(ud)),

where the cdf ΦΣ has a correlation matrix Σ, and Φ−1 is the quantile function of normal
distribution. Gaussian copula can describe a variety of dependencies depending on
its parameter. In more detail:

C(u1, . . . , ud; Σ) =
∫ Φ−1(u1)

−∞
. . .
∫ Φ−1(ud)

−∞

e
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dt1 . . . dtd.

Student-t Copula: The form of this copula is due to the joint Student-t distribution and
can be determined as follows:

C(u1, u2 . . . , ud; ν, Σ) = tν,Σ(t−1
ν (u1), t−1

ν (u2) . . . t−1
ν (ud)),

where tν,Σ represent the cdf of multivariate Student-t distribution with correlation
matrix Σ and degrees of freedom ν, while tν is the univariate cdf of the Student-t
distribution with degrees of freedom ν. As ν → ∞ the Student copula-t converges
to Gaussian copula (the difference becomes negligible after ν ≥ 30). The Student-t
copula is mostly used in finance studies since it exhibits the best fit than other families.

• Archimedean Copula: Archimedean copulas may be constructed using a function
φ : [0, 1] → [0, ∞], continuous, decreasing, convex and such that φ(1) = 0. Such
a function φ is called a generator. Let φ be a strict generator, with φ−1 completely
monotonic on [0,+∞]. Then a d-dimensional copula C is Archimedean if it admits the
representation:

C(u1, u2 . . . , ud) = φ−1(φ(u1) + φ(u2)+, . . . ,+φ(ud)).

Depending on different generator functions, different copulas can be obtained. For a
single-parameter family, there exist 22 copulas; among those, here we report only the
expressions of the cdf of the archimedean copulas most used in the literature.

Clayton Copula: This type of copula allows the strong dependence in the lower tail to
be detected; it can be determined as follows:

C(u1, u2, . . . , ud; θ) =
( d

∑
i=1

u−θ
i

)− 1
θ , θ ∈ [−1, ∞) \ {0}.

Frank Copula: It can describe symmetric dependence; unlike Clayton, it can describe
positive and negative dependences. It has the following form:

C(u1, u2, . . . , ud; θ) = −θ−1log
[
1 + (e−θ − 1)−1

d

∏
i=1

(e−θui − 1)
]
, θ ∈ R \ {0}.
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Gumbel Copula: It can describe asymmetric dependences. Like Clayton, it cannot
represent negative dependence. It has the following form:

C(u1, u2, . . . , ud; θ) = exp
(
−
[ d

∑
i=1

(−logui)
θ
] 1

θ
)

, θ ∈ [1, ∞).

The estimation of the copula parameter is fundamental for fitting the copulas and
depends on the available data. For example, the value of the correlation matrix Σ in the
Gaussian copula leads to a different shape of cdf. The more the data are correlated, the more
the shape of the Gaussian copula will adapt to an ellipse. For the Archimedean copulas,
each copula function connects its θ parameters to the rank correlation measure as Kendal
Tau and Spearman Rho by modeling the extreme values of multivariate distributions
well [51].

2.4. Bernstein Copula

The Bernstein copula generalizes families of polynomial copulae [30]. Polynomial
copulae are special cases of copulae with a polynomial section in one or more variables.

Let α
(

v1
m1

, . . . , vd
md

)
be a real-valued constant indexed by (v1, . . . vd), vj ∈ N+, such that

0 ≤ vj ≤ mj. The Bernstein copula has the following definition:

Definition 2. Let

Pvj ,mj(uj) =

(
mj
vj

)
u

mj−vj
j (1− uj)

mj−vj

If CB : [0, 1]k → [0, 1], where

CB(u1, u2, . . . , ud) = ∑
v1

. . . ∑
vd

α
( v1

m1
, . . . ,

vd
md

)
Pv1,mj(u1) . . . Pvd ,mj(ud)

satisfies the properties of the copula function, then CB is a Bernstein copula for any mj ≥ 1.

The Bernstein Density

Since the Bernstein copula is absolutely continuous, each Bernstein copula has a
density. The form of the Bernstein density can be determined as follows [30]:

cB(u1, . . . , ud) =
m

∑
v1=0

. . .
m

∑
vd=0

β
(v1

m
, . . . ,

vd
m

)
×

d

∏
j=1

(
m
vj

)
u

vj
j (1− uj)

m−vj

where β
(

v1
m , . . . , vd

m

)
is defined as,

β
(v1

m
, . . . ,

vd
m

)
≡ (m + 1)d∆1,...,dα

( v1

m + 1
, . . . ,

vd
m + 1

)
3. Method

In order to understand how copulas can be used for image classification, we first
briefly report some basic notions for Bayesian classifiers, for more details, see [52]. Let
Ω = {ω1, . . . , ωm} be a finite set of m classes and suppose we want to assign to each x from
the variable space Rd a class from Ω. A Bayesian classifier assigns x to the class ωi if

bi(x) > bj(x) for all j 6= i

where bi : [0, ∞)d → R are called discriminant functions that are defined by

bi(x) = P(ωi|x) =
f (x|ωi)P(ωi)

∑m
j=1 f (x|ωj)P(ωj)

(2)
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where f : Rd → [0, ∞) is a density function and P(ωi), i = 1, . . . , m are the prior distribu-
tions of the classes from Ω.

3.1. The Probabilistic Classifier based on Copula Function

Let F be an absolutely continuous multivariate distribution function with margins
F1, . . . , Fd, the pdf f of F can be expressed by

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))×
d

∏
k=1

fk(xk) (3)

where c(u1, . . . , ud) =
∂dc(u1,...,ud)

∂u1 ...∂ud
represent the density of the copula C(u1, . . . , ud) and fk

denotes the density of Fk, k = 1, . . . , d. Using (3), f (x|ωi) can be written as

f (x|ωi) = c(F1(x1|ωi), . . . , Fd(xd|ωi))×
d

∏
k=1

fk(xk|ωi). (4)

The classification algorithm is obtained by replacing (4) in (2) and choosing the density
c as a copula function belonging to the Elliptical or Archimedean families or the Bernstein
copula, the density fk, k = 1, . . . , d is approximate through the Kernel density estimation
and the marginal distributions Fk, k = 1, . . . , d is based on empirical cumulative distribution
functions.

3.2. Fitting Copula

Copulas can be estimated in many ways. The first is by driving a completely para-
metric approach that requires a specific model for the copula that is known up to certain
parameters. The parameters can be estimated with the Maximum Likelihood or Infer-
ence Function for Marginals (IFM). The latter approach is the most widely used because
it allows you to have savings in computational cost by obtaining the same estimate for
the parameters, see [42,43]. This method is used with survival data in [53] or for time
series in [54], in which the authors deemed different parametric copulas to analyze the
dependence of the random variables. Moreover, in [55], the dependence of financial data
for US company data has been studied with IFM [51]. This method consists of estimat-
ing, separately, the uni-variate parameters by using the maximization of the uni-variate
log-likelihoods, and successively, the choice of the dependence parameters of the copula
is performed by maximizing the bi-variate likelihoods or the multivariate log-likelihood.
Formally, the log-likelihood can be evaluated by this equation:

log(L(Φ, Ψ)) =

N

∑
i=1

log

(
c(F1(xi,1; φ1), . . . , Fd(xi,d; φd), Ψ)

)
+

(
N

∑
i=1

d

∑
j=1

log fi,j(xj; φj)

)
(5)

where φ = (φ1, φ2, . . . , φd) represents the parameters of marginals and Ψ represents the
parameter of the copula. In this method, first, the second part of (5), φ, is estimated, i.e.,

φ̂j = arg max
φj

(
N

∑
i=1

d

∑
j=1

log fi,j(xj; φj)

)

then, the first part of Equation (5) is employed in order to estimate the copula’s parame-
ter, as:

Ψ̂ = arg max
τ

N

∑
i=1

log
(

c(F1(x1, φ̂1), F2(x2, φ̂2), . . . , Fd(xd, φ̂d), Ψ)
)

.

Hence the IFM estimator will be (φ̂, Ψ̂). This method is asymptotically equivalent to
the ML method [51].
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The second way to estimate copulas is by driving a non-parametric approach. The
upside of this approach is that it fits well in the presence of data that have a complex
dependency structure. For example, in [56], the authors suggest the construction of a
multivariate empirical distribution in order to estimate the copula function. Another
important contribution is found in [30], under the hypothesis of independent and identically
distributed (i.i.d.) data, the authors calculate a Bernstein polynomial estimator of the copula
function, giving results about its asymptotic bias and variance.

Modeling multivariate distributions has always been a difficult task. To overcome
this difficulty, it is very common to use elliptical distributions because of their simplicity.
Notwithstanding this, in many real applications, this simple characterization stands in
contrast to the empirical data. One example above all is the analysis of financial data, in
which yields can present a very strange dependency, but also when dealing with remote
sensing data.

For this reason, in this study, we have implemented a non-parametric strategy for
fitting copula, in which the marginals are evaluated empirically, and the Bernstein copula
is considered. Bernstein copulas represent a relatively simple non-parametric tool to model
multivariate dependence structures. The only parameter that has to be taken into account is
concerning the number of polynomials m that are used for the approximation of the copula.
In a non-parametric framework, the specification of an appropriate m is left to the analyst,
and, to our knowledge, apart from cross-validation estimates, no explicit criterion that
supports the latter has been proposed yet. Then, we implemented the algorithm following
the theoretical concepts presented in [30]. In addition, it is worth noting that we also tested
the copula functions belonging to the Elliptical and Archimedean families, obtaining results
comparable to those of competitors. However, the use of the Bernstein copula has allowed
an improvement in accuracy compared to the results of competitors, and that is the reason
why, in this work, we report only the results obtained with this approach.

3.3. Marginals Estimation

For the estimation of the probability density function of the marginals, we use the
Kernel Density Estimation (KDE) [57]. KDE is a non-parametric technique for empirically
fitting any random variable. Then, the marginal cumulative distributions Fi, i = 1, . . . , d
are estimated by using empirical cumulative distribution functions.

Let x1, x2 . . . xk be k samples drawn from an unknown distribution. Then, for any
value x the formula for KDE is:

f̂ (x; h) =
1
kh

k

∑
i=1

K
(

x− xi
h

)

where K(.) is the Gaussian kernel K(x) = 1√
2π

exp
(
− x2

2

)
and h is the bandwidth that

controls the smoothness of the resulting density curve. When dealing with an empirical
distribution, it is known in the literature that finding the bandwidth h is a challenge more
than the choice of kernel K. When HS images are considered, we can observe through a
statistical analysis that the behavior of these data is very often far from normal. This drew
us to consider the empirical way, and, in this sense, we have evaluated h by the Improved
Sheather Jones (ISJ), which is a data-driven bandwidth selector. The mean integrated square
error (MISE) is given by

MISE(h) = E
∫ (

f̂ (x; h)− f (x)
)2dx.

The ISJ algorithm consists of looking for parameter h in such a way that minimizes the
asymptotic mean integrated square error (AMISE) that represents the first-order asymptotic
approximation of MISE. This quantity is given by a relation that involves the unknown
quantity ‖ f ′′(x)2‖. This is obtained by the calculation of a sequence of estimates using a
recursive formula [58].
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The benefit of a semi-parametric approach is that it is flexible. This allows us to adapt
the algorithm to any type of dependency structure specific to a given dataset.

4. Data

The dataset for the experiments, with the same preprocessing analysis carried out, is
the same as considered in [18] and consists of a time series of 34 Sentinel-2 (S2) images
acquired between April 2016 and May 2017 on Reunion’s Island, a French department
situated in the Indian Ocean, see Figure 1. All the S2 images used are available via
(http://theia.cnes.fr) and are preprocessed in regards to surface reflectance via the MACCS-
ATCOR Joint Algorithm [59] developed by the National Centre for Space Studies (CNES).
In paper [18], the authors take into account only the 10 m bands, Blue (B2), Green (B3),
Red (B4) and Near-Infrared (B8), and the NDVI radiometric index was calculated for each
date [6,60].

Figure 1. Location of Reunion Island study site.

The spatial dimension of the Reunion Island dataset provided in [18] consists of
6656× 5913 pixels, and for each of these, four spectral bands and one index is deemed for
each acquisition over time. The dataset is constructed from a variety of sources, and the
ground truth is available as a vector GIS file containing a group of polygons, each assigned
with a single LC class. In order to ensure accurate spatial correspondence with the image
data, all geometries were corrected by hand using the corresponding Sentinel-2 images
as a reference. In addition, the GIS vector file, which holds the spatial information of the
polygon, has been rasterized, bringing it to Sentinel-2 spatial resolution (10 m). The final
truth dataset consists of 322,748 pixels and 2656 objects distributed over 13 classes of the
dataset, Table 1. For data and details of the Reunion Island study site, please refer to [61].

http://theia.cnes.fr
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Table 1. List of labeled classes for Reunion Island with number of Objects (#Objects) and number of
Pixels (#Pixels).

Class Label #Objects #Pixels

1 Crop cultivations 380 12,090
2 Sugar cane 496 84,136
3 Orchards 299 15,477
4 Forest plantations 67 9783
5 Meadow 257 50,596
6 Forest 292 55,108
7 Shrubby savannah 371 20,287
8 Herbaceous savannah 78 5978
9 Bare rocks 107 18,659
10 Urbanized areas 125 36,178
11 Greenhouse crops 50 1877
12 Water surfaces 96 7349
13 Shadows 38 5230

5. Structure of the Copula-Based Classifier Algorithm

The algorithm proposed for the classification of the time-series images is based on
the combination of two strategies; the first allows the reduction of the dimensionality
by using the singular value decomposition SVD. The second exploits the use of copulas
for classification.

Let us denote I in the MS images, which can be seen as a tensor of dimension n×m× d.
Where n and m identify the position of the pixels and d represents the number of the spectral
signature. Denote IT = {It1 , It2 , . . . , Itn} as the SITS (here, the index n under the letter
t represents a particular acquisition over time, without confusing it with the position of
pixels), B = {B1, B2, . . . , Bd} for the spectral bands, IB1

T , IB2
T , . . . , IBd

T for the SITS relative
to the bands, i.e., IB1

T = {IB1
t1

, IB1
t2

, . . . , IB1
tn
} is the time series relative to band B1, and so on.

Figure 2 shows a representation of a workflow diagram for the LC task. In our experiment,
we only consider particular spectral bands (resp. B2, B3, B4 and B8 and NDVI). For each
considered spectral band and index, there are 34 images at different dates for a total of
170 images. The algorithm we propose consists of the following steps:

1. Rearranging of all the images (tensor) IBi
T , with i = 1, . . . , d, in a matrix IBi

T of di-
mension p× T. Where p = n×m and denoting T as the number of images acquired
over time.

2. Application of the SVD algorithm to dimensionally reduce image IBi
T , choosing an

appropriate number of singular values r. Therefore, we get the reduced image Ir
i of

dimensions p× r with i = 1, . . . , d.
3. The concatenation of all matrices of the previous step obtains a matrix of dimensions

p× R, with R being the sum of the singular values of each image Ir
i .

4. Splitting of the dataset into 30% training set, 20% validation set and 50% testing set.
5. Separating the pixels of the training dataset by class and fitting the copula-based

classifier to each class by using the Bernstein copula according to the procedure
described in Sections 3.2 and 3.3. To find the parameter for the empirical Bernstein
copula we refer to the procedure described in [30].

6. Once we have chosen the Bernstein copula that best fits each class of the training
set, we use the testing set to evaluate the accuracy of the classification. In particular,
for each observation of the testing set, we evaluate the discriminant functions and the
predicted class by using Equations (2) and (4), in which c represents the previously
fitted copula on the training set.
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Figure 2. Visual representation of the CopCLF Learning workflow. All of the SITS bands IB1
T . . . IBm

T
are considered, and the result is the reduced images Ir

1, . . . , Ir
m obtained after a matrix factorization.

The stack of these images is used to train the copula classifier after having properly split them.

6. Experiments

For the experimental phase, we analyze the results obtained with the approach that em-
ploys the copulas applied to the dataset described in Section 4. Several tests have been carried
out in order to obtain a complete investigation of the functioning of the classifier CopCLF:

• An in-depth quantitative study is provided comparing the class’ classification accuracy
results obtained with CopCLF with regard to competitor’s methods and benchmark
algorithms.

• A qualitative study is also carried out through the analysis of image pieces cut from
the original dataset of Reunion Island, visually analyzing the LC map obtained with
the CopCLF approach and the one obtained with the approaches used in paper [18].

6.1. Experimental Settings

In order to evaluate the behavior of the algorithm with the use of copulas, we took
into account five state techniques deemed for the classification of SITS as competing
methods. As a competitor machine learning tool, we considered the classical Random
Forest (RF) algorithm [6,60]. This algorithm still represents a benchmark in the literature
since it is widely used for multi-class land cover classification and with high-dimensional
data, as in the case of the dataset of this work. It works with subsets of data and is
parallelizable, plus the prediction speed is significantly faster than the training speed
because we can save the generated forests for future use. Moreover, RF has methods for
balancing the error in unbalanced class population datasets. In addition, to assess the
proposed approach as a viable alternative for classification, algorithms using NN have
been considered. In particular, we have taken into account the same methodologies with
the same results as shown in [18], in which the authors develop a parallel strategy with
CNN and RNN, namely DuPLO (dual view point deep learning architecture for time series
classification) by taking into consideration the following algorithms and architectures of
NN for the comparison analysis of results: a Recurrent Neural Network approach (LSTM)
also proposed in [17], a Convolutional Recurrent Neural Network (ConvLSTM) [62] and
RF(DuPLO), where the Random Forest classifier is trained with features extracted from the
DuPLO Neural Network. In this work, we conduct the comparison analysis reporting the
same results and the same metrics shown in [18]. In more detail, for the judgment of the
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accuracy of classification, we use the global precision (precision), F-Measure [17] and Kappa
measures. Moreover, it is worth noting that, for DuPLO and ConvLSTM, a patch-based
strategy was used, while for other methods, the time-series information associated with
each pixel was considered. In this work, for the experiments with CopCLF, the learning and
test phase was conducted following the same strategy in the [18]. More precisely, the dataset
has been divided into 30% of the objects for the training phase, 20% of the objects for the
validation set and the last 50% are employed for the test phase, with the imposition that
all the pixels of the same object belong exclusively to one of the splits (training, validation
or test) to shrink the spatial bias in the evaluation procedure. Commonly, the training set
is used to learn the classifier, and the validation set is employed to improve the accuracy
of the considered algorithm that will then be used with the test set. For our CopCLF
framework https://github.com/CrisDS81/CopCLF, accessed on 16 May 2022, we ran the
experiments by using the Python package Scikit-learn, for the SVD process (https://
scikit-learn.org/stable/, accessed on 16 May 2022) we ran KDEpy (https://pypi.org/project/
KDEpy/, accessed on 16 May 2022), for the empirical estimation of the marginal densities
we ran Copulae (https://copulae.readthedocs.io/en/latest/, accessed on 16 May 2022)
and Openturns (https://openturns.github.io/openturns/latest/user_manual/_generated/
openturns.EmpiricalBernsteinCopula.html?highlight=bernstein/, accessed on 16 May 2022)
for the estimation of the Bernstein copula. The accuracy of the different classifiers used may
undergo changes depending on which strategy was used to divide the dataset. To mitigate
this issue, for each dataset, and for each evaluation measure, we present the results for the
average over ten different random splits performed with the strategy presented above.

7. Experimental Results

For a per-class analysis on Reunion Island, we report the results obtained with our
approach in terms of the F-measure in Table 2. The comparison was made by reporting the
same results shown in [18] for the competitor’s methodologies in the same table. As can be
seen from the table, the strategy of classifying SITS by using the Bernstein copula achieves
the best result in 10 of the 13 LC classes. These classes are: 1—Crop Cultivations, 2—Sugar
cane, 5—Bare rocks, 6—Forest, 7—Shrubby savannah, 8—Herbaceous savannah, 9 —Bare
rocks, 11—Greenhouse crops, 12—Water surfaces and 13—Shadows. This result can also
be seen in the bar chart in Figure 3, which clearly shows that CopCLF manages to achieve
the best classification result for most of the classes. This shows that the strategy used with
Bernstein’s copula has the advantage of modeling the dependence between the features
of each class well, allowing a very accurate prediction in the test phase. In addition, in
Table 3, we report the average results in terms of F-Measure, Kappa and Accuracy, obtained
by RF, LSTM, ConvLSTM, DuPLO, RF(DuPLO) and CopCLF on Reunion Island. We can
observe, through the results reported in bold, how CopCLF outperforms all the competing
methods; in particular, it is interesting to note how CopCLF outperforms RF(DuPLO) in
which the algorithm works in two ways; first, to extract the features through the DuPLO
architecture, and, subsequently, training the classifier with the RF algorithm. In Figure 4, the
plots relating to the heat-map of the confusion matrix for each pair of classes are reported.
The heat map is a data visualization technique that shows the extent of a phenomenon
as a color in two dimensions. A color closer to yellow along the main diagonal identifies
a correct classification of the maps, while if the color differs from yellow, it indicates a
less accurate classification up to an incorrect analysis shown in dark violet. As can be
seen in Figure 4e of the heat-map of CopCLF, each pair of classes achieves very good
results compared to the other figures. Only DuPLO in Figure 4d has a heat map similar
to that produced with the method analyzed in this work, and this can also be seen from
the quantitative analysis analyzed above. Furthermore, to complete the confusion matrix
analysis, we see how the heatmaps of Random Forest, LSTM and ConvLSTM in Figure 4a–c
produce a less sharp diagonal, in which the colors for each pair of classes deviate from
yellow, representing the absolute maximum value of precision. This leads us to conclude

https://github.com/CrisDS81/CopCLF
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://pypi.org/project/KDEpy/
https://pypi.org/project/KDEpy/
https://copulae.readthedocs.io/en/latest/
https://openturns.github.io/openturns/latest/user_manual/_generated/openturns.EmpiricalBernsteinCopula.html?highlight=bernstein/
https://openturns.github.io/openturns/latest/user_manual/_generated/openturns.EmpiricalBernsteinCopula.html?highlight=bernstein/
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that the use of the copula in this task can be considered a really good alternative for
SITS classification.

Table 2. F-Measure per class for the Reunion Island dataset. (Best result for each class in bold).

Method 1—Crop
cultivations 2—Sugar cane 3—Orchards 4—Forest

Plantations 5—Meadow 6—Forest 7—Shrubby
savannah

RF 61.67% 91.94% 70.12% 65.63% 83.10% 85.91% 73.23%
LSTM 42.68% 88.20% 64.20% 53.56% 76.51% 79.51% 59.01%

ConvLSTM 49.07% 89.86% 66.78% 67.07% 79.37% 84.18% 64.55%
DuPLO 62.36% 92.09% 73.24% 70.40% 82.88% 84.59% 70.29%

RF(DuPLO) 65.72% 92.98% 75.39% 73.22% 85.40% 87.30% 75.76%
CopCLF 78.59% 94.25% 69.88% 69.56% 91.98% 89.17% 83.67%

Method 8—Herbaceous
savannah 9—Bare rocks 10—Urbanized

areas
11—Greenhouse

crops
12—Water
surfaces 13—Shadows

RF 67.47% 73.96% 82.98% 10.87% 92.53% 88.40%
LSTM 60.53% 70.86% 81.61% 18.23% 92.16% 86.55%

ConvLSTM 65.05% 74.99% 86.73% 37.74% 91.71% 89.61%
DuPLO 63.40% 82.02% 90.47% 40.31% 93.26% 90.76%

RF(DuPLO) 67.97% 86.32% 92.05% 43.88% 93.87% 90.29%
CopCLF 78.19% 90.15% 91.88% 62.82% 95.80% 95.26%

Table 3. Accuracy, F-Measure and Kappa of CopCLF with regard to the competitor’s algorithms
reported in [18]. The results were obtained through the average of ten different random splits. (Best
results are in bold).

Accuracy F-Measure Kappa

RF 82.99% ± 1.04% 82.40% ± 1.09% 0.7989 ± 0.0119
LSTM 76.66% ± 1.21% 76.57% ± 1.11% 0.7260 ± 0.0140
ConvLSTM 80.35% ± 1.12% 80.32% ± 1.10% 0.7697 ± 0.0124
DuPLO 83.72% ± 1.08% 83.73% ± 1.03% 0.8089 ± 0.0122
RF(DuPLO) 86.12% ± 1.21% 86.00% ± 1.24% 0.8366 ± 0.0143
CopCLF 87.13% ± 0.13 % 86.92% ± 0.13% 0.8548 ± 0.0015

Figure 3. Per-Class F-Measure score of different approaches.

To better complete the qualitative study, we decided to show some map classification
in Figure 5, choosing three representative examples from the entire dataset of tje Reunion
Island dataset.

In more detail, it was decided to take a piece in which there is the presence of vegeta-
tion Figure 5a, another in which the presence of urbanized areas is highlighted Figure 5b
and one that shows an area covered only by rock Figure 5c into consideration. The corre-
sponding classification map is obtained using the results of RF, LSTM, DuPLO and CopCLF,
respectively. Looking at the VHR images, it can be seen that in this case, the images of
the classification map produced by the CopCLF strategy are very close to the real ones,
i.e., as regards the area covered by bare rock in Figure 5c, where the considered approach
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Figure 5o is able to distinguish the rock from the vegetated part well, confirming the result
obtained in the quantitative analysis with accuracy in terms of F-measure of 90.15% against
the map produced by RF and LSTM that place water at the bottom of the bare rock. It is
also interesting to observe how, in Figure 5a,d,g,j,m, CopCLF correctly identifies the classes
of pixels of the forest area; in particular, it is able to detect the orchards while all other
methods fail.

(a) RF (b) LSTM

(c) ConvLSTM (d) DuPLO

(e) CopCLF

Figure 4. Confusion matrices representing the heatmaps of: (a) RF, (b) LSTM, (c) ConvLSTM,
(d) DuPLO and (e) CopCLF on the Reunion Island dataset.

It is worth noting the presence of salt and pepper error in the LC maps produced by
LSTM, RF and CopCLF in Figure 5e,h,n, respectively. This kind of effect is less evident in
the map produced via the DuPLO strategy in Figure 5k. To overcome this problem and
increase the accuracy of classification, spatial correction techniques based on the nearest
neighbor are usually used, where the pixels of an erroneously identified class is correctly
assigned to the class that has the highest number of neighboring pixels correctly classified.
We do not use this kind of correction in this experiment, but it is important to note that
such a kind of correction could improve the accuracy. In summary, we can confirm the
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better accuracy achieved by the novel approach presented in this work that corroborates
the quantitative results in Tables 2 and 3.

Forest area Urban area Bare rocks

V
H

R
im

ag
e

(a) (b) (c)

LS
TM

(d) F-measure 79.51% (e) F-measure 81.61% (f) F-measure 70.86%

R
F

(g) F-measure 85.91% (h) F-measure 82.98% (i) F-measure 73.96%

D
uP

LO

(j) F-measure 84.59% (k) F-measure 90.47% (l) F-measure 82.02%

C
op

C
LF

(m) F-measure 89.17% (n) F-measure 91.88% (o) F-measure 90.15%

Figure 5. VHR image (a–c) and land cover map details with F-measure produced on the Reunion
Island dataset by LSTM (d–f), RF (g–i), DuPLO (j–l) and CopCLF (m–o) for three different zones;
forest area, urban area and bare rocks.
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In this analysis of the results, we also provide a statistical test in which we evaluate the
significance of the accuracy of CopCLF, RF (DuPLO), DuPLO, RF, LSTM and ConvLSTM
using the average result in terms of F-measure over ten different random subdivisions.
We use the Friedman test, which is a non-parametric test commonly used to compare
multiple [63] classification algorithms. The Friedman test takes a comparison by using the
average ranks of the classifiers so that the best performing classifier gets rank 1, the second-
best gets rank 2, and so on. The H0 null hypothesis indicates that all configurations are
equal. In this hypothesis, comparative approaches should rank equally. We run this test
on the F-measure of the compared configurations on each k-fold of the dataset and reject
the null hypothesis with a p-value ≤ 0.05. Since the null hypothesis is rejected, we use a
post-hoc test called the Nemenyi test, which is used for pairwise comparisons [63]. In this
test, we need to get the difference between the average rankings of all rankers. If this
difference is greater than or equal to one critical distance (CD), we can say that these two
classifiers are significantly different from each other. CD is calculated as:

CD = qα

√
k(k + 1)

6N
.

The qα term is obtained from (α = 0.05), where k = 6 represents the numbers of
classifiers and the relative qα is 2.85. The results of this test, reported in Figure 6, confirm
that CopCLF is ranked higher than all of its baseline configurations. In particular, the critical
difference diagram, obtained using a 0.05 significance level, shows that CopCLF is, on
average, the best performing approach, with RF(DuPLO) as runner-up.

Figure 6. Comparison between CopCLF, RF(DuPLO), DuPLO, RF, LSTM and ConvLSTM with the
Nemenyi test using the F-Measure average over 10 different random splits. The connected black line
clusters the classifiers that are not significantly different at level p ≤ 0.05.

To complete this study, we analyze the computation time spent completing the LC
classification on the Reunion Island dataset. The computation time is measured in seconds
on an Intel(R) Core(TM) i7-4720U CPU@2.60 GHz and 16 GB RAM running Microsoft
Windows 8.1 (64 bits).

Table 4 reports the total time spent completing the three steps of CopCLF (i.e., di-
mensionality reduction, learning and predictive stage). The table shows the average times
obtained by launching the algorithm 10 times, randomly choosing the training, validation
and test set of the Reunion Island dataset with the same percentage of splitting described
in Section 6.1.
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Table 4. Average computation time spent, in seconds, with CopCLF for each stage of the algorithm.
The total average time (column 4) is the sum of the time spent for all stages by launching the algorithm
10 times.

CopCLF Time Efficiency Analysis

SVD Stage Learning Stage Predictive Stage Total Time

5.674 4.823 285.819 296.316

8. Conclusions

In this research work, we have provided a novel approach for supervised classification
based on copula functions. In particular, we applied this strategy to a Sentinel-2 Satellite Image
Time Series. The approach, called CopCLF, combines a strategy that allows the reduction of the
dimensionality of the data through the matrix factorization via SVD and a classifier based on
copula functions. In particular, the Bernstein copula was used. The experiments were carried
out, taking into account the dataset and the classification methods presented in [18]. In particular,
the dataset is a real-world study site located in the Indian Ocean, and the classifiers against
which we made a comparison are the machine learning benchmark algorithm Random Forest,
and others based on NN, specifically a combination of RNN and CNN, called DuPLO. The
quantitative and qualitative analysis showed that CopCLF achieved better results than the other
classification methods taken into consideration. The main advantage of our framework is that it
can be generalized to other remote sensing problems due to its robust design and that it can be
applied indiscriminately to any type of MS and HS images. In addition, it is less sensitive to the
size of the training set in the learning phase; this allows to obtain a high level of accuracy in a
relatively short time.

It has been observed that the choice of parameters in the preliminary stage can influ-
ence the performance of the CopCLF method. For this reason, a possible future extension
could be the automatic choice of parameters during the marginal estimation phase. In this
context, it could also be useful to use other techniques to fit the marginal distributions, such
as the techniques based on Spline Hermite quasi-interpolation presented in [64]. Moreover,
we plan to extend the method by considering a different strategy to reduce the dimension-
ality of SITS and extend the study by using other families of copula as Vine copulas [44,65],
which have proven to work very well in the presence of large datasets. Finally, the use of a
multi-source scenario in which optical (Sentinel-2) SITS can be combined with Synthetic
Aperture Radar (Sentinel-1) SITS data may represent a future development.
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F Cumulative distribution function
f Probability density function
c, cB Copulas and Bernstein Copula density function
C, CB Copulas and Bernstein cumulative density function
f (x|ωi) Likelihood function
P(ωi) Prior Probability
P(ωi|x) Posterior Probability
I Image tensor with dimension m× n× d
I Rearranged Image matrix with dimension p× d, p = m× n
IT = {It1 , It2 , . . . , Itn} Satellite Image Time Series SITS
Bi i = 1, . . . , d Spectral bands of Image
IBi

T i = 1, . . . , d Single Band SITS
r Number of Principal Components
IBi
T i = 1, . . . , d Flattened single band SITS

Ir
i i = 1, . . . , d Flattened reduced image with dimension p× r
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