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Gut microbiota and host genetics contribute 
to the phenotypic variation of digestive 
and feed efficiency traits in growing pigs fed 
a conventional and a high fiber diet
Vanille Déru1,2*   , Francesco Tiezzi3,4   , Céline Carillier‑Jacquin1   , Benoit Blanchet5, Laurent Cauquil1   , 
Olivier Zemb1   , Alban Bouquet6   , Christian Maltecca3    and Hélène Gilbert1    

Abstract 

Background:  Breeding pigs that can efficiently digest alternative diets with increased fiber content is a viable strat‑
egy to mitigate the feed cost in pig production. This study aimed at determining the contribution of the gut micro‑
biota and host genetics to the phenotypic variability of digestive efficiency (DE) traits, such as digestibility coefficients 
of energy, organic matter and nitrogen, feed efficiency (FE) traits (feed conversion ratio and residual feed intake) and 
growth traits (average daily gain and daily feed intake). Data were available for 791 pigs fed a conventional diet and 
735 of their full-sibs fed a high-fiber diet. Fecal samples were collected at 16 weeks of age to sequence the V3–V4 
regions of the 16S ribosomal RNA gene and predict DE with near-infrared spectrometry. The proportions of pheno‑
typic variance explained by the microbiota (microbiability) were estimated under three OTU filtering scenarios. Then, 
microbiability and heritability were estimated independently (models Micro and Gen) and jointly (model Micro+Gen) 
using a Bayesian approach for all traits. Breeding values were estimated in models Gen and Micro+Gen.

Results:  Differences in microbiability estimates were significant between the two extreme filtering scenarios (14,366 
and 803 OTU) within diets, but only for all DE. With the intermediate filtering scenario (2399 OTU) and for DE, microbi‑
ability was higher (> 0.44) than heritability (< 0.32) under both diets. For two of the DE traits, microbiability was sig‑
nificantly higher under the high-fiber diet (0.67 ± 0.06 and 0.68 ± 0.06) than under the conventional diet (0.44 ± 0.06). 
For growth and FE, heritability was higher (from 0.26 ± 0.06 to 0.44 ± 0.07) than microbiability (from 0.17 ± 0.05 to 
0.35 ± 0.06). Microbiability and heritability estimates obtained with the Micro+Gen model did not significantly differ 
from those with the Micro and Gen models for all traits. Finally, based on their estimated breeding values, pigs ranked 
differently between the Gen and Micro+Gen models, only for the DE traits under both diets.

Conclusions:  The microbiota explained a significant proportion of the phenotypic variance of the DE traits, which 
was even larger than that explained by the host genetics. Thus, the use of microbiota information could improve the 
selection of DE traits, and to a lesser extent, of growth and FE traits. In addition, our results show that, at least for DE 
traits, filtering OTU is an important step and influences the microbiability.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Currently in modern capital-intensive systems of pig pro-
duction, feed represents between 60 and 70% of the total 
cost of pork production [1], and to limit this cost, feed 
efficiency (FE) remains the main selection objective. To 
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reduce feed costs and the amount of agricultural land 
dedicated to the production of animal feed, one option 
is to feed pigs with by-products from the agri-food and 
biofuel industry. However, by-products have an increased 
fiber content and lower energy than conventional feed 
resources and these have a negative impact on FE and 
growth performances [2–4]. Recent research has sug-
gested that improving digestive efficiency (DE) could 
in turn improve FE when such alternative resources are 
used, because of its sizable genetic variability, particularly 
when pigs are fed diets with an increased fiber content 
[5]. Digestive efficiency is influenced by host genetics [5], 
but other factors, such as the gut microbiota composi-
tion, could also significantly affect this trait. The fermen-
tation activity by the microbiota in the large intestine 
directly impacts the digestibility of nutrients [6, 7], espe-
cially when the diet contains dietary fibers, which can-
not be assimilated without fermentation [8]. Moreover, a 
recent study demonstrated the existence of genetic corre-
lations between DE traits and some heritable traits of the 
fecal microbiota [9].

Microbiability ( m2 ) is the proportion of phenotypic 
variance explained by the microbiota [10] and it can be 
used to determine the impact of microbiota composi-
tion on traits of interest in growing pigs. As reported by 
Ross et al. [11], to estimate the m2 it is necessary to con-
struct a microbial covariance matrix, which can then be 
coupled with a standard linear mixed model as used to 
predict breeding values based on pedigree or genomic 
covariance. Based on porcine fecal samples, m2 estimates 
of ~ 0.20 for feed conversion ratio (FCR), daily feed intake 
(DFI), and average daily gain (ADG and similar herit-
ability ( h2 ) and m2 estimates for FCR and DFI have been 
reported [12, 13]. Another study found an even higher m2 
estimate (~ 0.45) for residual feed intake (RFI) [14]. Given 
the difficulty to record DE traits, to date, only one study 
including a limited number of pigs has shown that fecal 
microbiota can explain a significant part of their pheno-
typic variation [15]. The authors of that study found high 
m2 estimates (> 0.53 ± 0.24) for the digestibility coeffi-
cients (DC) of dry matter, organic matter, crude protein, 
crude fat, crude fiber and non-starch polysaccharides. 
Taken together, these results suggest that fecal micro-
biota could explain a significant fraction of the pheno-
typic variance of DE traits. In addition, since DE is also 
under the control of host genetics [5], it is interesting to 
estimate the contribution of the genetic and microbiota 
effects separately and jointly on DE traits. Moreover, as 
the dietary fiber content affects the composition of gut 
microbiota [16, 17], microbiota-by-diet interactions may 
exist, in the same way as the genetic-by-diet interactions 
that have been demonstrated for DE [5], thus the effect of 
diet on m2 should be investigated.

Preprocessing of microbial sequencing data is one of 
the main challenges when comparing results from dif-
ferent studies that investigate the contribution of the 
microbiota to host phenotypic variation. In particular, 
the filtering criteria applied to the operational taxonomic 
units (OTU) that are used in subsequent analyses var-
ies greatly between studies. For example, some authors 
choose to retain the OTU that are present in more than 
50% of the samples [18] while others in at least 5% of the 
samples [15]. Thus, in most cases, m2 estimates cannot be 
compared between studies.

Here, our aim was to estimate the proportion of phe-
notypic variance for FE and DE traits explained by the 
microbiota and by the host genetics separately and 
jointly, in a Large White (LW) pig population fed a con-
ventional (CO) or a less digestible diet with an increased 
fiber content (HF). First, we evaluated the impact of dif-
ferent OTU filtering criteria on the m2 estimates. Sec-
ond, we compared the proportion of variance explained 
by the microbiota and the host genetics for FE and DE 
traits. Third, we evaluated the impact of including both 
genomic and microbiota information in a linear mixed 
model on estimated genomic breeding values (GEBV) 
and estimated microbiota values (EMV). Finally, we 
quantified the relevance of the interactions between diet 
and genetics/microbiota and assessed the stability of the 
estimated genetic and microbiota parameters to the two 
CO and HF diets.

Methods
The study was conducted in accordance with the French 
legislation on animal experimentation and ethics. The 
certificate of Authorization to Experiment on Living Ani-
mals was issued by the Ministry of Higher Education, 
Research and Innovation to conduct this experiment 
under reference number 2017011010237883 at INRAE 
UE3P—France Génétique Porc phenotyping station 
(UE3P, INRAE, 2018. Unité expérimentale Physiologie 
et Phénotypage des Porcs, France, https://​doi.​org/​10.​
15454/1.​55739​32732​03992​7E12).

Experimental design
In the current study, we used the same animals as those 
described in Déru et  al. [3]. In total, 1942 purebred 
Large White (LW) male pigs were reared in 35 consecu-
tive batches between 2017 and 2018 at the INRAE UE3P 
France Génétique Porc phenotyping station under two 
dietary conditions. The study was designed to genetically 
connect the datasets obtained with the two diets, i.e. to 
facilitate the estimation of genetic covariances between 
diets in a dataset of limited size, from each pair of full 
sibs of homogeneous weights, one was fed one diet and 
the other the alternative diet. All pigs were obtained 

https://doi.org/10.15454/1.5573932732039927E12
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from 171 sires that were representative of those used in 
the French Large White collective breeding scheme, and 
each pair of full-sibs came from a different dam.

Housing conditions and management of pigs were as 
described in Déru et al. [3]. Upon arrival, each pair of full 
sibs was separated and allotted in pens of 14 animals. Pigs 
were raised in post-weaning facilities until 9 weeks of age 
and fed with a standard two-phase post-weaning dietary 
sequence. Then, they were moved to the growing–finish-
ing facilities without mixing until they reached slaughter 
weight (115 kg body weight). One of the siblings was fed 
the CO diet and the other the HF diet (see their com-
position in the next section). Each growing–finishing 
pen contained a single place electronic feeder equipped 
with a weighing scale (Genstar, Skiold Acemo, Pontivy, 
France) to record feed intake and individual body weight 
of the animal at each visit to the feeder. At a body weight 
of 115 kg, pigs were fasted for 24 h and then transported 
to the slaughterhouse. Animals were slaughtered in 89 
slaughter batches of approximately 19 pigs.

Diets
During the growing–finishing phase, each of the two sets 
of pigs was fed a different two-phase dietary sequence. 
First, a growing diet was distributed, then at 16  weeks 
of age a 5-day transition was performed, and a finishing 
diet was provided until the end of the test. The HF diet 
included both insoluble and soluble dietary fibers. The 
detailed compositions of the CO and HF diets are pro-
vided in Additional file 1: Table S1. Based on their formu-
lation, the diets differed in net energy (NE), with 9.6 MJ/
kg for the CO diet and 8.2 MJ/kg for the HF diet for both 
two-phase dietary sequences. The diets also differed in 
neutral detergent fiber (NDF), that ranged from 13.90 to 
15.12% for the CO diet and from 23.82 to 24.46% for the 
HF diet for the two-phase dietary sequences. The ratio 
of digestible lysine to NE was identical in both dietary 
sequences, and was equal to 0.97–0.99  g/MJ NE in the 
growing phase and 0.83 g/MJ NE in the finishing phase.

Recorded traits and sampling
For each animal, ADG and DFI were measured between 
35 and 115 kg. ADG was computed as the ratio between 
body weight gain and number of days on test. The FE 
traits were FCR and RFI. FCR was calculated as the ratio 
between DFI and ADG and was expressed in kg/kg. For 
the two diets, RFI was determined using a single multiple 
linear regression [19] of DFI on ADG, lean meat percent-
age and carcass yield recorded at slaughter, and average 
metabolic body weight as described in Déru et  al. [3]. 
The proportion of pigs that experienced health problems 
or injury during the test period was the same in the two 
diet groups, and these were discarded from the analysis. 

Among the 1942 pigs in the experiment, 1663 had data 
available for FCR, ADG and DFI, and only 1595 pigs had 
data for RFI.

DE and fecal microbiota composition were also deter-
mined for the animals in this study. A unique fecal sample 
was collected at 16 weeks of age just before feed transi-
tion between the growing and finishing phases to meas-
ure DE and to analyze microbiota composition. For each 
pig, feces were collected in a piping bag and manually 
homogenized. About 50 g of feces were stored in plastic 
containers at − 20  °C until further analyses to measure 
DE traits. Samples were freeze–dried and ground with a 
grinder (Grindomix GM200, Retsch). DE was computed 
based on the DC of energy, nitrogen and organic matter 
predicted using near infrared spectrometry (NIRS) analy-
ses of these samples, as described in detail in Déru et al. 
[5]. The prediction equations for the DC of organic mat-
ter, nitrogen and energy were reliable, with cross-valida-
tion R2 values higher than 0.89 [20]. In total, data for DC 
were available for 1242 pigs among which 654 were fed a 
CO diet and 588 a HF diet. Another fraction of the feces 
samples was used to assess the microbiota composition 
for each pig as described in the next section.

Microbiota DNA preparation and sequencing
Since it has been shown that the microbiota composi-
tion of feces is similar to that of the large intestine [21], 
fecal samples were collected and analyzed to approxi-
mate the gut microbiota composition based on sequenc-
ing data of the ribosomal 16S DNA gene. Details of the 
microbial DNA preparation and sequencing are in Déru 
et al. [9], and briefly summarized in the next paragraph. 
After sequencing of the V3–V4 region of the 16S rRNA, 
high quality reads were filtered and trimmed using the 
DADA2 package in the R software [22]. Chimera were 
removed and no further clustering was applied, so in this 
study OTU were equivalent to amplicon sequence vari-
ants (ASV). Subsequently, the final OTU abundance table 
was obtained, followed by taxonomic annotation using 
the assignTaxonomy function of DADA2 with the Silva 
Dataset v132 [23]. The obtained file was rarefied to 10,000 
counts per sample using the Phyloseq package [24] and 
had information on 1564 pigs. In total, 14,366 OTU were 
retained in the abundance tables for 812 pigs fed the CO 
diet and 752 pigs fed the HF diet. Sequence information 
obtained in the current study was deposited in the Short-
Read Archive with accession number PRJNA741111.

Genotyping
In total, 1691 animals were genotyped with the 70K sin-
gle nucleotide polymorphism (SNP) GeneSeek GGP Por-
cine HD chip. The following quality control (QC) criteria 
were applied: a call rate per individual (the percentage 
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of genotypes present per individual) of 95%, and a SNP 
call rate (the percentage of genotypes by SNP) of 95%. 
SNPs with a minor allele frequency lower than 5%, or 
that showed a significant deviation from Hardy–Wein-
berg equilibrium (P < 0.000001), and those on the sex 
chromosomes or not mapped were deleted. This QC was 
performed with the PLINK 1.09 software [25]. After QC, 
1687 animals and 48,919 SNPs were available for further 
analyses.

Statistical analyses
Only animals with microbiota and genomic data, and at 
least one phenotype, were kept for subsequent analyses, 
which left 1526 animals with 791 animals fed the CO diet 
and 735 fed the HF diet.

Microbiota and genomic covariance matrices
To account for the microbiota and genetics effects in 
the linear mixed models, a microbial covariance matrix 
based on microbiota data and a genomic relationship 
matrix were constructed.

The microbial covariance matrix was obtained under 
three editing conditions: without OTU filtering (14,366 
OTU), by filtering the OTU present in more than five 
samples and with an average abundance higher than 
0.001% (2399 OTU) or higher than 0.01% (803 OTU). 
The microbial covariance matrix ( M ) was computed for 
each diet separately and for the two diets jointly, and was 
obtained as follows:

where S is a matrix of dimension p× n with p the num-
ber of animals and n the number of OTU that depends 
on the filtering scenario, and is constructed from the 
elements sjk , i.e. the log-transformed and standardized 
count for animal j and OTU k (plus 1.00) [11].

The genomic relationship G was computed for each 
diet separately and for the two diets jointly, and was con-
structed according to VanRaden’s first method [26] with 
the AGHmatrix package in R [27] from the Z matrix of 
genotypes coded 0, 1 and 2.

Models
We performed a preliminary analysis by ignoring the 
additive genomic and microbiota effects to determine the 
fixed and random effects to be included in subsequent 
analyses using a linear mixed model implemented with 
the “lme4” and “lmerTest” R packages [28, 29]. Only the 
effects that were significant at a threshold of 5% were 
retained. To estimate the contributions of host genetics 
and microbiota to the phenotypic variation of FE and DE 
traits, and the GEBV and EMV, we used three Bayesian 

M =
SST

n
,

linear regression models fitted with the BGLR package in 
R [30]: model Gen that included a genomic effect, model 
Micro that included a microbiota effect, and model 
Micro+Gen with both effects. Each model was fitted sep-
arately for the CO and HF diets and all were univariate 
linear mixed models.

The model that included only genomic information 
was:

where y is the vector of phenotypes for a given trait; X 
is the incidence matrix relating observations to fixed 
effects; β is the vector of fixed effects depending on the 
trait considered, i.e. pen within batch and DFI for DC, 
pen within batch and weight at the end of the post-wean-
ing phase for ADG and FCR, and pen within batch and 
weight at the end of the test for DFI; Z is the incidence 
matrix for the genetic effects; u ∼ N

(

0,Gσ2u
)

 is the vec-
tor of additive genetic random effects for the trait consid-
ered, with G the genomic relationship matrix and σ2u the 
additive genetic variance; and e ∼ N

(

0, Iσ2e
)

 is the vector 
of residual random effects, with I the incidence matrix, 
and σ2e the residual variance.

The model that included only microbiota information 
was:

where X , β and e are defined as for model Gen; W is 
the incidence matrix for the microbiota effects; and 
m ∼ N

(

0,Mσ2m
)

 is the vector of microbiota effects for 
the trait considered, with M the microbial covariance 
matrix, and σ2m the microbial variance.

The third model that jointly fitted genomic and micro-
biota information, with no covariance between the two 
random variables, was:

where the effects are the same as in models (Gen) and 
(Micro), but jointly estimated.

A Bayesian reproducing kernel Hilbert space (RKHS) 
model was used. For all the models, the residual, micro-
biota, and genetic variances were assigned scaled-inverse 
Chi-square densities as prior density, with hyperparam-
eters of 5 degrees of freedom and a scale parameter based 
on the sample variance of the phenotypes, as proposed by 
default in the BGLR package [30]. A Gaussian prior with 
mean zero and variance equal to 1010 was assigned to the 
fixed effects.

A single chain of 120,000 iterations was run for all the 
models, with 20,000 rounds discarded as burn-in and a 
thinning of 20. After discarding the burn-in, inferences 
on all the parameters were obtained from the mean of 

(model Gen)y = Xβ+ Zu + e,

(model Micro)y = Xβ+Wm + e,

(model Micro+Gen)y = Xβ+ Zu +Wm + e,
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the respective posterior distributions. The results are 
presented as the means of the posterior distribution of 
the parameters of interest with their respective poste-
rior standard deviation (SD). These standard deviations 
were then used to construct 95% highest density intervals 
(HDI) (means of the posterior distribution ± 1.96 * SD) to 
test differences between estimates.

For each trait, the three models were compared using 
the Bayesian information criterion (BIC), calculated as 
BIC = −2*Log(L)+ k*Log(N) , with L being the log-like-
lihood evaluated at the posterior mean, the number of 
parameters estimated in the model and the sample size. 
The model with the lowest BIC was considered as the best.

Heritability and microbiability estimates
Heritability was computed as h2 = σ2u

σ2u+σ2e
 in the model 

Gen and as h2 = σ2u
(σ2u+σ2m+σ2e)

 in the model Micro+Gen. 

Microbiability was computed as m2 =
σ2m

(σ2m+σ2e)
 in the 

model Micro and as m2 =
σ2m

σ2m+σ2u+σ2e
 in the model 

Micro+Gen. In this study, we arbitrarily categorized h2 
and m2 estimates as low when they were lower than 0.20, 
as moderate when they ranged from 0.20 to 0.40, and as 
high when they were higher than 0.40.

Rank correlations
To evaluate the impact of adding microbiota information 
on GEBV, GEBV reranking was quantified using Spear-
man correlations between the Gen and Micro+Gen 
models. Similarly, EMV reranking was computed 
between the Micro and Micro+Gen models. Their 95% 
confidence intervals (CI) were determined for each rank 
correlation using a bootstrap approach implemented by 
the spearman.ci function in R, with 1000 replicates [19].

Genomic‑ and microbiota‑by‑diet interactions
Since BGLR does not allow multivariate implementa-
tions, the magnitude of the genomic-by-diet (G × D) and 
microbiota-by-diet deviations (M × D) for DE, FE and 
growth traits were estimated following Lopez-Cruz et al. 
[31]. The principle was to decompose variances into 
genetic variance (in the model G × D) and microbiota 
variance (in the model M × D) components estimated 
based on the two diets jointly (main effects) and the diet-
specific components to compute an interaction term 
[31]. For this analysis, a single chain of 120,000 iterations 
was run for all models, with 20,000 rounds discarded as 
burn-in and a thinning of 20. Inferences on all param-
eters were obtained from the mean of the respective pos-
terior distributions after discarding the burn-in. An R 

script for the computation of the G × D interaction for 
ADG is provided in Additional file 2: Script S1.

A univariate linear mixed model was applied to quan-
tify the G × D interaction:

with b0 ∼ N (0, Iσ 2
b0 ) and bj ∼ N (0, Iσ 2

bj ) being the main 
SNP effects and the specific SNP effects in each environ-
ment, respectively. Zi is the block of the full Z matrix cor-
responding to the animals raised in diet i (I ∈ {CO,HF}) . 
The model was implemented as follows:

where u0 ∼ N
(

0,Gσ2u0
)

 is the animal main genetic effects,  

and u1 =

[

uCO
uHF

]

∼ N (0,G1) the environment specific 

genetic effects, with G1 =

[

σ2
uCO

ZCOZCO
′ 0

0 σ2
uHF

ZHFZHF
′

]/

d, 

where d is the number of SNPs.
The genetic-by-diet interaction was calculated as 

follows:

Similarly, a univariate linear mixed model was applied 
to quantify the M × D interaction as:

where m0 ∼ N
(

0,Mσ2
m0

)

 is the vector of the animal main 
microbiota effects, and m1 ∼ N (0,M1) the vector of the 
environment-specific microbiota effects, with 

M1 =

[

σ2mCOWCOWCO
′ 0

0 σ2mHFWHFWHF
′

]/

n, with n 

the number of OTU.
The microbiota-by-diet interaction was calculated as 

follows:

Mulder and Bijma [32] suggested that, when the genetic 
correlation between the principal and alternative envi-
ronments was lower than 0.80, breeding schemes should 
be re-designed to account for outcomes in the alternative 
environment. Following this reference value, we consid-
ered that correlations lower than 0.80 were indicative of 
G × D or M × D interactions that should be accounted for 
in practical applications.

(model G × D)

[

yCO
yHF

]

= Xβ+

[

ZCO

ZHF

]

b0 +

[

ZCO 0
0 ZHF

][

bCO
bHF

]

+

[

eCO
eHF

]

,

(model G × D)y = Xβ+ u0 + u1 + e,

rg =
σ2u0

√

(

σ2uCO + σ2u0

)(

σ2uHF + σ2u0

)

.

(model M × D)y = Xβ+m0 +m1 + e,

rm =
σ2m0

√

(

σ2mCO + σ2m0

)(

σ2mHF + σ2m0

)

.
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Results
Microbiabilities estimated for the three OTU filtering 
scenarios
The m2 estimates obtained for the three OTU filtering 
scenarios (i.e. leaving 14,366, 2399, and 803 OTU) with 
model Micro are in Table 1 and the corresponding vari-
ance components for the random effects are in Addi-
tional file 1: Table S2.

Microbiability estimates were moderate for all sce-
narios and both diets for ADG (from 0.15 ± 0.05 to 
0.30 ± 0.08), DFI (from 0.25 ± 0.05 to 0.41 ± 0.09), and 
FE (from 0.14 ± 0.04 to 0.29 ± 0.08), and those obtained 
within diet did not differ significantly between the OTU 
filtering scenarios. Thus, regardless of the filtering crite-
ria applied, the microbiota had a similar effect on these 
traits.

For the DC, m2 estimates decreased as the OTU filter-
ing level increased, with posterior means ranging from 
0.57 ± 0.03 to 0.75 ± 0.02 in the 14,366 OTU scenario, 
from 0.47 ± 0.02 to 0.68 ± 0.06 in the 2399 OTU scenario, 
and from 0.33 ± 0.02 to 0.51 ± 0.03 in the 803 OTU sce-
nario. Within diet, the differences in m2 estimates were 
significant between the two extreme models for the three 
DC, ranging from − 0.27 to − 0.24 points between the 
microbial covariance matrix constructed with 14,366 
OTU and 803 OTU. An increase in the residual vari-
ance explained this decrease as the OTU filtering level 
increased and see Additional file 1: Table S2.

The microbial covariance matrix obtained with an 
intermediate number of OTU (2399) was used in the fol-
lowing analyses. The choice was based on the fact that 
this level of filtering provided intermediate m2 estimates 
that did not differ from those obtained with the two 

extreme filtering levels. This filtering was similar to that 
proposed by Verschuren et al. [15] to estimate m2 for DE 
traits, which allows a fair comparison between the two 
studies.

Proportion of phenotypic variance explained 
by microbiota and host genetics within each diet
Comparison of the Bayesian information criterion 
between the three models
The BIC estimates obtained for the models with microbi-
ota and genetic effects fitted separately and jointly are in 
Table 2. The model that best explained all FE and growth 
traits data was the Micro+Gen model, regardless of the 
diet, except for ADG for pigs fed the CO diet and FCR for 
pigs fed the HF diet. For these two traits, the best models 
were the Gen and Micro models, respectively. With the 
CO diet, the Micro model ranked second for all FE and 
growth traits, whereas with the HF diet, the Gen model 
ranked second for all FE and growth traits except for RFI. 
However, differences in BIC estimates between the Micro 
and Gen models were minimal in all cases, regardless of 
the diet. For the three DC and within each diet, the best 
model was Micro+Gen (BIC ranging from 2535 to 2779 
for pigs fed the CO diet and from 2233 to 2373 for pigs 
fed the HF diet), followed by Micro (BIC ranging from 
2547 to 2832 for pigs fed the CO diet and from 2272 to 
2427 for pigs fed the HF diet).

Heritability and microbiability estimates
Heritability and m2 estimated for the three models are 
in Table  3 and variances of the random effects for each 
model are in Additional file 1: Table S3.

Table 1  Microbiabilities estimated for three OTU filtering scenarios with Model Micro, i.e. without filtering (14,366 OTU), by filtering 
the OTU present in more than five samples and with an average abundance higher than 0.001% (2399 OTU), or higher than 0.01% (803 
OTU)

CO diet: growing pigs fed a conventional diet; HF diet: growing pigs fed a high fiber diet

Microbiability values are the posterior means of the a posteriori distribution with their respective posterior standard deviations

FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, RFI residual feed intake, DC digestibility coefficient

CO diet HF diet

14,366 OTU 2399 OTU 803 OTU 14,366 OTU 2399 OTU 803 OTU

Feed efficiency and growth traits

 FCR 0.27 ± 0.08 0.20 ± 0.05 0.17 ± 0.04 0.14 ± 0.05 0.17 ± 0.05 0.14 ± 0.04

 DFI 0.35 ± 0.06 0.35 ± 0.06 0.25 ± 0.05 0.41 ± 0.09 0.35 ± 0.06 0.29 ± 0.05

 ADG 0.15 ± 0.05 0.20 ± 0.06 0.18 ± 0.05 0.30 ± 0.09 0.27 ± 0.07 0.21 ± 0.05

 RFI 0.29 ± 0.08 0.22 ± 0.05 0.18 ± 0.04 0.28 ± 0.04 0.28 ± 0.07 0.18 ± 0.04

Digestive efficiency traits

 DC of energy 0.57 ± 0.07 0.48 ± 0.06 0.33 ± 0.05 0.74 ± 0.05 0.67 ± 0.06 0.50 ± 0.06

 DC of organic matter 0.60 ± 0.07 0.47 ± 0.06 0.33 ± 0.05 0.75 ± 0.05 0.68 ± 0.06 0.49 ± 0.06

 DC of nitrogen 0.73 ± 0.06 0.54 ± 0.02 0.49 ± 0.05 0.75 ± 0.05 0.67 ± 0.03 0.51 ± 0.06
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For the FE, DFI and growth traits with model Micro, m2 
estimates were moderate for pigs fed the CO diet (from 
0.20 ± 0.05 to 0.35 ± 0.06) and low to moderate for pigs 
fed the HF diet (from 0.17 ± 0.05 to 0.35 ± 0.06). Microbi-
ability estimates did not differ significantly between diets 
for these traits. For the DE traits, m2 estimates were high, 
i.e. from 0.44 ± 0.06 to 0.60 ± 0.05 and from 0.67 ± 0.06 
to 0.68 ± 0.06) for pigs fed the CO and HF diets, respec-
tively. For both DC of energy and organic matter, m2 
estimates were significantly higher for pigs fed the HF 
diet than for those fed the CO diet. This difference is 

due to the lower residual variance and higher microbi-
ota variance for pigs fed the HF than those fed the CO 
diet. Microbiability estimates did not significantly differ 
between diets for the DC of nitrogen.

For DFI, RFI, FCR and ADG with model Gen, h2 
estimates were moderate to high, i.e. from 0.26 ± 0.06 
to 0.41 ± 0.07 and from 0.30 ± 0.07 to 0.44 ± 0.07 for 
pigs fed the CO and HF diets, respectively. For these 
traits, the h2 estimates obtained with the Gen model 
tended to be higher than the m2 estimates obtained 
with the Micro model (+ 6 to 10% and + 4 to 13% for 

Table 2  Bayesian information criterion (BIC) estimated for the models with the microbiota (Micro), and genetic effects (Gen) 
separately and jointly (Micro+Gen) for feed and digestive efficiency traits of growing pigs fed a conventional (CO) diet or a high fiber 
diet (HF) diet

FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, RFI residual feed intake, DC digestibility coefficient
a Intermediate model (intermediate BIC)
b Worst model (highest BIC)
c Best model (lowest BIC)

CO diet HF diet

Micro Gen Micro+Gen Micro Gen Micro+Gen

Feed efficiency and growth traits

 FCR 6570a 6574b 6559c 6282c 6283a 6293b

 DFI 10,417a 10,423b 10,345c 9761b 9759a 9684c

 ADG 9099a 9093c 9109b 8473b 8457a 8423c

 RFI 9275a 9286b 9273c 8976a 8987b 8957c

Digestive efficiency traits

 DC of energy 2667a 2788b 2660c 2383a 2629b 2346c

 DC of organic matter 2547a 2673b 2535c 2272a 2533b 2233c

 DC of nitrogen 2832a 3060b 2779c 2427a 2674b 2373c

Table 3  Posterior means of the phenotypic variance and their respective posterior standard deviations explained by the microbiota 
( m2 ) and host genetics ( h2 ), separately, and jointly ( m2

+ h
2 ) using a Bayesian approach for feed and digestive efficiency traits of 

growing pigs fed a conventional (CO) diet or a high fiber (HF) diet

m2
= σ 2

m/σ
2
p  as defined by Difford et al. [10]

FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, RFI residual feed intake, DC digestibility coefficient

CO diet HF diet

Micro Gen Micro+Gen Micro Gen Micro+Gen

m
2

h
2

m
2

h
2

m
2

h
2

m
2

h
2

Feed efficiency and growth traits

 FCR 0.20 ± 0.05 0.37 ± 0.07 0.14 ± 0.05 0.27 ± 0.05 0.17 ± 0.05 0.30 ± 0.07 0.14 ± 0.05 0.23 ± 0.05

 DFI 0.35 ± 0.06 0.41 ± 0.07 0.42 ± 0.06 0.44 ± 0.04 0.35 ± 0.06 0.44 ± 0.07 0.28 ± 0.06 0.30 ± 0.04

 ADG 0.20 ± 0.06 0.26 ± 0.06 0.17 ± 0.04 0.22 ± 0.05 0.27 ± 0.07 0.38 ± 0.07 0.20 ± 0.06 0.29 ± 0.04

 RFI 0.22 ± 0.05 0.32 ± 0.07 0.18 ± 0.05 0.24 ± 0.05 0.28 ± 0.06 0.32 ± 0.07 0.33 ± 0.09 0.32 ± 0.09

Digestive efficiency traits

 DC of energy 0.44 ± 0.06 0.25 ± 0.05 0.39 ± 0.06 0.22 ± 0.04 0.67 ± 0.06 0.32 ± 0.06 0.59 ± 0.06 0.25 ± 0.04

 DC of organic matter 0.44 ± 0.06 0.25 ± 0.06 0.40 ± 0.06 0.22 ± 0.04 0.68 ± 0.06 0.3 ± 0.08 0. 61 ± 0.06 0.24 ± 0.04

 DC of nitrogen 0.60 ± 0.05 0.26 ± 0.07 0.55 ± 0.05 0.24 ± 0.04 0.67 ± 0.06 0.32 ± 0.08 0.61 ± 0.06 0.25 ± 0.04
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pigs fed the CO and HF diets, respectively). However, 
based on the 95% highest density intervals, these dif-
ferences were not significant between the two models. 
For the DE traits, the h2 estimates were moderate, i.e. 
from 0.25 ± 0.06 to 0.26 ± 0.07) and from 0.31 ± 0.08 to 
0.32 ± 0.08 for pigs fed the CO and HF diets, respec-
tively. Unlike the FE, DFI and growth traits, the m2 
estimates obtained with the Micro model were signifi-
cantly higher than the h2 estimates obtained with the 
Gen model for most DE traits (from + 19 to 34% and 
from + 35 to 37% for pigs fed the CO and HF diets, 
respectively), except for DC of energy and organic 
matter for pigs fed the CO diet, with higher but not 
significantly different estimates.

For all traits, the m2 and h2 estimates obtained with 
the Micro+Gen model were not significantly different 
from those obtained with the Micro and Gen models, 
even if the values were systematically lower.

Rank correlations
Genomic estimated breeding values
Rank correlations of GEBV and their respective 95% CI 
computed with the Gen and the Micro+Gen models 
are in Table 4. Rank correlations were close to 1 for FE, 
DFI and growth traits, i.e. from 0.97 to 0.99 and from 
0.95 to 0.99 for pigs fed the CO and HF diets, respec-
tively. Rank correlations were lower for the DE traits, 
i.e. from 0.83 to 0.89 and from 0.78 to 0.84 for pigs fed 
the CO and HF diets, respectively. Thus, for the DE 
traits, including a microbiota effect had an impact on 
the ranking of the individuals’ GEBV.

Estimated microbiota values
Rank correlations for EMV are in Additional file  1: 
Table  S4 and were close to 1 for all traits and each diet 
(0.96 to 0.99). Thus, no re-ranking of individuals according 
to their EMV is expected when a genetic effect is included.

Genomic‑ and microbiota‑by‑feed interactions
Genomic and microbial correlations for traits between 
pigs fed a CO diet and those fed a HF diet are in Table 5. 
Genomic correlations estimates were high for the FE, 
DFI and growth traits (from 0.68 ± 0.09 to 0.81 ± 0.05), 
and moderate for the DE traits (from 0.35 ± 0.08 to 
0.42 ± 0.10). Microbial correlations were moderate 
for the FE, DFI and growth traits (from 0.23 ± 0.09 to 
0.41 ± 0.12), and moderate to high for the DE traits (from 
0.46 ± 0.09 to 0.55 ± 0.09).

Discussion
Our results support the hypothesis that the fecal micro-
biota explains a substantial part of the phenotypic varia-
bility of FE and DE traits in growing pigs. When analyzed 
jointly, m2 were lower or similar to h2 for growth and FE 
traits, whereas m2 were up to twice the h2 for DE traits. 
Thus, our findings suggest that m2 explains a large pro-
portion of the phenotypic variance for DE traits, espe-
cially for pigs fed the HF diet.

Differences in microbiability between traits 
and between diets
The m2 estimates obtained in this study were moder-
ate for the growth, DFI and FE traits and high for the 
DE traits and are consistent with those found in the 

Table 4  Rank correlations of genomic estimated breeding values (GEBV) and their respective 95% confidence intervals (CI) between 
the Gen and Micro+Gen models for feed and digestive efficiency traits recorded for pigs fed the conventional diet and the high fiber 
diet

FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, RFI residual feed intake, DC digestibility coefficient

Item CO diet HF diet

Spearman 
correlation

95% CI Spearman 
correlation

95% CI

Lower Upper Lower Upper

Feed efficiency and growth traits

 GEBV FCR 0.98 0.97 0.98 0.99 0.99 1.00

 GEBV DFI 0.97 0.96 0.97 0.95 0.94 0.96

 GEBV ADG 0.99 0.99 0.99 0.98 0.98 0.98

 GEBV RFI 0.97 0.97 0.98 0.97 0.96 0.97

Digestive efficiency traits

 GEBV DC of energy 0.89 0.87 0.91 0.82 0.79 0.84

 GEBV DC of organic matter 0.89 0.87 0.91 0.78 0.75 0.81

 GEBV DC of nitrogen 0.83 0.80 0.85 0.84 0.81 0.86
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literature. Camarinha-Silva et  al. [12] and Lu et  al. [13] 
reported m2 estimates of ~ 0.20 for FCR, DFI and growth 
traits (ADG). Aliakbari et al. [33] found m2 estimates of 
the same order of magnitude for FE traits in divergent 
lines of Large White pigs selected on RFI, i.e. 0.11 ± 0.09 
for RFI and 0.20 ± 0.11 for FCR. Conversely, in the previ-
ously cited study [33], estimates were lower and close to 
0 for DFI (0.04 ± 0.03) and ADG (0.03 ± 0.03). Using data 
from Camarinha-Silva et al. [12], Weishaar et al. [14] esti-
mated a higher m2 for RFI (0.45 ± 0.15) than in our study. 
Based on fecal microbiota samples that were collected 
from 160 growing pigs from a three-way cross, Ver-
schuren et al. [15] estimated high m2 values for DC of dry 
matter and organic matter (0.59 ± 0.19 and 0.58 ± 0.19, 
respectively), and even higher values for DC of crude 
protein (0.93 ± 0.10). Our results confirmed these high 
m2 values for DE traits on a larger dataset. Microbiota 
is closely related to the digestion process. Due to its fer-
mentation activity, the gut microbiota enables the pro-
duction of primary and secondary metabolites (such 
as short-chain fatty acids, vitamins, metabolites, etc.), 
which are then absorbed at the level of the intestinal bar-
rier [6, 7]. This biological interaction between microbiota 
composition and digestion could explain the high m2 esti-
mates found for the DE traits. Microbiability values esti-
mated for ADG, DFI and FE traits were similar and not 
significantly different between the two diets. Microbiabil-
ity estimates for DC of energy and organic matter were 
significantly higher for pigs fed the HF diet than for those 
fed the CO diet (approximately 25% higher). These find-
ings suggest that the composition of the gut microbiota is 
more critical for digesting feed with a high fiber content, 
which is consistent with the high fermentation activity in 
the large intestine of animals fed a HF diet. Indeed, when 
dietary fibers are present in the feed, many indigestible 
polysaccharides arrive intact in the large intestine where 
they undergo fermentation and are then degraded, in 

particular, in volatile fatty acids (VFA) (mainly propion-
ate, acetate and butyrate) [7]. Subsequently, in pigs, 95% 
of the VFA are absorbed in the large intestine [34]. Thus, 
the higher fermentation activity of the gut microbiota in 
the presence of dietary fibers might explain the higher 
m2 values observed for pigs fed the HF diet compared to 
those fed the CO diet.

Thus, our results confirm that the phenotypic variance 
of FE and growth traits is better explained by the host 
additive genetic effects than by the microbiota effects, as 
already reported in the literature [12, 33]. In contrast, the 
phenotypic variance of the DE traits was better explained 
by the microbiota effects than the host genetics effects, 
especially for pigs fed the HF diet.

Partition of the variance between the microbial covariance 
matrix and the genomic relationship matrix
In this study, the m2 and h2 estimates obtained in 
the Micro+Gen model did not significantly dif-
fer from those obtained in the Gen and Micro mod-
els for all traits. In addition, the rank correlations of 
EMV between the Micro and Micro+Gen models 
were close to 1 for all traits. Similarly, the rank cor-
relations of GEBV between the Gen and Micro+Gen 
models were close to 1 for the FE traits. To our knowl-
edge, only the study of Aliakbari et al. [33] found non-
significantly different m2 and h2 estimates between 
models that fit the effects jointly and separately. Our 
study did not suggest microbiota-host confounding for 
FE traits in pigs. We observed a slight reranking for 
the DE traits but to date no other study has reported 
h2 and m2 estimates for DE traits using a model that 
fits the microbiota and host genetics effects jointly. 
David and Ricard [35] showed that accounting for all 
the effects that could be partially confounded with a 
genetic additive effect is necessary for accurate EBV 
predictions. Thus, one hypothesis is that the addition 

Table 5  Posterior means of genomic and microbial correlations and their respective standard deviations between pigs fed a 
conventional diet and a high fiber diet

FCR feed conversion ratio, DFI daily feed intake, ADG average daily gain, RFI residual feed intake, DC digestibility coefficient

Genomic correlation Microbial correlation

Feed efficiency and growth traits

 FCR 0.72 (0.06) 0.35 (0.10)

 DFI 0.76 (0.05) 0.41 (0.12)

 ADG 0.81 (0.05) 0.40 (0.13)

 RFI 0.68 (0.09) 0.23 (0.09)

Digestive efficiency traits

 DC of energy 0.35 (0.08) 0.46 (0.09)

 DC of organic matter 0.36 (0.08) 0.46 (0.09)

 DC of nitrogen 0.42 (0.10) 0.55 (0.09)
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of microbial information in the model allows a better 
estimation of the GEBV, which could be the case for 
the DE traits. However, taken together, our results do 
not allow us to conclude whether partial confounding 
between the microbiota and genomic effects is present 
or not in the models that fit the effects separately. In 
addition, the comparison of the models in our study 
was based on the BIC only, while the accuracy of pre-
dictions of GEBV and EMV should also be used since 
they can affect the reranking of GEBV and EMV. For 
carcass composition and meat quality traits, Khanal 
et  al. [36] observed that the genomic variance was 
eroded when microbiota information was included in 
the model, which suggested a possible overlap between 
the microbiota and host genetics effects. To consider 
this potential confounding between microbiota and 
genetic effects, Khanal et  al. [36] included a genetic-
by-microbiota interaction term in the model, in order 
to separate the transmissible and non-transmissible 
components of the microbiota. Similarly, Weishaar 
et al. [14] and Christensen et al. [37] proposed formal 
decompositions of the microbiota contribution to trait 
variances into genetic and non-genetic components. 
These methods could better separate and explain the 
GEBV of traits that are influenced by both the micro-
biota and the host genetics.

The Micro+Gen model was the best in terms of 
goodness-of-fit for all traits except for ADG for pigs 
fed the CO diet and for FCR for pigs fed the HF diet. 
This result suggests that the microbiota and the host 
genetics provide complementary information to better 
explain the variances of FE and DE traits. To confirm 
this, the predictive ability of the Micro+Gen model 
to predict phenotypes should be estimated and com-
pared with that of the Micro and Gen models. Using 
simulated phenotypes in cattle, Pérez-Enciso et al. [38] 
showed that including both microbiota and genome 
data in the model could increase the predictive accu-
racy by 50%. In addition, such comparisons could 
confirm if a model that fits jointly microbiota and 
genomic effects can help better predict digestive and 
feed efficiency phenotypes than models fitting each 
effect separately. Indeed, Maltecca et al. [39] suggested 
that microbiota can be used to predict phenotypes for 
growth traits in swine that are fed easy-to-digest diets. 
Camarinha-Silva et  al. [12] showed that microbiota 
predictions tended to be more accurate than genomic 
predictions for ADG, FCR and DFI, although not sig-
nificantly. For DC of dry matter, organic matter, crude 
protein and non-starch polysaccharide, Verschuren 
et al. [15] found that the accuracies of microbiota pre-
dictions were high (from 0.42 to 0.63).

Methodological developments for the efficient use 
of microbiota data
Impact of OTU filtering
For the DE traits, the number of OTU used to construct 
the microbial covariance matrix, for both the CO and HF 
diets, significantly impacted the m2 estimates. Therefore, 
the larger is the number of OTU considered, the larger 
is the proportion of variance of the DE traits explained 
by the microbiota. This finding is consistent with the high 
genetic correlations estimated between microbiota diver-
sity indices and DE traits (from 0.88 ± 0.12 to 0.91 ± 0.13) 
as reported by Déru et  al. [9]. Thus, many OTU are 
required to explain the phenotypic variation of DE traits, 
thus imposing strict editing rules eliminates relevant 
information that contributes to the variation of DE traits.

Conversely, the m2 estimates were not significantly 
different between the three OTU filtering scenarios for 
ADG and FE traits. Thus, most of the phenotypic varia-
tion was captured in the scenario with the 803 most com-
mon OTU for these traits. Moreover, in the three filtering 
scenarios resulting in 14,366 to 803 OTU, the OTU with 
the lowest abundances and therefore the rarest ones were 
eliminated. One hypothesis could be that (some of ) the 
rarest OTU are specific to some features of the digestion 
process that are not captured by the main OTU, which 
would explain why the m2 estimates decrease when these 
are no longer taken into account to construct the micro-
bial covariance matrix. In addition, the differences in tim-
ing of sample collection for DE traits, microbiota and FE 
traits could also have an impact on these observed differ-
ences. Samples of feces to determine microbiota and DE 
traits were collected at the same time and in the middle 
of the control period, while the FE and growth traits were 
measured throughout the control period. One hypothesis 
is that the microbiota data better reflected the composi-
tion of the gut microbiota for the DE traits than for the 
FE and ADG traits because for the former sampling of 
feces took place at the same time. Thus, this could explain 
why the m2 estimates did not significantly differ between 
the three OTU filtering scenarios for the FE and ADG 
traits. Further investigation is necessary to determine if 
the m2 estimates for the DE traits remain high when the 
fecal samples used to evaluate DE traits and microbiota 
composition are not collected at the same time.

In the literature, different criteria have been applied to 
edit microbiota data [10, 15, 40]. According to our study, 
OTU filtering criteria may have a different impact on m2 
estimates depending on the trait, i.e. a limited impact 
was observed for the FE traits whereas it was stronger for 
the DE traits. Nevertheless, further studies are needed to 
confirm our findings and to determine an optimal edit-
ing method for OTU that could be used and facilitate 
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comparisons between studies, especially for traits linked 
to digestion.

Choices for the construction of the covariance microbial 
matrix
In the literature, m2 estimates have been obtained with 
different procedures to build the covariance microbial 
matrix, such as the use of a Bray–Curtis dissimilarity 
matrix as relationship matrix [41], or of the variance–
covariance from the log-transformed OTU [12, 15, 40, 
41], as suggested by Ross et al. [11]. In our study we used 
log-transformed OTU. However, it should be noted that 
Ramayo-Caldas et  al. [41] reported higher m2 estimates 
using Bray–Curtis-based kernels with the RKHS model 
than the log-transformed covariance matrix of abun-
dances, which confirms that the method used to con-
struct the microbial covariance matrix has an impact on 
m2 estimates.

Modeling the microbiota effect with alternative methods
Microbiality estimates may be affected by the underlying 
model used for the distribution of the microbial effects, 
or by the estimation framework. Numerous methods 
exist to estimate m2 , such as the Bayes C hypotheses of 
mixtures of distributions with different variances [38], 
MBLUP [18], and Bayesian regression [12, 15, 40, 41]. 
Pérez-Enciso et al. [38] compared m2 estimates obtained 
with Bayes C and Bayesian RKHS. With the Bayes C 
method, they observed that the m2 estimates can be 
biased, especially if m2 is higher than 0.25, but for m2 
close to 0, they were well estimated. In contrast, the esti-
mates obtained with the Bayesian RKHS methodology 
were slightly less biased and less sensitive to the number 
of causative OTU. However, estimates of variance frac-
tions in the order of 0.10 were obtained even if the true 
variance was zero [38]. More studies are needed to com-
pare different models and their impact on the estimation 
of m2 , to facilitate future comparisons of results between 
studies.

Implications for selection
Digestive efficiency is known to be a trait of interest to 
improve feed efficiency, especially with the diversifica-
tion of feed resources [5]. The existence of a moderate 
to high microbiability for traits of interest in pigs repre-
sents a new opportunity for breeding programs. Adding 
microbiota information in the model had no impact on 
rank correlations of GEBV for growth, DFI and FE traits 
but had an impact for the DE traits, especially for pigs 
fed the HF diet. This observation is consistent with the 
genetic × diet correlations estimated for DE traits in this 
study, which will help to better understand the interac-
tions between host genetics and feed, provided that the 

main and diet-specific effects can be identified and prop-
erly estimated with this univariate computation. The 
advantage of this analysis is that the variance is separated 
in a common component between the two diets that cor-
responds to the covariance between diets, and in specific 
components due to the diets. However, these results need 
to be confirmed on a larger dataset. In addition, since the 
microbiability estimate was high for the DE traits, selec-
tion for microbiota genera that are favorably associated 
with digestive efficiency could also be considered and 
thus improve feed efficiency and growth performances 
in pigs as suggested in Déru et al. [9]. Additional work is 
needed to investigate these dynamics. Furthermore, in 
this work we used fecal samples to collect gut microbiota 
information, which is a non-invasive method, justifying 
its potential use for breeding purposes. Finally, to select 
DE traits, especially in a context of diversification of feed 
resources, collecting microbiota information to better 
estimate GEBV for these traits is probably relevant.

Conclusions
In conclusion, the microbiota composition provides valu-
able information to better explain the phenotypic varia-
tion of DE traits, and to a lesser extent of FE traits, and 
thus to obtain a more accurate classification of breeders. 
Microbiota explained a large part of the phenotypic vari-
ance of DE traits with higher m2 estimates for pigs fed 
a HF diet. However, microbiota explained a moderate 
part of the phenotypic variance of FE and growth traits, 
which was lower than that explained by the host genetics. 
Digestibility has already been highlighted as an attrac-
tive trait to be included in breeding schemes, since, in 
the future, pigs will be fed diets with a high fiber content 
[5]. Microbial composition explained a moderate to large 
proportion of the phenotypic variance, especially for the 
DE traits, which implies that the inclusion of microbiota 
in animal evaluations might accelerate the genetic gain 
for these traits.
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