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METHODOLOGY

Earbox, an open tool for high‑throughput 
measurement of the spatial organization 
of maize ears and inference of novel traits
V. Oury1, T. Leroux1, O. Turc2, R. Chapuis3, C. Palaffre4, F. Tardieu2, S. Alvarez Prado5,6, C. Welcker2 and 
S. Lacube1*    

Abstract 

Background:  Characterizing plant genetic resources and their response to the environment through accurate meas-
urement of relevant traits is crucial to genetics and breeding. Spatial organization of the maize ear provides insights 
into the response of grain yield to environmental conditions. Current automated methods for phenotyping the maize 
ear do not capture these spatial features.

Results:  We developed EARBOX, a low-cost, open-source system for automated phenotyping of maize ears. EARBOX 
integrates open-source technologies for both software and hardware that facilitate its deployment and improve-
ment for specific research questions. The imaging platform consists of a customized box in which ears are repeat-
edly imaged as they rotate via motorized rollers. With deep learning based on convolutional neural networks, the 
image analysis algorithm uses a two-step procedure: ear-specific grain masks are first created and subsequently used 
to extract a range of trait data per ear, including ear shape and dimensions, the number of grains and their spatial 
organisation, and the distribution of grain dimensions along the ear. The reliability of each trait was validated against 
ground-truth data from manual measurements. Moreover, EARBOX derives novel traits, inaccessible through conven-
tional methods, especially the distribution of grain dimensions along grain cohorts, relevant for ear morphogenesis, 
and the distribution of abortion frequency along the ear, relevant for plant response to stress, especially soil water 
deficit.

Conclusions:  The proposed system provides robust and accurate measurements of maize ear traits including spatial 
features. Future developments include grain type and colour categorisation. This method opens avenues for high-
throughput genetic or functional studies in the context of plant adaptation to a changing environment.

Keywords:  Zea mays, Maize ear imaging, CNN-based deep learning, Environmental response, Grain set, Grain 
abortion, Maize ear spatial organization
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Introduction
Characterizing genetic resources and their response to 
the environment through accurate measurement of rel-
evant traits is crucial to dissect the genetic bases of crop 

yield [1], and to tailor genotypes adapted to specific cli-
matic scenarios [2]. In maize, yield results from the num-
ber of grains and individual grain size, each of which has 
higher heritability than overall yield [3, 4], present dif-
ferent genetic architectures [5, 6] and result from envi-
ronmental conditions during different phases of the crop 
cycle, namely the vegetative and flowering period for 
grain number and the post-flowering period for individ-
ual grain weight [7]. Sensitivities of grain number to soil 
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water deficit, temperature and light are key parameters in 
the prevision of grain yield in a wide range of environ-
ments [8], thus requiring accurate phenotyping.

Examining the structure of the maize ear provides 
additional insights into deciphering the response of 
grain yield to environmental conditions. Indeed, the 
ear is composed of concentric rings of grains (cohorts) 
initiated simultaneously within each cohort but 
sequentially between cohorts [9] (Fig. 1A, B). While the 
number of grains per cohort is a genetic trait largely 
independent of environmental conditions, the num-
ber of cohorts results from the response to climatic 
scenarios, with genotype-specific responses. Prior to 
flowering, suboptimal conditions reduce the number 
of grains via a reduction in the number of cohorts due 
to a reduced number of initiated ovaries (Moser et al., 
61). Abiotic stresses occurring at flowering result in 
localized ovary and grain abortion involving cohorts 
with delayed development [10] located preferentially 
at the ear apex, with aborted zone increasing with 
stress intensity (Fig. 1C–E). Stress affecting pollination 
(pollen availability or viability) results in a wide vari-
ety of phenotypes characterised by incomplete cohorts 
and erratic cohort numbers (Fig. 1F). Stress occurring 

beyond two weeks after flowering reduces grain size 
[11]. Therefore, a fine characterization of the spatial 
distribution along and around the ear of grain set/
abortion and of grain and ear dimensions appears to 
be a relevant tool to reveal the response of genotypes 
to environmental scenarios.

Ear phenotyping is still largely manual, time-consum-
ing, costly, and subjective [1]. Several methods have been 
developed to extract ear and grain characteristics from 
images [12–14]. They are usually based on manual or 
non-standardized acquisition involving either isolated 
grains after shelling [1, 13–16] or one side of the ear [12, 
15, 17–20]. Thus, the spatial distributions of grain pres-
ence/absence (grain set vs grain abortion) and grain traits 
along and around the ear is usually not, or only partly, 
considered.

Several techniques have been used for ear imaging, 
each providing different advantages and drawbacks. (i) 
Vertical positioning of the ear on a rotating axis allows 
imaging different sides of the ear at specific rotation 
angles [21], 21]. This method is efficient but only consid-
ers one ear at a time and requires time-consuming han-
dling for ear positioning before imaging (1–2  min per 
ear). (ii) Portable imaging systems have been developed, 
directly threaded around the ear in intact field plants, 
imaging simultaneously all ear sides, allowing 3D recon-
structions of the ear [23]. This technique is affordable and 
avoids the need to harvest the ears but involves limited 
throughput because of long ear handling time (husks 
removing, one ear at a time), while being subjected to 
various difficulties related to field conditions. Moreover, 
most of these techniques have been validated with ears 
from standard commercial hybrids with classical prop-
erties (ear and grain shape and colour, regular spatial 
organization), and therefore fail to provide reliable results 
for ears with non-regular patterns, a frequent character-
istic under non-optimal environmental conditions (het-
erogeneity of abortion/set zones and grain dimensions, 
pest, and disease damage).

The aim of this study was to develop a low-cost and 
open-source system capable of producing automated, 
standardized, robust and reliable measurements of phe-
notypic traits of the ear, including the spatial distribu-
tion of grain traits along and around the ear. We tested 
it for genotypes with contrasting ear and grain shape 
and grain texture (e.g., Dent, flint, pop, waxy, flour). The 
method of image acquisition consisted of a custom box in 
which ears are placed horizontally. Motorized rollers are 
used to rotate the ears. In addition to being easy to setup 
and implement, this method is easily scalable for multi-
ple ears at once by multiplying the number of rollers and 
cameras (Fig. 2).
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Fig. 1  Spatial organization of grains reflecting the morphogenesis 
of the ear. The grains are arranged in rings and rows. Each ring 
corresponds to a cohort of organs with synchronous development, 
while a developmental gradient exists between cohorts depending 
on their vertical position along the rows. Floret cohorts are initiated 
sequentially at the ear apex. The oldest cohorts are located at basal 
positions and the youngest at apical positions. A, B Under optimal 
conditions, pollination and fertilization follow the order of silk 
emergence which is illustrated by colors: zone 1 cohorts (blue) are 
fertilized first, followed by zone 2 (green), zone 3 (yellow) and zone 
4 (red). (C–E) Abiotic stresses occurring at flowering induce abortion 
that preferentially affects the youngest apical cohorts in zone 4, 
followed by the basal cohorts. E, F Severe constraints affecting 
pollination (pollen availability or viability) result in a wide variety of 
phenotypes characterized by incomplete cohorts and erratic cohort 
numbers.
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We believe that this method will allow measurement 
of relevant traits in the context of plant adaptation to a 
changing environment and the enrichment of crop gene 
bank knowledge base [24].

Methods
A wide phenotypic diversity to test the robustness 
of the method
The set of ears used in this study was composed of 796 
ears selected from two panels, a ‘biological diversity’ 
panel chosen to represent the diversity of phenotypes 
encountered in production contexts (Fig.  3A), and an 
‘environmental diversity’ panel, chosen to represent the 
phenotypes encountered in response to abiotic con-
straints (soil water deficit) (Fig. 3B).

- The Biological Diversity panel represented 16% of 
the whole set, i.e., 126 ears. Selected ears were of var-
ious shapes (length between 3 and 24 cm and diam-
eter between 2 and 5.5 cm). Grain colours were of all 
existing hues: white, yellow, orange, red, wine, pink, 
purple, blue, black, and brown, including heterogene-
ous ears with multiple colours and pearly, opaque, or 
translucent grains. Grain sizes ranged from 2 mm to 
1  cm with variable shapes depending on their posi-
tion along the ear, from perfectly round to dented or 
flint grains. Finally, the panel explored a diversity of 
grain spatial organization, with a range of number of 
cohorts and number of grains per cohort, and either 
regular or irregular grain organization along the ear.
- The Environmental Diversity panel represented 
84% of the set, i.e., 670 ears. First, a set of 431 ears 
was sampled from a field experiment (INRAE UE-
DIASCOPE, France) under two water treatments: 
321 under well-watered conditions (WW) and 110 
under water deficit (WD). The remaining 234 ears 
were sampled in another experiment under WD 
treatment. For both experiments, water deficit con-
ditions were triggered by stopping irrigation around 
10-leaf stage while continuous irrigation was applied 
for the WW treatment. The combined variability in 
plant phenology and water treatments resulted in a 
wide range of ear phenotypes with various sizes and 
spatial distribution of fertile and aborted zones.

A simple and low‑cost image acquisition system
The ears were imaged with an automaton developed and 
assembled by Phymea Systems (www.​phymea-​syste​ms.​
com—Montpellier, France). Individual ears are manually 
positioned in the system (Fig. 2), which acquires images 
stored in a generic hard drive. Images are uploaded to 
an independent analysis station where the associated 
software is installed for output retrieval. The automaton 
works in independent acquisition sessions to easily sepa-
rate experiments, genotypes or varieties, and treatments. 
The ears or ear lots are individually identified by the 
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B

Fig. 2   Pictures of the Earbox system. A The Earbox acquisition 
system, which allows the simultaneous acquisition of six maize 
ears on six sides via the rotation of the ear by motorized rollers. The 
identification of individual ears or ear lots is done by a keyboard 
or a barcode scanner. The system consists of aluminum profiles, 
compact laminates and assembly parts supplied by Elcom SAS or 
manufactured by Phymea Systems (CNC machining or 3D printing). 
The acquisition system is composed of two Raspberry Pi, each driving 
a Pi NoIR (V2.0) camera module, and a custom-made Arduino like 
board (ATMEGA 328P), to control the lighting and the two stepper 
motors (door and rollers) via two A4988 drivers. The master Rapsberry 
Pi (model 3 B+) hosts the main Python program, which centralizes 
all the functions of the system: the graphical user interface via the 
PyGame library, the control of the slave Rapsberry Pi (model B+) 
via SSH protocol, the communication with the Arduino like board 
for motor control, and the saving of the pictures to an external hard 
drive. B The Earbox system imaging cabin. Polarized lenses are added 
to the Pi Noir cameras. The lighting system consists of flexible LED 
strips in the visible (CRI 90) and infrared (940nm) wavelengths behind 
a frosted polycarbonate diffuser. Rubber strips are added to the rollers 
for optimal adhesion between the rollers and the ears.

http://www.phymea-systems.com
http://www.phymea-systems.com
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keyboard or by a barcode scanner. The analysis software 
was developed to be flexible (retrieval of one or more 
phenotypic traits depending on user’s needs).

To minimize complexity and cost, the acquisition sys-
tem was developed to be as simple and robust as possible. 
It consists of aluminium profiles, compact laminates and 
assembly parts supplied by Elcom SAS (Bourgoin-Jal-
lieu, France) or manufactured by Phymea Systems (CNC 
machining or 3D printed) (Fig.  2A). The focus was on 
developing a flexible system, to be complexified in a sec-
ond step: adapted for specific use cases, for example, to 
harvesting machines. Future development could integrate 
a mirror system to image the whole circumference in less 
time, combined with automatic ear handling and clean-
ing systems. Moreover, for an on-board system, software 
optimisation and recent evolutions of embarked-AI hard-
ware could also be used to enhance the analysis system 
and propose a direct estimation of production.

The system was designed to take multiple images of 
the ear via simultaneous rotations of all ears with motor-
ized rollers. The acquisition system used in this study 
was set with 7 rollers for rotation and imaging of 6 ears 
(Fig. 2B). Rubber bands were added to the top of the roll-
ers to properly drive the ears without slipping. Because 
the rollers have fixed dimensions (5.2 cm diameter) and 
positioning (1  cm spacing), the theoretical ear rotation 

angle was calculated from the ear diameter and roller 
rotation angle and measured in practice by measuring 
the rotation of ears placed manually on the rollers. The 
measured and calculated angles fit strongly for the 4 ears 
tested, representative of the diversity of diameters in the 
whole ear panel (R2 = 0.98; Additional file 1: Fig. S1). We 
defined the number of images to be taken for each ear, 
thus the number of roller rotations, and a fixed roller 
rotation angle that ensured imaging of the whole ear 
circumference while minimizing acquisition time. The 
combination of 6 successive ear images with a roller rota-
tion angle of 58° fulfilled these conditions for the range 
of 2–6 cm ear diameter (Additional file 1: Fig. S1) which 
exceeds the range encountered in both panels.

Developing a normalized method for analysing images 
regardless of ear or grain colour or shape required the 
use of near-infrared imaging. For this purpose, the sys-
tem used Pi NoIR Camera v2 (Raspberry.org) driven by a 
Raspberry Pi to produce two types of images at two wave-
lengths: visible (RGB) and near infrared (IR, 940  nm). 
Two sets of cameras and Raspberry Pi were necessary to 
ensure high resolution images of 6 ears at 6 angles and 
two wavelengths, for a total of twelve images, in less than 
30 s (between 26 and 32 s depending on the images), or 
5 s per ear. A custom Arduino-like board was developed 
to control both the lightning and the two stepper motors 

A B

Examples of scatterred ears

Fig. 3  Representative ears from the biological and environmental diversity panels. A The biological diversity panel is mainly composed of lines 
and partially of non-commercial hybrids, with each ear often being a unique case. B The environmental diversity panel is composed of commercial 
hybrids obtained in an experimental context with biological treatments (well-watered and water deficits) and replications. These ears were selected 
to provide sufficient sampling to scan the full range of phenotypes encountered in a conservation context (A) and a production context (B) from 
optimal to near-zero (scattered ears). Dotted box, examples of scattered ears, which have incomplete cohorts all along the ear. White bar, 2cm.
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(doors and rollers). A master raspberry Pi was set to cen-
tralize all custom functions: host the main python pro-
gram of the user interface developed with the PyGame 
python library, control the slave raspberry Pi via SSH 
protocol, control the Arduino board, and save the images 
to an external hard drive. The entire system was designed 
to be affordable and open source, and costs a total of 
2500 € in equipment and hardware, excluding labour and 
development costs.

Ear peduncles at ear base were cut off prior to image 
acquisition, and husk-free ears were scrubbed and 
cleaned of silks and/or fungi with a brush so that all 
grains were accessible to the camera. The ear cleaning 
procedure appears to be the most variable and time-
consuming, up to 10  s or more for an ear covered with 
fungus. Nevertheless, it is easy to reach a total acquisi-
tion rate of 120–220 ears per hour for a team of 2 peo-
ple, depending on the storage methods, the identification 
method, and the appearance of the ears. In this study, a 

total set of 9492 images (791 ears) were taken from both 
panels, by one person with a rate of 128 ears per hour.

A combination of empirical segmentation and deep 
learning to build a robust routine workflow for ear 
and grain segmentation
RGB and IR images acquired from both panels of ears 
were first pre-processed (Fig.  4A—Ground for deep 
learning) using conventional image analysis tools (dilate, 
open, close, gaussian blur and watershed) and merged to 
normalize the data for all ear and grain colours (Fig.  4, 
Step 1), resulting in a pre-processed image set (4746 
images: 6 images per ear for 791 ears, hereafter referred 
to as the ‘dataset’). The dataset images were then empiri-
cally segmented (Fig. 4, Step 2) and used to train a Deep 
Learning Neural Network (Fig.  4, step 3). Finally, ear 
and grain phenotypic variables were retrieved for both 
ear panels (Fig.  4B—Routine workflow). The ear masks 
were retrieved from the RGB images to estimate the ear 
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Fig. 4  Workflows for training the neural network and generating phenotypic data. A Image processing workflow used to train the learning 
procedure (Groundwork for deep learning). B Image processing workflow used to produce phenotypic data (Routine workflow). Orange box, image 
acquisition. White box, image, or data processing. Green box processed images or data. Numbers in black boxes, steps of development, from first 
image acquisition to phenotypic data.
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phenotypic data (Fig.  4, Step 4). All images were then 
processed with the fitted neural network (Fig. 4, step 5) 
and used to estimate grain phenotypic traits and charac-
terize grain organization on the ear (Fig. 4, Step 6). Data 
are extracted for each individual ear side pictures (6 sides 
per ear) and averaged to represent the whole ear.

The whole data extraction pipeline (from treatment of 
acquired ear images with the EARBOX acquisition sys-
tem to phenotypic variables extraction) was coded in 
MATLAB and Python. The code for the analysis using a 
Graphical User Interface in MATLAB is fully available 
on a public repository (https://​github.​com/​Phymea-​Syste​
ms/​Earbox). It is used in combination with a Python code 
applying the trained neural network to extract the DL2 
images, also available in the same public repository. A 
benchmark test to assess image analysis capabilities was 
performed with parallel computing (using MATLAB 
parallel loop functions, one image per CPU Core) for 
the whole pipeline for all 791 ears from both panels with 
medium capacities laptops:

The first step, ‘ear masking’: validating images pres-
ence, counting ears on each image, comparing to scanned 
user-scanned codes, resizing images, and extracting the 
ear from initial EARBOX images (from 3 ear per image 
to 1 ear per image on a black background) took approxi-
mately 21 secs per ear (Performed on CPU with parallel 
computing: 11th Gen Intel(R) Core(TM) i7-11800H @ 
2.30 GHz—16 Gb Ram).

The second step, ‘Deep Learning’ (DL2): extracting 
the bounding boxes on grains, correcting for overlap-
ping bounding boxes and resizing took approximately 
54 s per ear (Performed on CPU and GPU: AMD Ryzen 7 
3700x—NVIDIA GeForce RTX 1080 Desktop GPU, 8 Gb 
VRAM—32 Gb RAM).

Finally, the extraction of all phenotypic variables, their 
storage in an organized file system and the computing of 
a final visualization for user-verification took approxi-
mately 62 secs per ear, with a variability depending on the 
number of grains on the ear and their organisation (Per-
formed on CPU with parallel computing, 11th Gen Intel 
Core i7-11800H @ 2.30 GHz—16 Gb RAM).

The benchmark showed that, using medium-range 
CPU and GPU capabilities, the pipeline can check, mask, 
extract data from raw images in approximately 137 secs 
per ear. It must be noted that, for all three steps, the 
approximated computing time represent the calcula-
tion and analysis performed 6 times per ear (for the 6 
captured sides). The computational capabilities can be 
greatly increased by using state of the art tools for anal-
ysis but increasing the costs quite rapidly. The analysis, 
as developed, requires relatively little supervision by 
the user and can thus run overnight or outside of work-
ing hours, and is therefore not determinant in the cost 

analysis, allowing for a more efficient use of resources. If 
accounting for data handling and transfer, as a reference 
one can therefore estimate an approximate time of analy-
sis of 38  h for a set of 1000 ears with medium capacity 
hardware, highly scalable.
A ground-truth dataset was built prior to any analysis 
by manually segmenting grains from a set of images from 
79 ears (10% of the dataset; not used to train the Neural 
Network). These ears were randomly selected from each 
category of grain colour and shape based on its frequency 
in the entire dataset. Selected ear images were treated 
manually using adobe photoshop software and a graphic 
tablet to mark grains by surrounding and filling them on 
a mask (on top of the image) and converting this mask 
into a binary image (black and white), similar to the out-
puts of the processing algorithms used.
A preliminary step of empirical segmentation was 
performed and used as an automatic annotation to drive 
deep learning iterations. The architecture of the empiri-
cal segmentation was developed to detect grains for a 
large portion of the dataset, so that all features can be 
learned and improved in Deep Learning run. RGB and 
IR images were processed with an algorithm developed 
by Phymea-Systems (Fig.  4, step 2) using only trial and 
error (using morphological image processing toolkits) to 
produce a grain mask that was precise enough to char-
acterise the grains from images with various colours 
of grains and cob. The images were pre-processed with 
conventional image analysis tools to enhance their qual-
ity and then merged to retrieve complementary con-
trast and shapes. The cross-checking of the two pieces of 
information allowed a precise selection of the grains to 
produce an initial grain segmentation, which was in turn 
corrected by image analysis to refine the grain shapes and 
recover the over-segmented grains.

After this step, the processed images were sorted to 
assess the quality of the output. The output masks were 
scored by two independent individuals to evaluate the 
quality of segmentation with a score from 0 (bad segmen-
tation) to 3 (good segmentation). Ears with uniform grain 
colour, strong colour contrast between cob and grain col-
our and non-scattered grains were mostly correctly seg-
mented, with only minor problems. Most low scores were 
encountered for scattered grains (overly segmented), and 
for ears with similar grain and cob colour, which made it 
more difficult for the algorithm to distinguish.
A deep learning neural network was trained to seg-
ment the grains on ear masks. It is a powerful tool for 
high-throughput plant phenotyping, yielding valuable 
results when large datasets are available [25]. More spe-
cifically, the Mask-RCNN neural network is commonly 
used as a framework for instance segmentation [26]. It 
is a highly flexible, trainable framework that has been 

https://github.com/Phymea-Systems/Earbox
https://github.com/Phymea-Systems/Earbox
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widely validated in many scientific domains, including 
plant science [12, 27–32]. More specific to maize, Kien-
baum et al. [19] have trained mask R-CNN for cob seg-
mentation on images and have highlighted the interest of 
this type of framework over classical image analysis tech-
niques: its robustness and accuracy.

The entire deep learning (DL) framework was coded 
in Python 3 using TensorFlow for in-learning visualisa-
tion [33]. The baseline architecture of the deep learning 
model used in this paper for the kernel segmentation 
is the Mask-RCNN model with a ResNet50 backbone. 
Mask-RCNN is a two-stage model, the first stage called 
Region Proposal Network (RPN) generates object bound-
ing box proposals, then a second stage extracts fea-
ture from each proposal, performs classification, does 
bounding box regression, and in parallel predicts object 
masks. The input layer of this model was adapted to 
receive 4 channel images (RGB + IR) and no pre-trained 
weights were used, it was trained from the ground up on 
the maize dataset. The RPN network was set to use 256 
anchors per image with power-of-2 side length from 8 to 
128 pixels, and a non-max suppression overlap threshold 
of 0.9. The smooth-L1 loss function is used for bound-
ing box proposal, and cross-entropy loss is used for both 
classification and mask prediction. The training was done 
on a subset containing 2226 images, on random 512*512 
pixels crops from original images without resizing, and 
cross-validated on random samples from a separate sub-
set of the complete dataset. The model was trained for 
99 epochs, with 75 cross-validation steps each, and a 
base learning rate of 0.001 with momentum optimization 
(gamma = 0.9). Detection was done on full-scale images 
with the non-max suppression overlap threshold of the 
RPN network set to 0.7.

A set of data augmentation techniques were applied 
prior to learning. Each image was cropped into a set of 
512 by 512 pixels elements on which a random num-
ber (between 0 and 2) of augmentation techniques were 
applied before being introduced into the model. The 
various augmentation transformations were retrieved 
from the ‘imgaug’ package (https://​imgaug.​readt​hedocs.​
io/​en/​latest/): flip up down, flip left right, 90 or 180- or 
270-degree rotation, pixel value multiplication and gauss-
ian blur. Deep Learning iterations involved 33 learning 
epochs with a cross-validation using 75 random images 
unused in the training dataset.

The neural network training (Fig. 4, step 3) included the 
following steps (Additional file 2: Fig. S2). First, empirical 
masks with a mean score equal or greater than 2.5 (2076 
images, 43.7% of the dataset, i.e., 346 ears) were used to 
train the neural network (Additional file  2: Fig. S2, step 
3). The resulting DL1 masks outputs were corrected by 
‘minor’ manual corrections (only ‘click on grains’ to add 

or remove mis detected grains) for 1926 images (92,8% of 
DL1 images, i.e. 321 ears) and ‘major’ corrections (add-
ing grains and reshaping grains for ears with a large num-
ber of missing or mis-segmented grains and/or wrong 
shapes) for the remaining 150 images (7,2% of DL1, i.e. 
25 ears—Additional file 2: Fig. S2, step 4). Second, a set 
of 72 images (12 ears, i.e., 1.5% of the dataset) from ears 
incorrectly segmented in the initial empirical segmen-
tation, were manually corrected in the same way as the 
‘major’ corrections seen above. Corrected images from 
DL1 and initial empirical segmentation were used in a 
second Deep Learning iteration (DL2 Additional file  2: 
Fig. S2, step 5) with 2148 images, i.e., 358 ears (45.3% of 
the dataset).

The ‘mean Average Precision’ (mAP) was used to esti-
mate the quality of the Deep Learning output [34] and 
calculated as defined by the latest evaluation’s techniques 
of the COCO dataset [35]. The literature usually consid-
ers an algorithm to be highly efficient for mAP values of 
0.4.

After several steps of learning, small input image cor-
rection, re-calibration of the neural network parameters, 
the resulting network with fitted weights (DL2) was used 
to extract segmented grains from all acquired images, i.e., 
the dataset (Fig. 4., step 5).

A routine workflow to access and validate phenotypic 
traits and their spatial distribution
Image analysis methods were applied on the segmented 
grains to extract phenotypic data for each trait of inter-
est. To validate this methodology, the set of ears from 
both panels (791 ears) was also described, for each trait, 
by a unique observer to generate a set of manual meas-
urements, to be compared to automatic measurements 
generated by the Earbox system (Additional file  3: Fig. 
S3). Most of the manual measurements were repeated 4 
times around the ear circumference, averaged, and com-
pared to the corresponding automatic measurements. 
The automatic measurements were repeated on each of 
the 6 images taken for each ear, and then averaged to pro-
duce phenotypic data at the ear scale.

The ear dimensions and form were automatically 
acquired with the Earbox from the segmented ear in 
each RGB image (Fig.  5A–C). All measurements were 
referenced to their spatial position according to the two 
axes of the image: the principal axis parallel to the ear 
length (vertical axis, starting from the bottom to the top 
of the ear) and the perpendicular axis (horizontal axis).

The ear mask was reduced to its centre pixel along the 
principal axis of the image (Additional file 4: Fig. S4A) to 
define the central axis of the ear. The ear length was cal-
culated as the number of pixels of this central axis run-
ning from the bottom to the top of the ear. This method 

https://imgaug.readthedocs.io/en/latest/
https://imgaug.readthedocs.io/en/latest/
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corrected for the twisting effect of irregular ear shapes. 
Ear diameter was measured at each pixel along the prin-
cipal axis as the distance between the pixels of the ear 
contour (Fig. 5D–F).

Automatic measurements were tested by comparison 
with manual measurements. Ear length and maximum 
diameter were measured with a ruler and a sliding cali-
per (gauge), respectively. The measured length ranged 
from 3.4 cm to 23.8 cm and the maximum diameter from 
1.9  cm to 5.5  cm, exploring similar variability for both 
panels.

Grains were automatically counted with the Earbox 
from the segmented grains in each image (Fig.  5A–C). 
Grain objects identified by segmentation were ‘shrunk’ 
either to a vertical line (one-pixel width) along the princi-
pal axis (Additional file 4: Fig. S4B) or to a horizontal line 
(one pixel height) along the perpendicular axis (Addi-
tional file  4: Fig. S4C). Horizontal distances between 

objects were corrected by considering each ear section i 
(one pixel height) along the ear axis as a circle of diam-
eter Diameteri (Additional file 5: Fig. S5). The mean dis-
tance Disti between two consecutive vertical lines was 
calculated at each position i along the ear axis.

The number of grains per cohort at position i was esti-
mated by the Earbox as the ratio of the ear perimeter (π 
* Diameteri) to the distance Disti between contiguous 
grains (Fig. 5G–I). The number of cohorts was estimated 
by the Earbox at each horizontal position perpendicu-
lar to the ear axis by counting the number of horizon-
tal lines crossed from the bottom to the top of the ear 
(Additional file 4: Fig. S4C; Additional file 6: Fig. S6). The 
cohorts were incomplete on ear sides, and we considered 
the maximum observed value as the number of cohorts 
in the image (Additional file  6: Fig. S6). The number of 
grains per ear was calculated by the Earbox from the 
number of cohorts and the number of grains per cohort 
measured in the 6 ear images and in the basal, median, 
and apical ear zones. It is derived from a composite cal-
culation performed for each image by averaging: (i) an 
over-estimator considering the number of grains per 
cohort in the median zone of the ear and the maximum 
number of cohorts, and (ii) an under-estimator using 
information from both the number of grains per cohort 
and the mean number of cohorts in each third of the ear. 
The average of these two indicators was identified as the 
most relevant estimator.

Manual measurements related to grain organisation 
were performed manually to be tested against automatic 
measurements. The number of grains per cohort was 
counted at 3 positions along the ear by visually distin-
guishing a basal zone, a median zone, and an apical zone 
(Additional file 3: Fig. S3). It was compared to the mean 
number of grains per cohort averaged over the whole cor-
responding zone defined automatically i.e., basal third, 
median third, and apical third of the ear. The number of 
cohorts was counted on 4 sides of the ear and compared 
to the number of cohorts automatically calculated as an 
average over the 6 images (Additional file 6: Fig. S6). The 
number of grains per ear was counted with an automatic 
counting machine (Contador: Seed counter—Pfeuffer 
GmbH (Quality control of grain and seeds), n.  d.)) after 
removing them from ear cob. Because this measurement 
is destructive, it was only performed on a subset of the 
Environmental Diversity panel (257 ears), to keep enough 
ears intact to test and validate future updates and devel-
opments of the image analysis algorithm.

Grain dimensions were automatically measured 
with the Earbox. Grain height and grain width were 
calculated by fitting each segmented grain to a rectan-
gle: grain height was defined as the fitted dimension 
along the axis of the ear and grain width as the fitted 
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perpendicular dimension (Fig.  5M–R). As mentioned 
above, the horizontal distance (grain width) was cor-
rected to consider the circular shape of the ear sections 
(Additional file 5: Fig. S5).

Automatically measured grain dimensions were con-
fronted to manual measurement. For this purpose, the 
height and width of 809 grains from the images of 9 ref-
erence ears from both panels were manually measured 
on the images generated by Earbox. We only consid-
ered grains located in the centre of the image to avoid 
distortion of grain widths, and performed a grain-by-
grain comparison of dimensions by identifying each 
grain with its barycentre coordinates on the image.

The spatial arrangement of grains in cohorts was 
measured with the Earbox system by assigning each 
segmented grain to a cohort (Additional file 7: Fig. S7). 
To achieve this, the grains were scanned from the bot-
tom to the top of the ear and classified according to 
their relative proximity, which depends on the mean 
size of objects (grains) in the image. More precisely, the 
algorithm starts with the lowest grain in the ear, checks 
the centroids of the grains at half the mean ear grain 
width and assigns the selected grains to the first cohort. 
Previously classified grains are removed for the remain-
der of the analysis and subsequent cohorts of grains 
are iteratively classified in the same way until no grains 
remain. This allowed grain dimensions to be plotted 
against cohort ranking (Fig.  5M–R) which is relevant 
to account for the developmental gradient along the ear 
due to morphogenesis (Fig. 1).

Automatic measurements of grains spatial arrange-
ment were confronted to manual measurements. Each 
grain was manually assigned to a cohort by determining 
its rank along a row, from 1 at the ear bottom to n at 
the ear apex, at 3 positions around the ear.

Finally, an automatic method for abortion zones 
characterization was developed. The abortion zone is 
an area on the ear (inflorescence) for which the ovaries 
(floret) have not produced a grain: hence, they are con-
sidered loss of production areas that are directly visible 
and measurable on the ear (Fig. 1). Grain masks allowed 
discriminating grain pixels from pixels outside the 
grains but within the ear contours. The latter were con-
sidered as corresponding to aborted zones. The grain 
set ratio was calculated for each ear section i (one pixel 
height) along the ear axis as the ratio of the number of 
grain pixels to the number of pixels of ear diameter at 
that section. It was smoothed by a running average over 
2% of the total vertical pixels to make it less sensitive to 
high variations (Fig. 5J–L). At the ear level, we consid-
ered the zones with grain set ratio greater than 50% as 
fertile zones and the others as aborted zones. When no 

fertile zone was detected, its length was set to 0 and the 
apical and basal aborted zones were each set to half of 
the total ear length.

The automatic method of abortion characterization 
was tested against manual measurements. The dimen-
sions of the aborted and fertile zones were visually 
positioned and measured manually with a ruler to rep-
resent the approximate positions at which the cohort 
abortion rate was greater (aborted zone) or lower (fer-
tile zone) than 50%.

Results
A high‑quality segmentation allowed for reliable trait 
measurements
The masks computed with the trained neural network 
provided a standardized and reliable method for ear 
and grain segmentation on the whole set of acquired 
images. The mean average precision metric (mAP) 
used to assess the quality of segmentation with manu-
ally segmented images was 0.4 for Empirical Segmenta-
tion (ES) masks and 0.52 and 0.55 for Deep Learning 
DL1 and DL2 results, respectively. The ES masks had 
an acceptable value above the standard threshold, while 
both DL1 and DL2 iterations improved the indicator. In 
addition to validating the quality of the segmentation, 
these results also show an overall improvement at each 
step, highlighting their importance in the method. The 
high-quality segmentation obtained for a wide diversity 
of ear and grain phenotypes allows the production of 
comparable, standardized, and automatic data for both 
studied panels, composed of ears as different as small 
horny strawberry-shaped, and dented commercial 
hybrids.

The use of Neural Networks for Deep Learning is a 
powerful tool for image analysis, commonly used for 
plant phenotyping, both for morphological measure-
ments and feature classification. The downside of our 
method is its requirement for annotated images that 
are difficult to acquire and analyse: they involve time-
consuming annotation work, often performed manu-
ally. To overcome this, we chose an empirical approach 
using simple image analysis tools to produce a set of 
automatically annotated ear images with little time-
input (avoiding manual annotation of the whole set 
of pre-processed images) to be used for deep learning 
iterations. The resulting empirical masks were used 
to train a Neural Network. Indeed, this is a direct and 
efficient mean to synthesize the best information while 
potentially improving the outputs. Furthermore, it pro-
vides a straightforward and efficient way to improve 
the analysis system if needed, by adding information 
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through new segmented masks from previously unac-
counted-for diversity.

Ear dimensions and shape, fertile and aborted zones
The automatic measurements of ear length and ear 
diameter were accurate. The linear regressions with the 
manual measurements closely fit to the bisector for both 
variables: respectively R2 = 0.99, RMSE = 0.44 cm for ear 

length; and R2 = 0.97, RMSE = 0.15  cm for ear diameter 
(Fig. 6A, B). The small differences may be due to differ-
ences in methodology: the automatic algorithm measured 
the ear length with the joined line of the central pixels 
of the ear (usually not a straight line) while the manual 
measurement was a straight-line measurement. Since 
most ears are curvilinear, the automatic measurement 
appears to be more accurate in describing the diversity 
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of ear shapes. For the same reasons, the algorithm might 
also be more accurate in determining the maximum ear 
diameter, which was inferred via an algorithm, rather 
than visually. Moreover, the accurate measurements of 
the algorithm at each pixel along the image (Fig. 5D–F) 
provide access to new variables describing ear shape, 
such as ear diameter along the ear and centreline curva-
ture, to be investigated and explored for new avenues of 
comparison between phenotypes and varieties.

Promising results were obtained towards a standard-
ized way of characterising maize ear abortion. Compari-
son of automatic and manual data for fertile and aborted 
zones (fertile zone: Fig.  6C; apical and basal abortion 
zones: Additional file 8: Fig. S8C and S8D) indicates good 
agreement between them, especially for the fertile zone 
length (R2 = 0.93, RMSE = 1.47  cm; Fig.  6C). A discrep-
ancy appears in the case of scattered ears (empty dots; 
Additional file 8: Fig. S8C and 8D) for which a precise vis-
ual positioning of the zones is difficult because the grains 
are randomly scattered along length and circumference 
of the ear (Additional file 6: Fig. S6). In these cases, the 
automatic method is probably more relevant, as it uses 
a common and accurate rule for all ear types. Moreover, 
characterization at each vertical pixel provides informa-
tion on the spatial distribution of abortion and grain set 
along the ear (Fig.  5J–L), inaccessible by conventional 
methods.

Grain counting
The spatial organisation of grains along the ear meas-
ured with the automatic method was both accurate and 
trustworthy, even for scattered ears. First, for the num-
ber of grains per cohort, the manual and automatic esti-
mators were highly correlated in the median (R2 = 0.88, 
RMSE = 1.69 grains; Fig.  6D) and basal zone (R2 = 0.87, 
RMSE = 2.07 grains; Additional file 8: Fig. S8A), and less 
correlated in the apical zone (R2 = 0.68, RMSE = 3.43 
grains; Additional file  8: Fig. S8B). Most of the discrep-
ancies are due to scattered ears (empty dots in Fig.  6 
and Additional file  8: Fig. S8) i.e., ears with incomplete 
cohorts, making the cohort identification uncertain and, 
as a result, counting their grain number difficult (Fig. 3B; 
Additional file 3: Fig. S3, scattered ear). Earbox data tend 
to be more objective and closer to the true average num-
ber, as they incorporate information from the entire api-
cal zone, whereas manual estimates can be considered 
more subjective where abortion was high (empty dots in 
Fig. 6D and Additional file 8: Fig. S8A and B). In addition, 
the Earbox data provide access to the vertical distribution 
of this variable (Fig. 5G–I).

Manual and automatic measurements were also highly 
correlated for the number of cohorts (Fig. 6E, R2 = 0.97, 
RMSE = 2.6 cohorts), even for scattered ears.

The number of grains per ear was highly variable, 
ranging from almost 0 to about 700 grains per ear 
(Fig. 6F). The Earbox estimator of the number of grains 
per ear, which considers the number of cohorts and 
the number of grains per cohort, was highly correlated 
with the Contador measurement (Fig.  6F; R2 = 0.99, 
RMSE = 19.95 grains). These results validate the poten-
tial of the whole system to be used under both optimal 
and constraining conditions and for the study of the 
determinism of grain number in maize and its response 
to the environment.

Grain dimensions and spatial positions: a potential 
framework for studying developmental gradients
The method adequately estimates grain dimensions 
(Fig.  6G, H), ranging from 0.3 to 1.3  cm wide (Fig.  6G) 
and 0.1 to 0.9 cm high (Fig. 6H) in both panels. The corre-
lation between manual and automatic measurements was 
indeed high for grain width (R2 = 0.88, RMSE = 0.08 cm; 
Fig.  6G), and slightly lower for grain height (R2 = 0.67, 
RMSE = 0.07 cm; Fig. 6H). The slight differences may be 
due to the narrower range of variation observed for grain 
height versus grain width in the training dataset, which 
can be easily addressed with further Deep Learning itera-
tions with suitable datasets. Most of the noise comes 
from isolated grains on scattered ears that tend to have a 
more circular shape when space is available around them 
(examples Fig. 3B), which could be easily resolved with an 
increase in the proportion of data or an individual train-
ing for scattered ears. Nevertheless, the results indicate 
that the method correctly positions the grain barycen-
tre and properly captures shape variations between and 
within ears.

Automatic and manual measurements were consistent 
in assigning a cohort number to each grain, i.e., its verti-
cal positioning along ear rows (Fig. 6I). Manual and auto-
matic grain cohort numbers were highly correlated in the 
809-grains sample set (R2 = 0.98, RMSE = 2.58 grains), 
indicating that the grains were properly located in the 
spatial organisation of the ear.

Thus, the system was able to characterize and discrimi-
nate a large variability in grain dimensions (width and 
height) and shapes (width/height ratio) among the stud-
ied ears (Additional file  9: Fig. S9), potentially allowing 
a reliable characterisation of genotypes based on these 
traits. In addition, by gathering grains into cohorts with 
synchronous development, the method gives access to 
the distribution of grain dimensions along developmen-
tal gradients. These distributions differ among ears: they 
are almost flat, decrease at different rates, or display a 
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maximum at different vertical positions (Additional file 9: 
Fig. S9). Since developmental gradients are relevant to 
ear morphogenesis, they provide a framework for study 
and analysing the determinism of grain dimensions and, 
consequently, grain filling and weight.

The spatial distribution of abortion reveals plant response 
to stress
The grain set ratio (GSR) emerged as a synthetic trait 
characterizing the response to environmental scenarios 
(Fig. 7). GSR profiles, i.e., grain set ratio as a function of 
vertical position along the ear axis, were established for 
the environmental diversity panel grown under contrast-
ing soil water availability during flowering (665 ears). We 
performed an a priori-free analysis of all these profiles, 
using a clustering algorithm (k-means), only based on 
these GSR profiles, independent of other ear variables. 

Precisely, for the analysis to be independent of absolute 
ear length variations between ears, vertical positions 
along ear of GSR values were normalized by ear length 
(dividing absolute values in cm by ear length to use val-
ues between 0 and 1 for all ears), and averaged for all 
sides of each ear.

All curves were processed using Euclidean distance 
matrix and ward method to generate a cluster tree syn-
thetizing the similarities between ears and finally dis-
criminating ears into 5 clusters with increasing intensity 
of abortion from cluster 1 to cluster 5 (Fig. 7A, D). Clus-
ter 1 coincided with ears with no or limited abortion. 
Abortion was limited to the apical zone of ears in cluster 
2 and extended to the basal zone in cluster 3. The apical 
and basal aborted zones were wider in cluster 4, whereas 
they extended to the entire vertical profile of the ears 
from cluster 5. The progress of abortion from cluster 1 
to cluster 5 followed the reverse order of silk emergence, 
which is reported in the literature as the main predictor 
of ovary/grain abortion frequency in response to con-
straints during flowering (Fig.  1 and [10]. The distribu-
tion of well-watered and water-stressed plants among 
clusters also indicated an increasing impact of stress 
from cluster 1 to cluster 5. Well-watered plants mainly 
belonged to cluster 1, and barely to clusters 2 and 3, 
whereas water-stressed plants mainly belong to clusters 
3 to 5 (Fig. 7B). Moreover, the average ear length for each 
cluster decreased from cluster 1 to cluster 5 (Highly sig-
nificant, p-value < 0.001 for One-Way ANOVA, detailed 
in Additional file  10: Table  S1) whereas it was not con-
sidered as a factor for cluster calculation, not explicitly 
included in the k-means sorting algorithm (Fig. 7C).

Discussion
A robust phenotyping pipeline to evaluate biological 
resources, complementary to existing procedures
The phenotyping pipeline developed and presented in 
this study (hardware and software) was able to accurately 
characterize, independently of the colour, shape, or trans-
parency of grains and ears: the shape and dimensions of 
the ear, the number of grains and their spatial organisa-
tion, and the dimensions of the grains along the ear. The 
data were very similar to conventional manual data, with 
a much lower acquisition time.

Compared to existing systems for maize ear handling 
and phenotyping [21, 21], the EARBOX system has the 
advantage of imaging multiple ears at a time while greatly 
reducing data acquisition time per ear and being scalable 
to more ears by increasing the number of cameras and 
rollers (but increasing costs). Considering an acquisition 
time of 15 s per ear (cleaning and imaging), it is greatly 
enhanced from comparable systems for which informa-
tion is available in the literature: one minute per ear [21] 
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and Warman, 2021). The choice of imaging 6 sides of the 
ear has been tested and proven trustworthy in this study 
for a precise measurement but could be reconsidered in 
case where faster acquisition time and less precision can 
be needed, that would greatly increase the throughput, 
comparable to single imaging systems [17, 19]. Nonethe-
less, IR images being a basis of the analysis to normalize 
ear and grain colors, the pipeline developed and pre-
sented in this study cannot be used as is to extract pheno-
typic variables from simpler RGB imaging systems alone 
(ex: smartphone pictures taken in the field with common 
RGB cameras). For the analysis and variable extractions, 
most pipelines do not extract as much information as the 
EARBOX system from non-destructive analysis of ears 
and yield better results, but with non-comparable hard-
ware (A few seconds for both [15] and [19]. The bench-
mark done in this study shows that affordable laptop 
hardware (~ 1500 euros) can be used to extract masks 
and phenotypic variables from data acquired with the 
EARBOX with reasonable computing time (~ 2  min per 
ear). This can be greatly enhanced if ran on GPU clusters, 
but those usually require more technical expertise, stable 
internet access and recurring payments, not necessarily 
possible and accessible in all phenotyping laboratories.

The system developed here can also be distinguished by 
the phenotypic variability used to develop, train, and test 
its robustness. Most studies focus on specific colors and 
types of ears and grains [1, 21] while a few explore a vari-
ability on commercial hybrids and various ear, grain and 
cob colors [13, 15, 19, 22], or abortion phenotypes [12], 
but none investigate the whole range of these possibili-
ties, specifically from water deficits at flowering coupled 
with cases of biotic stresses with one model training. The 
development of methods that allow to treat both healthy 
ears and ears suffering from drought or diseases is an 
important step forward to produce efficient selection and 
research tools for field application to tackle the image 
analysis bottleneck of phenomics [36].

In addition to this, the system provides new traits, 
inaccessible by conventional methods, especially grain 
dimensions as a function of the grain cohort number, rel-
evant to ear morphogenesis, and the distribution of abor-
tion frequency along the ear, relevant to plant response to 
stress. Analysis of the genetic bases of these traits could 
enlighten the role and regulation of crucial genes deter-
mining ear phenotype and grain organisation, as well as 
their response to the environment. This could lead to 
new breeding traits responding to climatic challenges, 
which could be used in marker-assisted selection. Adding 
to our system an automated and standardized calculation 
of standard qualitative descriptors of maize cultivars, 
such as the conicity of the ear or, for the grains, their 
shape, type, colour, or organization on the ear (GEVES 

or UPOV technical documentation) would only require 
simple general statistical classification methods based on 
machine learning or deep learning. Our methodology is 
also complementary to other methods used for varietal 
description, such as cross-sections or ear deseeding, to 
characterize the cob, or the morphology of the grains 
and their physiological characteristics [37, 38], involving 
robotics for ear and grain handling [39]. Its relative sim-
plicity and flexibility allow easy adaptation of the ear pro-
cessing line to integrate the Earbox phenotyping solution 
before ear deseeding and grain phenotyping.

Finally, while the panel used in this study was specifi-
cally defined to capture much of the existing phenotypic 
variability encountered for maize, the ability of the pipe-
line to handle unseen or new phenotypes could be dis-
cussed. This kind of limitation can be easily overcome 
by first testing the system as it is and reapplying the 
learning logic if the results are not satisfactory. In such 
a case, great attention should be applied to reworking 
the ratio of the various ear types and grains (colors and 
shapes) so as not to unbalance the learning specifically 
towards one overrepresented type. It would be necessary 
to bring both annotated image data and hand-measured 
phenotypic variables to enrich the existing data and test 
the outputs under appropriate experimental conditions. 
The first developed ‘empirical segmentation’ presented 
in this study could be of great use for a first iteration of 
ground truth to be corrected afterwards, to avoid time-
consuming annotations and focus more efforts on model 
training.

Contribution to the analysis of adaptation/tolerance 
to environmental scenarios in combination with crop 
models
The new features obtained by the phenotyping pipeline 
open new avenues in the characterisation of maize grain 
yield formation in response to genetic and/or environ-
mental factors. In particular, the spatial distribution of 
the grain set ratio appears to be a marker of the dynamics 
of silk emergence and ovary/grain abortion, a major com-
ponent of the plant’s response to environmental scenar-
ios [2, 10]. Consistent with the literature [10, 40–42] our 
results (Fig. 7) suggest that the measurement of this vari-
able potentially provides a high-throughput proxy for the 
complex processes involved in ear morphogenesis (rate 
and number of ovary initiations, growth rates of silks 
and pollen tube, development of the husks). This would 
greatly facilitate ecophysiological studies of the mecha-
nisms determining yield components and their response 
to the environment.

Yield losses in maize are most pronounced when stress 
occurs around flowering [43, 44] affecting grain number 
determination. Reproductive failure has different faces 
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and can manifest as ear barrenness, incomplete ear pol-
lination due to lack of pollen, and grain abortion [10, 
45–47]. The effects of the timing of stressful conditions 
and the pattern of zygote development along the ear 
row (successive cohorts) determine the nature of the ear 
phenotype associated with reproductive failure [9]. In 
this sense, the ear phenotype can tell whether the crop 
experienced a stressful scenario and give some clues 
about the timing of the stressful condition. However, its 
implementation in plant genetics is difficult or impossi-
ble due to the size of studied panels of genotypes and/or 
to the number of traits resulting from stress x phenology 
combinations. The Earbox system presented in this study 
answers this bottleneck by providing standardized and 
high-throughput traits measurement. Furthermore, such 
a development paves the way towards new analyses to 
understand the interaction between genotype and envi-
ronment in the context of water deficit for maize. While 
many efforts have been made to study the dynamics of 
water deficit related to phenology, [48, 49], less progress 
has been made to study its genotypic variability under 
drought scenarios [9]. As such, additional investigations 
provide insights to link the observed phenotype at har-
vest with events occurring at flowering, thus helping in 
the identification of varieties best adapted to a specific 
water deficit scenario.

Conclusion
The system developed and presented in this study is a 
scalable system providing an accurate, robust, and reli-
able way to extract precise measurements from maize ear 
images, including spatial features of grain organization. 
This work illustrates, like many others  [50–54], the pos-
sibilities and the efficiency that open-source technologies 
and low-cost electronics now offer to plant science. They 
make accurate phenotyping accessible to everyone. In the 
case of the Earbox, even research structures with limited 
resources, farmer cooperatives, or multi-site research 
projects (limited by multiple observers and non-stand-
ardized methodologies), can claim reliable and reproduc-
ible ear phenotyping data with a system that can be easily 
modified to be integrated into complete ear and grain 
processing chains. For example, cameras can be replaced 
for higher resolutions or multispectral acquisition for 
characterization of grain physiology [31, 32, 55–59]. 
Additional steps of deep learning would probably be suf-
ficient to develop a method for the recognizing and clas-
sifying of maize diseases [60, 31, 32], or for characterising 
early grain development, by processing immature ears 
and grains a few days after flowering. Finally, the results 
of this work pave the way for future development of tools 
for inflorescence phenotyping of other crops, such as 

wheat and sunflower, for which the present system will be 
adapted.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13007-​022-​00925-8.

Additional file 1 Fig. S1. Choice of ear rotation angle based on Earbox 
specifications. (A) Heatmap of the theoretical cumulative ear percentage 
seen in all 6 images for roller rotation angles between 0° and 360° and 
diameters between 2cm and 6cm. Values are calculated assuming 120° 
of the ear circumferences is captured in each image. The dotted line rep-
resents the selected roller rotation angle, for which no critical diameter is 
encountered, capturing 100% of the information from each ear. (B) Match 
between theoritical and measured rotation angle for a set of ears chosen 
to represent diameter diversity in maize. Dots: measured and theoritical 
rotation angles. Colors: ear diameters. Dotted line: y = x. Solid line: linear 
regression. R²: correlation coefficient between x and y values, RMSE: root 
mean square error.

Additional file 2 Fig. S2. Steps of the deep learning iteration workflow. 
(A) Steps of the deep learning (DL) workflow and (B,C,D) example images 
used for 3 typical ears representing the problems encountered and the 
manual correction performed. (B) Typical ear with good empirical grain 
masks used directly for training the first iteration of deep learning (B2) and 
requiring minimum manual corrections (B3 to B4) to produce the routine 
segmentation method (B5). (C, D) Typical ears with false detections and 
erroneous grain segmentations from the empirical segmentation (C2, 
D2) and requiring major manual corrections (step 3 to 4) used for training 
the second deep learning iteration to produce the routine segmentation 
method (C5, D5). Orange boxes, image acquisition. White boxes, image, 
or data processing. Green boxes processed images or data. Green areas, 
manual grain mask corrections.

Additional file 3 Fig. S3. Methodology for manual phenotyping of 
maize ears. (A) Sample ear from the biological diversity panel. (B) Sample 
ear from the environmental diversity panel grown under water deficit 
conditions showing partial pollination and/or ovary and grain abortion. 
Red areas: example of grains used for manual phenotyping of basal (BGC), 
median (MGC) and apical (AGC) number of grains per cohort, particularly 
difficult to characterize on "scattered" ears. To standardize the measure-
ment, the method consisted in counting the number of rows (= lines 
of grains along the ear perpendicular to the cohorts) with at least one 
grain per row for each third of the ear. Green areas: example of grains 
used for manual phenotyping of the average number of cohorts per ear 
(CN). The measurement was repeated 4 times around the ear. White zone: 
fertile zone of the ear (FZ), where the surface occupied by grains visually 
represents more than 50% of the visible surface of the ear. Grey zones: 
basal (BA) and apical (AA) abortion zones, where the surface occupied by 
grains visually represents less than 50% of the visible surface of the ear. 
The lengths of the FZ, BA, and AA zones were measured manually along 
the main axis of the ear.

Additional file 4 Fig. S4. (A) Illustration for 3 ears of the processing 
used to extract ear length from ear masks. The black line represents the 
centerline of pixels along the main axis of the ear (vertical axis, starting 
from the bottom to the top of the ear), the measured ear length is the 
number of pixels in this line. (B) Illustration of the processing procedure 
to calculate the number of grains per cohort. Grain objects were reduced 
to a one-pixel wide vertical line along the principal axis. (C) Illustration of 
the processing procedure to calculate the number of grain cohorts. Grain 
objects were reduced to a one-pixel wide horizontal line along the ear 
axis perpendicular to the principal axis.

Additional file 5 Fig. S5. Illustration of the image correction applied 
to project the distances and positions of the reference points onto a hypo-
thetical circular section of the ear. Orange circle, boundaries of the ear. 
The reference image measurement (dref ) is corrected using the horizontal 
distances measured between its extreme reference points (black dots) 
and the center of the ear (dmax and dmin). The final corrected measured 

https://doi.org/10.1186/s13007-022-00925-8
https://doi.org/10.1186/s13007-022-00925-8


Page 15 of 17Oury et al. Plant Methods           (2022) 18:96 	

is an estimate of the length of the arc resulting from the projection of dref 
onto a hypothetical perfect circle of radius (Rear).

Additional file 6 Fig. S6. Output of the estimation of the number of 
cohorts along the perpendicular ear axis. For each position along the 
ear diameter (x), the number of cohorts (y) is calculated for each ear 
shown in Fig. 5 with the methodology presented in Supplementary Fig. 
S3. Black line, ear with white grains; red line, ear with vine grains; golden 
line, aborted ear with yellow grains. Dotted lines represent the maximum 
number of cohorts for each curve. The maximum number of cohorts is 
used as the output of the routine workflow and its average over the 6 ear 
sides is used for the correlation in Fig. 6. Each curve represents data from a 
single image/ear side.

Additional file 7 Fig. S7. Illustration of the cohort classification algorithm. 
Grains are classified in cohorts (each identified by a color) by scanning 
the ear from bottom to top starting with the lowest grain (bold black dots 
on the barycenter). The classification is done sequentially, one cohort 
at a time. For each cohort, grains whose barycenter lie within a specific 
range of pixels along the main axis of the ear are classified into a common 
cohort, and removed for the rest of the classification process. Black dots: 
grain barycenter’s. Colors: grains classified in the same cohort.

Additional file 8 Fig. S8. Comparison of Earbox (y) and reference (x) data. 
(A) Number of grains per cohort in the basal third. (B) Number of grains 
per cohort in the apical third. (C) Length of the basal aborted zone in 
centimeters. (D) Length of the apical aborted zone in centimeters. Green 
dots: ears from biological diversity panel; red dots: ears from environmen-
tal diversity panel. Empty red dots: scattered ears of the environmental 
diversity panel (Fig.3B). Grey line: bisector line. Black line: linear regression 
of data. R²: correlation coefficient between x and y values, RMSE: root 
mean square error, n: number of observations in each graph.

Additional file 9 Fig. 9. Examples of grain dimensions as a function of 
cohort and position along the ear across 9 contrasting ears. Each point 
represents the average dimension of all grains classified in the same 
cohort (Fig. 5P, 5Q, 5R) across the 6 sides (images) of the ear. Red dots, 
average grain height in centimeters. Green dots, average grain width in 
centimeters. Error bars, standard deviation. Errors for position from ear 
base are shown but are smaller than the dots.

Additional file 10 Table S1. Results of ANOVA testing the effect of 
Clusters of hydric conditions on mean ear length. The table was calculated 
using SPSS Software’s function ‘1-factor ANOVA’. Columns contain the 
values for Sum of squares, degrees of freedom (DF), Observed Fischer 
coefficient (Fobs) and the calculated significance, for between Groups 
(clusters) and inside groups (clusters) tests.
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