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Abstract

Oilseed rape 73496 was developed to confer tolerance to the herbicidal active substance glyphosate
through the expression of the glyphosate acetyltransferase protein GAT4621. The molecular
characterisation data and bioinformatic analyses identify no issues requiring food/feed safety
assessment. None of the identified differences between oilseed rape 73496 and its conventional
counterpart in the agronomic/phenotypic endpoints tested needs further assessment. Differences
identified in seed composition of oilseed rape 73496 as compared to its conventional counterpart raise
no safety and nutritional concerns in the context of the scope of this application. No safety concerns
are identified regarding toxicity and allergenicity of the GAT4621 protein as expressed in oilseed rape
73496. No evidence is found that the genetic modification would change the overall allergenicity of
oilseed rape 73496. Based on the outcome of the comparative and nutritional assessments, the
consumption of oilseed rape 73496 does not represent any nutritional concern, in the context of the
scope of this application. The implementation of a post-market monitoring plan is recommended to
confirm the predicted consumption data and to verify that the conditions of use are those considered
during the pre-market risk assessment. In the case of accidental release of viable oilseed rape 73496
seeds into the environment, oilseed rape 73496 would not raise environmental safety concerns. The
post-market environmental monitoring plan and reporting intervals are in line with the intended uses
of oilseed rape 73496. The GMO Panel concludes that oilseed rape 73496, as described in this
application, is as safe as its conventional counterpart and the non-genetically modified oilseed rape
reference varieties tested with respect to potential effects on human and animal health and the
environment.
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Summary

The scope of application EFSA-GMO-NL-2012-109 is for food and feed uses, import and processing
of the genetically modified (GM) herbicide tolerant oilseed rape 73496 within the European Union (EU).

In the present scientific opinion, the scientific Panel on Genetically Modified Organisms of the
European Food Safety Authority (EFSA) (hereafter referred to as the ‘GMO Panel’) reports the outcome
of its risk assessment of oilseed rape 73496 according to the scope as defined in application EFSA-
GMO-NL-2012-109. The GMO Panel conducted the assessment of oilseed rape 73496 in line with the
principles described in Regulation (EC) No 1829/2003 and its applicable guidelines for the risk
assessment of food and feed from GM plants, including their environmental risk assessment.

The molecular characterisation data establish that oilseed rape 73496 contains a single insert
consisting of one copy of the gat4621 expression cassette, expressing the GAT4621 protein conferring
tolerance to the herbicidal active substance glyphosate. Upon transformation, a region of chromosome
C02 was potentially inverted and a putative tpt gene interrupted. The relevance of the gene
interruption and potential chromosomal inversion for the risk assessment of oilseed rape 73496 is
addressed. Bioinformatic analyses of the sequences encoding the newly expressed protein and open
reading frames (ORFs) present within the insert or spanning the junctions between the insert and
genomic DNA do not raise any safety concerns. The stability of the inserted DNA and introduced trait
is confirmed over several generations. The levels of the GAT4621 protein were obtained and reported
adequately. The protein characterisation data of the plant- and microbe-produced GAT4621 protein
indicate that both proteins are equivalent and thus that the microbial-derived protein (two batches)
can be used in safety studies.

None of the identified differences between oilseed rape 73496 and its conventional counterpart in
the agronomic/phenotypic endpoints tested needs further assessment. Among the differences
identified in seed composition between oilseed rape 73496 and its conventional counterpart, the levels
of N-acetylaspartate, N-acetylglutamate, N-acetylthreonine, free amino acid glycine, crude fibre, crude
fat, acid detergent fibre, neutral detergent fibre, magnesium, pyridoxine, pantothenic acid and 4-
hydroxyglucobrassicin were further assessed and found to raise no safety and nutritional concerns in
the context of the scope of this application. No safety concerns are identified regarding the toxicity
and allergenicity of the GAT4621 protein as expressed in oilseed rape 73496. No evidence is found
that the genetic modification would change the overall allergenicity of oilseed rape 73496. Based on
the outcome of the comparative and nutritional assessments, the consumption of oilseed rape 73496
does not represent any nutritional concern, in the context of the scope of this application.

The implementation of a post-market monitoring plan is recommended to confirm the predicted
consumption data and to verify that the conditions of use are those considered during the pre-market
risk assessment.

Considering the introduced trait, the outcome of the agronomic and phenotypic analysis and the
routes and levels of exposure, oilseed rape 73496 would not raise safety concerns in the case of
accidental release of viable GM oilseed rape seeds into the environment.

The post-market environmental monitoring plan and reporting intervals are in line with the intended
uses of oilseed rape 73496.

The GMO Panel concludes that oilseed rape 73496, as described in this application, is as safe as its
conventional counterpart and the non-GM oilseed rape reference varieties tested with respect to
potential effects on human and animal health and the environment.
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1. Introduction

The scope of application EFSA-GMO-NL-2012-109 is for food and feed uses, import and processing
of the genetically modified (GM) herbicide tolerant oilseed rape 73496 within the European Union (EU).

1.1. Background

On 24 May 2012, the European Food Safety Authority (EFSA) received from the Competent
Authority of the Netherlands the application EFSA-GMO-NL-2012-109 for authorisation of herbicide
tolerant oilseed rape 73496 (Unique Identifier DP-Ø73496-4), submitted by Pioneer Hi-Bred
International (hereafter referred to as ‘the applicant’) within the framework of Regulation (EC) No
1829/20031.

Following receipt of application EFSA-GMO-NL-2012-109, EFSA informed EU Member States and the
European Commission, and made the application available to them. Simultaneously, EFSA published
the summary of the application.2

EFSA checked the application for compliance with the relevant requirements of its guidance
documents (see Section 2.2), and, when needed, asked the applicant to supplement the initial
application. On 4 December 2012, EFSA declared the application valid.

From validity date, EFSA and its scientific Panel on Genetically Modified Organisms (hereafter
referred to as ‘the GMO Panel’) endeavoured to respect a time limit of 6 months to issue a scientific
opinion on application EFSA-GMO-NL-2012-109. Such time limit was extended whenever EFSA and/or
its GMO Panel requested supplementary information to the applicant. According to Regulation (EC) No
1829/2003, any supplementary information provided by the applicant during the risk assessment was
made available to EU Member States and the European Commission (for further details, see the
section ‘Documentation as provided to EFSA’).

In accordance with Regulation (EC) No 1829/2003, EFSA consulted the nominated risk assessment
bodies of EU Member States, including national Competent Authorities within the meaning of Directive
2001/18/EC3. The EU Member States had 3 months to make their opinion known on application EFSA-
GMO-NL-2012-109 as of date of validity.

1.2. Terms of Reference as provided by the requestor

According to Articles 6 and 18 of Regulation (EC) No 1829/2003, EFSA and its GMO Panel were
requested to carry out a scientific risk assessment of oilseed rape 73496 in the context of its scope as
defined in application EFSA-GMO-NL-2012-109.

According to Regulation (EC) No 1829/2003, this scientific opinion is to be seen as the report
requested under Articles 6(6) and 18(6) of that Regulation, and thus will be part of the EFSA overall
opinion in accordance with Articles 6(5) and 18(5).

The relevant information is made available in OpenEFSA including the information required under
Annex II to the Cartagena Protocol; a labelling proposal; a post-market environmental monitoring
(PMEM) plan as provided by the applicant; and the method(s), validated by the Community reference
laboratory, for detection, including sampling, identification of the transformation event in the food/feed
and/or foods/feeds produced from it and the appropriate reference materials.4

2. Data and methodologies

2.1. Data

The GMO Panel based its scientific risk assessment of oilseed rape 73496 on the valid application
EFSA-GMO-NL-2012-109, additional information provided by the applicant during the risk assessment,
relevant scientific comments submitted by EU Member States and relevant peer-reviewed scientific
publications.

1 Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified
food and feed. OJ L 268, 18.10.2003, p. 1–23.

2 Available online: https://open.efsa.europa.eu/questions/EFSA-Q-2012-00617
3 Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the
environment of genetically modified organisms and repealing Council Directive 90/220/EEC. OJ L 106, 12.3.2001, p. 1–38.

4 https://open.efsa.europa.eu/questions/EFSA-Q-2012-00617
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2.2. Methodologies

The GMO Panel carried out a scientific risk assessment of oilseed rape 73496 for food and feed uses,
import and processing in accordance with Articles 6(6) and 18(6) of Regulation (EC) No 1829/2003. The
GMO Panel took into account the appropriate principles described in its applicable guidelines (i.e. EFSA
GMO Panel, 2010a,b,c, 2011a,b) and explanatory notes (i.e. EFSA, 2014, 2017a,b) for the risk
assessment of food and feed from GM plants, including their environmental risk assessment.

For the assessment of 90-day animal feeding study, the GMO Panel took into account the criteria
reported in the EFSA Scientific Committee guidance on conducting repeated-dose 90-day oral toxicity
study in rodents on whole food/feed (EFSA Scientific Committee, 2011) and the explanatory statement
for its applicability (EFSA, 2014).

The GMO Panel also assessed the applicant’s literature searches in accordance with the principles
outlined in EFSA (2010, 2017a). In the frame of the contracts OC/EFSA/GMO/2013/01 and OC/EFSA/
GMO/2014/01, contractors performed preparatory work and delivered reports on the methods
applied by the applicant in performing bioinformatic and statistical analyses and toxicological studies,
respectively.

3. Assessment

3.1. Molecular characterisation

3.1.1. Transformation process and vector constructs5

Oilseed rape 73496 was developed by biolistic transformation of microspores of oilseed rape
(Brassica napus L.) line 1822B with a HindIII/NotI fragment named PHP28181A from plasmid
PHP28181.

The PHP28181A fragment contains the gat4621 (glyphosate acetyl transferase) expression cassette,
containing the following genetic elements: the polyubiquitin (UBQ10) promoter of Arabidopsis thaliana;
the gat4621 gene; and the 30 terminator sequence of a gene encoding the proteinase inhibitor II (pinII
terminator) of Solanum tuberosum. The gat4621 gene is a shuffled variant of three gat genes, isolated
from Bacillus licheniformis strains 401, B6 and DS3 that has been codon-optimised for expression in
plants.

The vector backbone sequence contained elements necessary for the maintenance of the plasmid
in bacteria.

3.1.2. Transgene constructs in the GM plant6

Molecular characterisation of oilseed rape 73496 was performed by Southern analysis, polymerase
chain reaction (PCR) and DNA sequence analysis, in order to determine copy number, size and
organisation of the inserted sequences, and to confirm the absence of plasmid backbone sequences.
The approach used was acceptable both in terms of coverage and sensitivity.

Southern analyses indicated that oilseed rape 73496 contains a single insert, consisting of a single
copy of the PHP28181A fragment used for transformation. The insert and copy number were
confirmed by multiple restriction enzyme/probe combinations covering the insert and flanking regions.
No signal was observed with probes corresponding to PHP28181 vector backbone sequences.

The nucleotide sequence of the entire insert of oilseed rape 73496, together with 2003 nucleotides
of the 50 and 2038 nucleotides of the 30 flanking regions, was determined. The insert of 2109 bp is
identical to the fragment of PHP28181A, except for the deletion of the first three base pairs of the 50

end of the PHP28181A fragment. The possible interruption of known endogenous oilseed rape genes
by the insertion in event 73496 was evaluated by bioinformatic analyses of the pre-insertion locus and
of the genomic sequences flanking the insert. Sequence comparisons of the insert flanking sequences
suggest an inversion of a region of chromosome C02. Indeed, the two flanking genomic border
sequences were mapped to the reference genome sequence and located about 9.2 Mbp apart, and the
30 flanking genomic border sequence in oilseed rape 73496 is on the opposite strand of chromosome
C02 compared to the same sequence in the parental line. A SNP marker analysis showed no evidence

5 Part II Scientific Information/Section A.2.1.
6 Part II Scientific Information/Section A.2.2.2. Additional information 9/4/2013, 15/12/2015, 29/4/2016, 3/10/2016, 2/5/2017,
28/9/2018, 17/4/2019 and 9/7/2020.
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of deletion of this region during the transformation process. However, the insertion resulted in the
disruption of a putative gene, named PGtpt (PredictedGenetpt) showing similarity to a triose
phosphate transporter (tpt). Southern blot analyses indicated that there are four copies of the tpt gene
in oilseed rape and qRT-PCR analysis revealed a lower overall transcript level of the tpt gene family in
leaf from oilseed rape 73496, compared to the control plant. These data suggest that the PGtpt gene
has been interrupted in 73496 oilseed rape affecting most probably the level of transcripts for this
gene in leaves. Further considerations on the relevance of the gene interruption and potential
chromosomal inversion for the risk assessment of oilseed rape 73496 are provided in Sections 3.2.2
and 3.2.3.

The results of segregation (see Section 3.1.5) and bioinformatic analyses established that the insert
is located in the nuclear genome.

Updated bioinformatic analyses of the amino acid sequence of the newly expressed GAT4621
protein revealed no significant similarities to toxins and allergens. In addition, updated bioinformatic
analyses of the newly created Open Reading Frames (ORFs) within the insert and spanning the
junctions between the insert and genomic DNA did not indicate significant similarities to toxins and
allergens.

In order to assess the possibility for horizontal gene transfer by homologous recombination (HR),
the applicant performed a sequence identity analysis of the inserted regions of bacterial origin in
oilseed rape 73496. The likelihood and potential consequences of plant-to-bacteria gene transfer are
described in Section 3.4.1.2.

3.1.3. Protein characterisation and equivalence7

Oilseed rape 73496 expresses one new protein, GAT4621, which is a glyphosate acetyl transferase
conferring tolerance to the herbicidal active substance glyphosate.

Given the technical restrains in producing large enough quantities from plants, GAT4621 was
recombinantly produced in Escherichia coli. A set of biochemical methods was employed to
demonstrate the equivalence between oilseed rape and the two batches of E. coli-derived GAT4621
protein used in the different experiments presented in the dossier (see Section 3.3.3). The purified
plant protein and E. coli-derived protein (two batches) were characterised and compared in terms of
their physico-chemical, structural and functional properties.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis
showed that both plant- and microbe-produced GAT4621 proteins had the expected molecular weight
of ~ 16.5 kDa and were comparably immunoreactive to GAT4621 protein-specific antibodies.
Glycosylation detection analysis demonstrated that none of the GAT4621 proteins were glycosylated.
Amino acid sequence analysis of the two GAT4621 proteins by mass spectrometry and N-terminal
sequencing methods showed that they matched the deduced sequence as defined by the gat4621
gene. These data also showed that the N-terminal methionine of both the plant- and microbial-
produced GAT4621 proteins was truncated. Such modifications are common in eukaryotic proteins
(e.g. Poledova and Sherman, 2000) and have been previously assessed by the GMO Panel for newly
expressed proteins (EFSA GMO Panel, 2017). Due to the purified plant GAT4621 protein being inactive,
the activity between the plant and E. coli-derived proteins could not be directly compared. The activity
and substrate specificity of the two E. coli-produced GAT4621 was analysed by a biochemical in vitro
activity assay.8 The results from this assay confirmed the acetylation activity of the GAT4621 protein
for the intended herbicide as well as for a number of amino acids. The activity of the plant-produced
GAT4621 was indirectly demonstrated by the tolerance to the herbicidal active substance glyphosate
and compositional analyses (see Section 3.2.3).

Based on these data, the GMO Panel accepts the use of the GAT4621 protein produced in bacteria
for the safety studies.

7 Dossier Part II Scientific Information/Section A.4.2. Additional information 18/12/2018.
8 The substrate specificity of the E. coli-produced GAT4621 protein has been tested on a range of 21 different agrochemicals,
21 amino acids and 10 antibiotics under in vitro conditions (Annex 22_PHI-2006-184/017). GAT4621 protein has been shown
to acetylate certain amino acids, such are aspartate, glutamate and threonine. Increased concentration of the N-acetylated
forms of these three amino acids (N-acetylaspartate, N-acetylglutamate and N-acetylthreonine) in oilseed rape 73496 is
indicative of an equivalent activity of the plant-produced GAT4621 compared to the E. coli-produced GAT4621 protein.
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3.1.4. Information on the expression of the insert9

Levels of the GAT4621 protein were analysed by enzyme-linked immunosorbent assay (ELISA) in
material harvested in a field trial across four locations in the USA and five locations in Canada during
2010 growing season. Samples analysed included whole plants (BBCH15, BBCH33 and BBCH65), roots
(BBCH65) and seeds (BBCH90), from plants treated and not treated with the intended herbicide. The
mean values, standard deviations and ranges of protein expression levels in seeds for plants treated
(n = 32) and not treated with the intended herbicide (n = 36) are summarised in Table 1.

3.1.5. Inheritance and stability of inserted DNA10

Genetic stability of the oilseed rape 73496 insert was assessed by Southern analysis of genomic
DNA from five generations (T2, T3, T3F2, T3F3, F1) and segregation analysis of the glyphosate
tolerance trait of oilseed rape 73496 from five generations (T3F2, BC1F1, BC2F1, BC3F1, F1). For the
Southern analysis, the restriction enzyme/probe combinations used were sufficient to conclude that all
the plants tested retained the single copy of the insert and flanking regions, which were stably
inherited in subsequent generations. The results supported the presence of a single insertion,
segregating in a Mendelian fashion.

3.1.6. Conclusion on molecular characterisation

The molecular characterisation data establish that oilseed rape 73496 contains a single insert
consisting of one copy of the gat4621 expression cassette. Upon transformation, a region of chromosome
C02 was potentially inverted and a putative tpt gene interrupted. Further considerations on the relevance
of the gene interruption and potential chromosomal inversion for the risk assessment of oilseed rape
73496 are provided in Sections 3.2.2 and 3.2.3. Bioinformatic analyses of the sequences encoding the
newly expressed protein and other ORFs within the insert or spanning the junctions between the insert
and genomic DNA indicate no significant similarities to toxins and allergens. The stability of the inserted
DNA and of the introduced herbicide tolerance trait was confirmed over several generations. The levels of
the GAT4621 protein were obtained and reported adequately. The protein characterisation data of the
plant- and microbial-derived GAT4621 proteins indicate that these proteins are equivalent and thus that
the microbial-produced protein (two batches) can be used in the safety studies.

3.2. Comparative analysis11

3.2.1. Choice of comparator and production of material for the comparative
assessment

Application EFSA-GMO-NL-2012-109 presents data on agronomic/phenotypic characteristics, as well
as seed composition, of oilseed rape 73496 derived from field trials performed in the USA and Canada
during the 2010 growing season (Table 2). In addition, seed characteristics of oilseed rape 73496 were
evaluated under laboratory (growth chamber) conditions.

Oilseed rape 73496 was obtained through the transformation of the double haploid male sterile
maintainer line 1822B. The obtained GM oilseed rape, after restoration with line 1822R, was crossed

Table 1: Mean values, standard deviations and ranges of the GAT4621 protein in seeds [ng/mg dry
weight (dw)] from oilseed rape 73496

Tissue
Intended herbicide treatment

Not treated Treated

Seed (BBCH90)

GAT4621 5.6(a) � 1.1(b)

(3.6–8.1)(c)
5.6 � 1.1
(4.2–8.7)

(a): Mean.
(b): Standard deviation.
(c): Range.

9 Dossier Part II Scientific Information/Section A.2.2.3.
10 Dossier: Part II Scientific information/Section A.2.2.4.
11 Dossier: Part II Scientific information/Section A.3. Additional information: 17/9/2013.
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with oilseed rape 5536F to produce the oilseed rape 73496 hybrid used in the agronomic/phenotypic
field trials, in the seed germination tests and in the compositional studies (see Table 2). The
comparator used in the studies was obtained by crossing the non-GM line 5536F with line 5676M, the
latter sharing high similarity with line 1822B. The GMO Panel considers that the used comparator
(5536F 9 5676M) is a conventional counterpart suitable for the comparative analysis.

The field trial sites were located in major oilseed rape growing areas in North America.12 At each
site, the following materials were grown in a randomised complete block design with four replicates:
oilseed rape 73496, the conventional counterpart and three non-GM oilseed rape reference varieties,
all treated with required maintenance pesticides (including conventional herbicides); and oilseed rape
73496 treated with the intended glyphosate herbicide and required maintenance pesticides (including
conventional herbicides). In total, six commercial non-GM oilseed rape reference varieties were
included in the field trials (Table 2).

3.2.1.1. Statistical analysis of field trials data

The agronomic/phenotypic and compositional data were analysed as specified by EFSA GMO
Panel (2010a, 2011a). This includes, for each of the two treatments of oilseed rape 73496, the
application of a difference test (between the GM oilseed rape and its conventional counterpart) and an
equivalence test (between the GM oilseed rape and the set of commercial non-GM oilseed rape
reference varieties). The results of the equivalence test are categorised into four possible outcomes (I–
IV, ranging from equivalence to non-equivalence).

3.2.2. Agronomic/phenotypic analysis

3.2.2.1. Agronomic/phenotypic characteristics tested under field conditions

Twelve agronomic/phenotypic endpoints were collected from all field trial sites (see Table 2).13

The GMO Panel considered the adequacy of the selected endpoints for the identification of possible
unintended effects related to the reorganisation at the insertion site and the PGtpt gene disruption
(see Section 3.1.2). The information available from the published literature suggests that phenotypic
changes may be associated with a deficiency of tpt gene activity in dicot plants (such as
Arabidopsis thaliana and tobacco) indicating a possible impact on growth, biomass and yield (H€ausler
et al., 2000; Schneider et al., 2002; Bockwoldt et al., 2019). The agronomic/phenotypic data set
included several endpoints that are directly related to those parameters (i.e. days to flowering,
flowering duration, plant height, days to maturity and yield). Taking this into account, the GMO
Panel did not identify the need to include additional specific endpoints in the agronomic/phenotypic
analysis of oilseed rape 73496 and considers that the data set provided is adequate to conclude the
agronomic and phenotypic analysis of oilseed rape 73496.

The endpoints were analysed as described in Section 3.2.1.1, with the following results:

Table 2: Overview of comparative assessment studies with oilseed rape 73496 provided in
application EFSA-GMO-NL-2012-109

Study focus Study details Comparator
Commercial non-GM oilseed
rape reference varieties

Agronomic/phenotypic and
compositional analysis

Field trials, 2010,
North America

Conventional counterpart
(5536F 9 5676M)

6(a)

Agronomic and phenotypic
analysis

Seed germination
study

Conventional counterpart
(5536F 9 5676M)

2(b)

(a): The commercial non-GM oilseed rape reference varieties used in the 2010 field trials are 44A04, 44A89, 54H72 and the
hybrids 45H73, 46H02 and 46A65.

(b): The commercial non-GM oilseed rape reference varieties used in the seed germination studies are 45H72 and 45H73.

12 Four locations in the USA (Ephrata, Washington; Gardner, North Dakota; Northwood, North Dakota; and Velva, North Dakota);
five locations in Canada (two in Rosthern, Saskatchewan; one each in Elm Creek, Manitoba; Dundurn, Saskatchewan; and
Saskatoon, Saskatchewan).

13 Early stand count, seedling vigour, days-to-flowering, flowering duration, plant height, lodging, days-to-maturity, pod
shattering, yield, final stand count, disease incidence and arthropod damage.
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• For oilseed rape 73496 (not treated with the intended herbicide), statistically significant differences
with the conventional counterpart were identified for four endpoints (early and final population,
flowering duration and disease incidence), which all fell under equivalence category I.

• For oilseed rape 73496 (treated with the intended herbicide), statistically significant differences
with the conventional counterpart were identified for five endpoints (early and final population,
flowering duration, plant height and lodging), which all fell under equivalence category I.

Regarding the indicators of possible growth retardation, statistically significant differences were found
for flowering duration and plant height; both those endpoints, however, fell under equivalence category I.

3.2.2.2. Agronomic/phenotypic characteristics tested under controlled conditions

The applicant also reported data on seed characteristics of oilseed rape 73496. Seed germination tests
with seeds harvested from oilseed rape 73496, its conventional counterpart and two commercial non-GM
oilseed rape reference varieties, grown under field conditions, were performed to evaluate seed
characteristics under growth chamber conditions.14 The endpoint analysed was the number of germinated
seed. The applicant found no statistically significant differences between oilseed rape 73496 and its
conventional counterpart under cold and diurnal growing conditions. The germination rate of oilseed rape
73496 was significantly lower than that of its conventional counterpart under warm growing conditions, yet
the range of values fell within that observed for the non-GM oilseed rape reference varieties.

3.2.3. Compositional analysis

Seeds from oilseed rape harvested from the field trials (Table 2) were analysed for 99 constituents,
including those recommended by the OECD (OECD, 2001).

Since the GAT4621 protein was demonstrated to acetylate certain amino acids (see Section 3.1.3),
the acetylated derivatives of several amino acids were also analysed in seeds. These were N-
acetylaspartate, N-acetylglutamate, N-acetylthreonine, N-acetylglycine and N-acetylserine (hereafter
referred as NAA, NAG, NAT, NAGly and NAS, respectively).

Additionally, 26 free amino acids were analysed, since free amino acids might be metabolically
related to the levels of the acetylated amino acids.15

The GMO Panel assessed the adequacy of the compositional endpoint data set for the identification
of potential unintended effects related to the reorganisation at the insertion site and the PGtpt gene
disruption (see Section 3.1.2). Data in Arabidopsis and tobacco plants suggest that the potential
deficiency of tpt gene would be compensated by both continuous accelerated starch turnover and
export of neutral sugars from the stroma (Bockwoldt et al., 2019; H€ausler et al., 2000; Schneider
et al., 2002). The GMO Panel considers that the compositional endpoints evaluated (key nutrients, key
toxicants and anti-nutrients) are comprehensive enough to capture potential modifications in metabolic
pathways of the GM plant, induced by the above changes, that may be of relevance for food and feed
assessment, and that no specific hypotheses requiring further compositional investigations are
identified. The GMO Panel concludes that the provided compositional data set is adequate, and no
additional endpoints are necessary to conclude on compositional analysis.

The statistical analysis was not applied to 28 compounds,16 because more than 50% of the
observations were below the limit of quantification.

14 Three separate germination tests were conducted (warm: 25°C and 90% relative humidity for 10 days; cold: 10°C and 90%
relative humidity for 12 days; and diurnal: cyclical setting of 10°C and 90% relative humidity for 16 h and then 25°C and 90%
relative humidity for 8 h, repeated daily for 10 days).

15 Alanine, arginine, asparagine, aspartic acid, alpha-aminobutyric acid, cystine, ethanolamine, gamma-aminobutyric acid,
glutamic acid, glutamine, glycine, histidine, hydroxyproline, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine,
proline, serine, taurin, threonine, tryptophan, tyrosine, valine.

16 Caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), myristoleic acid (C14:1), pentadecanoic acid (C15:0),
pentadecenoic acid (C15:1), heptadecadienoic acid (C17:2), (9,15) isomer of linoleic acid (C18:2), c-linolenic acid (C18:3),
nonadecanoic acid (C19:0), eicosatrienoic acid (C20:3), arachidonic acid (C20:4), heneicosanoic acid (C21:0), erucic acid
(C22:1), glucoiberin, epi-progoitrin, glucoraphanin, gluconapoleiferin, glucoalyssin, glucobrassicanapin, gluconasturtiin,
4-methoxyglucobrassicin, neoglucobrassicin), b-tocopherol and the free amino acids a-aminobutyric acid, cystine,
hydroxyproline and taurine.
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The statistical analysis was applied to the remaining 103 compounds,17 with the following results
(Table 3):

• For oilseed rape 73496 (not treated with the intended herbicide), statistically significant
differences with the conventional counterpart were identified for 53 endpoints. Of those, two
endpoints fell under equivalence category III/IV (pyridoxine and NAG), six endpoints were not
categorised for equivalence (crude fibre, 4-hydroxyglucobrassicin, magnesium, NAA, NAT and
the free amino acid glycine), while the other endpoints fell under category I/II. Brassicasterol
fell under equivalence category III; however, no significant differences with the conventional
counterpart were identified.

• For oilseed rape 73496 (treated with the intended herbicide), statistically significant differences
with the conventional counterpart were identified for 56 endpoints. Of those, five endpoints fell
under equivalence category III/IV (crude fat, ADF, NDF, pantothenic acid and NAG), six
endpoints were not categorised for equivalence (crude fibre, 4-hydroxyglucobrassicin,
magnesium, NAA, NAT and the free amino acid glycine), while the other endpoints fell under
category I/II. NAGly, pyridoxine and brassicasterol fell under equivalence category III/IV;
however, no significant differences with the conventional counterpart were identified.

Table 3: Outcome of the comparative compositional analysis in seeds of oilseed rape 73496. The
table shows the number of endpoints in each category

Test of difference(a)

Not treated(c) Treated(c)

Not
different

Significantly
different

Not
different

Significantly
different

Test of
equivalence(b)

Category I/II 45 45(d) 40 45(d)

Category III/IV 1(e) 2(f) 3(e) 5(f)

Not categorised 4(g) 6(h) 4(g) 6(h)

Total endpoints 103 103

(a): Comparison between oilseed rape 73496 and its conventional counterpart.
(b): Four different outcomes: category I (indicating full equivalence to the non-GM reference varieties); category II (equivalence

is more likely than non-equivalence); category III (non-equivalence is more likely than equivalence); and category IV
(indicating non-equivalence). Not categorised means that the test of equivalence was not applied because of the lack of
variation among the non-GM reference varieties.

(c): Not treated/treated with the intended herbicide glyphosate.
(d): Endpoints with significant differences between oilseed rape 73496 and its conventional counterpart and falling in

equivalence category I-II. For both treated and not-treated: arachidic acid (C20:0), aspartic acid, cholesterol, crude protein,
delta-tocopherol, eicosadienoic acid (C20:2), glucobrassicin, gluconapin, total glucosinolates, linoleic acid (C18:2), linolenic
acid (C18:3), moisture, oleic acid (C18:1), palmitic acid (C16:0), palmitoleic acid (C16:1), phytic acid, progoitrin, stearic acid
(C18:0), tannins-insoluble, tannins-soluble, tryptophan, niacin, phosphorus, zinc. Only non-treated: ADF, copper, eicosenoic
acid (C20:1), heptadecanoic acid (C17:0), heptadecenoic acid (C17:1), NDF, nervonic acid (C24:1), potassium, free alanine,
free asparagine, free gamma-aminobutyric acid, free glutamic acid, free glutamine, free histidine, free isoleucine, free
leucine, free methionine, free phenylalanine, free proline, free serine and free valine. Only treated: alanine, glutamic acid,
valine, calcium, manganese, carbohydrates, lignoceric acid (C24:0), folic acid and free lysine.

(e): Endpoints falling in equivalence category III-IV and with no significant differences between oilseed rape 73496 and its
conventional counterpart. For both treated and not-treated: brassicasterol. Only treated: pyridoxine and NAGly.

17 Proximates and fibre content (moisture, crude protein, crude fat, acid detergent fibre (ADF), crude fibre, neutral detergent
fibre (NDF), ash, carbohydrates), fatty acids (myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1),
heptadecanoic acid (C17:0), heptadecenoic acid (C17:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic
acid (C18:3), arachidic acid (C20:0), eicosadienoic acid (C20:2), eicosenoic acid (C20:1), behenic acid (C22:0), tricosanoic acid
(C23:0), lignoceric acid (C24:0), nervonic acid (C24:1)), amino acids (alanine, arginine, aspartic acid, cystine, glutamic acid,
glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine,
valine), minerals (calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, zinc), vitamins (vitamin B1
(thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B9
(folic acid), a-tocopherol, c-tocopherol, d-tocopherol and total tocopherols), glucosinolates (4-hydroxyglucobrassicin,
glucobrassicin, gluconapin, progoitrin, total glucosinolates), acetylated amino acids (NAA, NAG, NAGly, NAS, and NAT), free
amino acids (alanine, arginine, asparagine, aspartic acid, ethanolamine, gamma-aminobutyric acid, glutamic acid, glutamine,
glycine, histidine, isoleucine, leucine, lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan,
tyrosine, valine) and other compounds (brassicasterol, campesterol, cholesterol, phytic acid, sinapine, stigmasterol, tannins-
insoluble, tannins-soluble, total sterols, ß-sitosterol).

Assessment of GM oilseed rape 73496

www.efsa.europa.eu/efsajournal 12 EFSA Journal 2021;19(6):6610



The GMO Panel assessed all significant differences between oilseed rape 73496 and its conventional
counterpart, taking into account the potential impact on plant metabolism and the natural variability
observed for the set of commercial non-GM oilseed rape reference varieties. Mean estimates for the
endpoints showing significant differences between oilseed rape 73496 and its conventional counterpart
and falling under category III/IV are shown in Table 4 together with endpoints with significant
differences with the conventional counterpart where the equivalence test was not applied because of
the lack of variation among the non-GM oilseed rape reference varieties.

3.2.4. Conclusion on the comparative analysis

Taking into account the natural variability observed for the set of commercial non-GM oilseed rape
reference varieties, the GMO Panel concludes that: 1) none of the differences identified in the
agronomic/phenotypic endpoints tested between oilseed rape 73496 and its conventional counterpart
needs further assessment; and 2) among the differences identified in seed composition between
oilseed rape 73496 and its conventional counterpart, the levels of NAA, NAG and NAT, the free amino
acid glycine, crude fibre, crude fat, ADF, NDF, magnesium, pyridoxine, pantothenic acid and
4-hydroxyglucobrassicin need further assessment regarding food and feed safety (see Sections 3.3.3
and 3.3.5).

(f): Endpoints with significant differences between oilseed rape 73496 and its conventional counterpart and falling in equivalence
category III-IV. Quantitative results for these endpoints are reported in Table 4.

(g): Endpoints not categorised for equivalence and with no significant differences between oilseed rape 73496 (both treated and
not-treated) and its conventional counterpart: glycine, serine, NAS and sodium.

(h): Endpoints not categorised for equivalence and with significant differences between oilseed rape 73496 and its conventional
counterpart. Quantitative results for these endpoints are reported in Table 4.

Table 4: Quantitative results (estimated means and equivalence limits) for compositional endpoints
in seeds that are further assessed based on the results of the statistical analysis

Endpoint

Oilseed rape 73496
Conventional
counterpart

Non-GM oilseed rape
reference varieties

Not
treated(a) Treated(a) Mean

Equivalence
limits

Acetylated
amino acids
(lg/g DM)

NAA 1,860* 1,670* 3.4 2.3 –(b)

NAG 27.3* 28.9* 0.83 1.10 0.59–2.05
NAT 0.97* 0.84* 0.25 0.24 –(b)

Free amino
acids (lg/g
DM)

Glycine 0.039* 0.037* 0.048 0.046 –(b)

Other
compounds

Crude fibre (% DM) 30.9* 32.2* 30.1 29.5 –(b)

Crude fat (% DM) 43.9 45.2* 43.2 42.7 40.4–45.2
ADF (% DM) 35.0* 36.0* 33.9 33.2 31.5–35.0

NDF (% DM) 37.0* 37.7* 35.8 35.7 34.1–37.3
Magnesium (% DM) 0.37* 0.38* 0.40 0.40 –(b)

Pyridoxine (mg/kg DM) 4.9* 5.2 5.4 6.47 5.38–7.78
Pantothenic acid (mg/kg
DM)

6.4 5.7* 6.8 7.23 5.55–9.41

4-Hydroxyglucobrassicin
(lmol/g DM)

0.22* 0.29* 0.09 0.20 –(b)

For the GM oilseed rape, significantly different values are marked with an asterisk, while the outcomes of the test of equivalence
are differentiated by greyscale backgrounds. Light and dark grey backgrounds correspond to equivalence category III and IV,
respectively. A white background is used for outcomes other than III/IV: for equivalence category I/II (crude fat, ADF, NDF and
pantothenic acid) and when the test of equivalence was not applied (in all other cases).
DM = dry matter; NAA = N-acetylaspartate; NAG = N-acetylglutamate; NAT = N-acetylthreonine.
(a): Not treated: treated only with conventional herbicides. Treated: treated with the intended herbicide glyphosate.
(b): Test of equivalence was not applied because of the lack of variation among the non-GM reference varieties.
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3.3. Food/feed safety assessment

3.3.1. Effects of processing18

Oilseed rape 73496 will undergo existing production processes used for conventional oilseed rape.
Several processed products from oilseed rape (refined bleached deodorised (RBD) oil, meal, protein
isolates and whey fractions) were analysed to investigate the presence of different compounds,
including N-acetyl amino acids.

Refined bleached deodorised (RBD) oil

Seeds from both oilseed rape 73496 and non-GM oilseed rape (comparator) were collected from
eight different fields among those indicated in Section 3.2.1. Samples from each of the eight fields
were combined into one bulk seed sample. RBD oil was produced from de-hulled and un-hulled seeds
of oilseed rape 73496 treated and not treated with the intended herbicide.

Following OECD recommendations (OECD, 2001), the fatty acid profile of RBD oil (n = 2) was
analysed together with the content in tocopherols.19 As in seeds, the presence of acetylated
derivatives of aspartic acid, glutamic acid, threonine, serine and glycine was also investigated in RBD
oil; none of the five acetylated amino acids analysed was detected. Although small amounts of NAA
were identified in crude oil (0.0419 lg/g), the absence of N-acetyl amino acids in RBD oil from oilseed
rape 73496 was further confirmed in an additional study provided by the applicant.20 The levels of
GAT4621 protein in RBD oil were not measured based on the assumption that oil does not contain
detectable amounts of protein.

Overall, the composition in fatty acids was similar in all samples of RBD oil analysed. Regarding the
content in tocopherols, the RBD oil produced from oilseed rape 73496 (de-hulled and un-hulled,
treated with the intended herbicide and not treated) contains higher content of total tocopherols
(between 6% and 28% increase) than that produced from the non-GM comparator, in particular due
to the increase of c-tocopherol levels, the most abundant tocopherol in oilseed rape.

Meal

Following OECD recommendations (OECD, 2001), defatted toasted meal from oilseed rape 73496
and non-GM oilseed rape (comparator) (n = 2) was analysed for proximate and fibre composition,
amino acids, secondary metabolites, anti-nutrients and glucosinolates.21 The presence of GAT4621
protein was also investigated together with the presence of acetylated derivatives of aspartic acid,
glutamic acid, threonine, serine and glycine.20

The concentration of GAT4621 protein was below the limit of quantification (0.22 ng/mg dry
weight) in the samples of defatted toasted meal analysed. Higher levels of N-acetylated amino acids
were quantified in the defatted toasted meal from oilseed rape 73496 seeds (de-hulled and un-hulled)
as compared to the defatted toasted meal from a non-GM oilseed rape (Table 5). For the un-hulled
seeds treated with the intended herbicide, the levels of quantified N-acetyl amino acids ranged
between 0.4 lg/g for NAGly and 3,070 lg/g for NAA. As compared to the N-acetylated amino acid
levels found in oilseed rape 73496 seeds, approximately two- to threefold higher concentration
was detected in the toasted meal; this increase is probably due to the elimination of the crude fat
(~ 40–45% dry weight) in the final product that also seems to indicate that processing has no effect
on N-acetylated amino acid levels.

18 Dossier Part II Scientific information/Section 3.5. Additional information: 29/8/2017, 20/6/2018.
19 Annex 18_PHI-2011-088. Caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), myristoleic acid

(C14:1), pentadecanoic acid (C15:0), pentadecenoic acid (C15:1), palmitic acid (C16:0), palmitoleic acid (C16:1),
heptadecanoic acid (C17:0), heptadecenoic acid (C17:1), heptadecadienoic acid (C17:2), stearic acid (C18:0), oleic acid
(C18:1), linoleic acid (C18:2), (9,15), isomer of Linoleic acid (C18:2), linolenic acid (C18:3), c-linolenic acid (C18:3),
nonadecanoic acid (C19:0), arachidic acid (C20:0), eicosenoic acid (C20:1), eicosadienoic acid (C20:2), eicosatrienoic acid
(C20:3), arachidonic acid (C20:4), heneicosanoic acid (C21:0), behenic acid (C22:0), erucic acid (C22:1), tricosanoic acid
(C23:0), lignoceric acid (C24:0), nervonic acid (C24:1), a-tocopherol, c-tocopherol, b-tocopherol, d–tocopherol, total
tocopherols.

20 Additional information: 29/8/2017.
21 Annex 18_ PHI-2011-088. Proximates and fibre content (crude protein, crude fat, crude fibre, acid detergent fibre (ADF),

neutral detergent fibre (NDF), ash, carbohydrates), amino acids (alanine, arginine, aspartic acid, cystine, glutamic acid,
glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine,
valine), glucosinolates (4-hydroxyglucobrassicin, glucobrassicin, gluconapin, progoitrin, total glucosinolates, glucoiberin,
4-Methoxyglucobrassicin, glucoraphanin, epiprogoitrin, glucoalyssin, gluconasturtiin, neoglucobrassicin, gluoconapoleiferin,
glucobrassicinapin), phytic acid, sinapine, tannins-insoluble, tannins-soluble.
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Protein isolate

Protein isolates from oilseed rape 73496 were produced simulating a new industrial method
working under low temperature conditions (‘cold press’ processing technology) to combine high yield
of oil and good meal protein quality.20

The presence of N-acetylated amino acids in protein isolates from oilseed rape 73496 and non-
GM oilseed rape was investigated in two different studies using UPLC-MS/MS.20,22 Table 6 reports the
results of the study with the highest levels of five acetylated derivatives observed. In each study,
only one protein isolate was produced and then analysed four times (technical replicates). In the
protein isolates from non-GM oilseed rape, only NAA was quantified in one of the four technical
replicates (mean = 0.008 lg/g).20 In both studies, all N-acetylated amino acids were quantified in
the protein isolates from oilseed rape 73496, except for NAGly, with the highest values reported for
NAA (mean = 13.01 lg/g and 18.0 lg/g).

Additional information was provided to explain the relatively low levels of N-acetylated amino acids
in the protein isolates as compared to those in seeds; this additional information showed that the
N-acetylated amino acids are almost completely transferred to the supernatant (whey fractions)
resulting from the precipitation and washing steps used in the production of the protein isolates from
the pressed cake.23 As an example, for the most abundant N-acetylated amino acid, NAA, the
concentration decreased from 1,280 lg/g reported as mean concentration in the oilseed rape 73496
seeds to 18 lg/g in the protein isolate, i.e. less than 1.5% of the initial amount remained (see
Table 6).

Table 5: Mean levels of N-acetylated amino acids (lg/g, fresh weight, n = 2) in defatted toasted
meal from oilseed rape 73496 and non-GM oilseed rape

Defatted toasted meal

Non-GM oilseed rape Oilseed rape 73496

Un-hulled De-hulled
Un-hulled De-hulled De-hulled

Not treated(a) Treated(a) Not treated(a) Treated(a)

NAA 14.5 16.8 3,190 3,070 3,690 3,480

NAG 2.37 2.57 50.8 53.7 61.9 56.8
NAT 0.759 0.571 3.23 2.90 1.25 1.41

NAGly 0.267 0.298 0.362 0.413 0.348 0.395

NAS 1.97 2.54 2.19 2.56 2.22 2.68

NAA: N-acetylaspartate; NAG: N-acetylglutamate; NAT: N-acetylthreonine; NAGly: N-acetylglycine; NAT: N-acetylserine.
(a): Not treated: treated only with conventional herbicides. Treated: treated with the intended herbicide glyphosate.

Table 6: Mean levels of N-acetylated amino acids (lg/g fresh weight, four technical replicates of
one sample) in protein isolate produced from oilseed rape 73496 and a non-GM oilseed
rape(a)

Seeds Protein isolate

Non-GM oilseed rape Oilseed rape 73496 Non-GM oilseed rape Oilseed rape 73496

NAA 0.169 1,280 0.008(b) 18.0

NAG 0.241 46.4 < LOQ(c) 0.611
NAT 0.251 1.54 < LOQ(d) 0.008(b)

NAGly 0.0614 0.157 < LOQ(d) < LOQ(d)

NAS 0.405 2.19 < LOQ(d) 0.025

NAA: N-acetylaspartate; NAG: N-acetylglutamate; NAT: N-acetylthreonine; NAGly: N-acetylglycine; NAT: N-acetylserine.
(a): Mean levels from study PHI-2017-009. Another study (PHI-2018-024) provided additional levels of N-acetyl amino acids in

different processed commodities including protein isolates; in the protein isolates, the reported mean levels (fresh weight,
four technical replicates) were 13.01 lg/g for NAA, 0.4329 lg/g for NAG, 0.006753 lg/g for NAT, < LOQ (0.0125 lg/g) for
NAGly and 0.007375 lg/g for NAS.

22 Additional information: 20/6/2018.
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Whey fractions 23

Whey fractions resulting from the production of protein isolates from conventional herbicide-treated
oilseed rape 7349622 were analysed by UPLC-MS/MS for the presence of NAA, NAG, NAGly, NAS and
NAT. Three whey fractions are produced during the process, one from the protein precipitation step
and the other two from washing the protein isolate pellet. N-acetylated amino acids are predominantly
found in whey fraction 1 (see Table 7).

3.3.2. Stability of the newly expressed protein23

Protein stability is one of several relevant parameters to consider in the weight-of-evidence
approach in protein safety (EFSA GMO Panel, 2010c, EFSA GMO Panel, 2011a, EFSA GMO Panel, 2017,
EFSA GMO Panel, 2021). The term protein stability encompasses several properties such as thermal
stability, pH-dependent stability, proteolytic stability and physical stability (e.g. tendency to aggregate),
among others (Li et al., 2019). It has been shown, e.g. that when characteristics of known food
allergens are examined, one of the most prominent traits attributed to food allergens is protein
stability (Helm, 2001; Breiteneder and Mills, 2005; Costa et al., 2021).

Effects of temperature and pH on the newly expressed protein

The effects of temperature and pH on the GAT4621 protein have been previously evaluated by the
GMO Panel (EFSA GMO Panel, 2013). The GAT4621 lost most of its activity at temperatures greater
than 53°C.

In vitro protein degradation by proteolytic enzymes

The resistance to degradation by pepsin of a microbial GAT4621 protein in solutions at pH ~ 1.2
has been previously assessed by the GMO Panel (EFSA GMO Panel, 2013). As described, the GAT4621
protein was degraded within the first 30 seconds of incubation, while less intensely staining bands
corresponding to low-molecular weight fragments (≤ 3 kDa) were still visible throughout the incubation
period.

(b): One sample above the LOQ (0.0125 lg/g fw) and three samples below the LOQ; for samples below LOQ half the value of
the LOQ value was used to calculate the mean.

(c): LOQ = 0.0250 lg/g fw.
(d): LOQ = 0.0125 lg/g fw.

Table 7: Mean levels of N-acetylated amino acids (four technical replicates of one sample) in
herbicide-treated oilseed rape 7496 seeds, in protein isolates and in the whey fractions
obtained during the production of the protein isolates23

Oilseed rape 73496
seeds

Protein isolate Whey fraction 1 Whey fraction 2 Whey fraction 3

(lg/g) (lg/mL)

NAA 1,323 13.01 140.8 20.40 2.919

NAG 49.57 0.4329 5.492 0.7435 0.1061
NAT 1.436 0.006753(a) 0.1301 0.01940 0.002391

NAGly 0.1533 < LOQ(b) 0.01407 0.001529 < LOQ(c)

NAS 1.961 0.007375(a) 0.1984 0.02584 0.002747

NAA: N-acetylaspartate; NAG: N-acetylglutamate; NAT: N-acetylthreonine; NAGly: N-acetylglycine; NAT: N-acetylserine.
(a): One sample above the LOQ (0.0125 lg/g fw) and three samples below the LOQ; for samples below LOQ half the value of

the LOQ value was used to calculate the mean.
(b): LOQ = 0.0125 lg/g fw.
(c): LOQ = 0.001250 lg/g fw.

23 Dossier Part II Scientific information/Sections 4.2 and 5.1.
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3.3.3. Toxicology

3.3.3.1. Testing of the newly expressed protein24

Oilseed rape 73496 expresses the new protein GAT4621, a glyphosate acetyltransferase conferring
tolerance to the herbicidal active substance glyphosate. The GMO Panel has previously assessed this
protein (EFSA GMO Panel, 2013), but was unable to conclude on its safety due to the lack of an
adequate 28-day toxicity study. In the context of this application, the GMO Panel assessed the safety
of the GAT4621 protein considering bioinformatic analyses (Section 3.1.2), protein characterisation
(Section 3.1.3), in vitro studies (Section 3.3.2) and a new 28-day toxicity study spontaneously
provided by the applicant.

Bioinformatics

Bioinformatic analysis of the amino acid sequence of the GAT4621 protein revealed no significant
similarities to known toxins (Section 3.1.2).

28-day repeated dose toxicity study in the rat

The new 28-day repeated-dose toxicity study provided in the application was conducted in
accordance with OECD TG 407 (2008) and the principles of Good Laboratory Practice (GLP).

Five groups of Crl:CD1(ICR) mice (10 per sex per group, individually housed, approximately 9-week
old at study start dosing) were given 1) a standard diet (control group); 2) a diet containing the
GAT4621 protein at the target dose of 100, 300 or 1,000 mg/kg body weight (bw) per day (low,
intermediate and high dose test diet groups); and 3) a diet containing bovine serum albumin (BSA)
protein at the target dose of 1,000 mg/kg bw per day (BSA control group). These groups are hereafter
defined as main study groups. Ten additional animals/sex per group were dedicated for coagulation
analysis and are mentioned hereafter as satellite study groups. The test and BSA diets were prepared
by mixing to a standard rodent diet the test substance at 0.5, 1.5 or 5 g/kg diet, or the BSA at 5 g/kg
diet. The GMO Panel noted that at the start of dosing, the age of the animals and the variation in body
weights among animals were slightly outside the OECD TG 407 (2008) requirements. These were
considered minor deviations with no impact on the study results.

The GAT4621 protein used in this study was produced by a recombinant system (E. coli, lot PCF-
0041) equivalent to the protein newly expressed in oilseed rape 7496 (Section 3.1.3) since it was
demonstrated to have the expected molecular weight and N-terminal sequence and a 98% coverage
of the expected protein sequence at MALDI–MS.25 The test substance used in this study contained
0.82 mg GAT4621/mg lyophilised powder. The test substance was stored frozen (–80�C) and
considered stable for long storage. Levels of the GAT4621 or BSA protein were measured by ELISA in
the diets at the time of mixing (Day 0) to assess their concentration and homogeneity; on Day 1, 6, 28
and 46 (high dose test diet only) to evaluate their stability. During the treatment period, all animals
were given approximately 14 g/day (7 g twice a day/mouse) of control or test diets. Water was
provided ad libitum.

In-life procedures and observations and terminal procedures were conducted in accordance with
OECD TG 407 (2008). Ophthalmoscopy examinations, functional observational batteries (FOBs) and
motor activities were recorded on main study groups only. Haematological and clinical chemistry
analyses were performed on main study groups, while coagulation analysis was performed on satellite
groups. Detailed necropsy examination, organ weight and histopathological examination (controls, BSA
controls and high dose group) were conducted on main study groups only.

The results of the diet analyses revealed that the test diets met the expected GAT4621
concentrations at the time of diet formulation,26 that these were homogenous and that all test diets
were stable up to 28 days in terms of GAT4621 content.

In-life data endpoints, with the exception of total and ambulatory motor activity counts, were
analysed by sex, using a two-sided analysis of variance (ANOVA) model; in case a statistically
significant does effect was identified, pairwise comparisons (Dunnett’s test) were done between the
test groups and the control group and the BSA group, and between the BSA group and the control

24 Dossier Part II Scientific information/Section A. 4.2. Spontaneous information 29/8/2017 and additional information 20/6/
2018, 18/12/2018.

25 17 kDa by Western blot and 16.5 kDa by MALDI-MS.
26 An anomalous value for concentration was noted on Day 28 in the high-dose diet but not confirmed on Day 46, therefore

considered not relevant. Achieved concentrations for all the three diets were 84% of the nominal value.
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group. Total and ambulatory motor activity counts were recorded prior to the initiation of the study
and near the end of the feeding period for control, BSA and test diet groups and were analysed by sex
and session, using a repeated measures ANOVA model (factors: treatment, time interval and time-by-
treatment interaction), followed by pairwise group comparisons across the pooled time intervals if the
main effect of treatment was significant; if the time-by-treatment interaction was significant, the
pairwise comparisons were also conducted for each individual time interval. Categorical FOBs data
were analysed using Fisher’s test.

Based on feed consumption, the average GAT4621 consumption was 59.4, 183.6 and 595.5 mg/kg/
bw per day in males and 75.1, 214.5 and 740.1 mg/kg/bw per day in females (low-, intermediate- and
high-dose groups, respectively).27 Animals from the BSA control group consumed 716.4 (males) and
832.7 (females) mg BSA/kg bw per day (based on nominal value).

There were no deaths. Isolated clinical findings observed in females from the BSA and low dose
test group were considered incidental. The GMO Panel assessed the statistically significant findings
observed in the treated groups and concluded that these are not adverse effects of the treatment with
GAT4621 protein (see Appendix A, Table A.1). No gross pathological findings related to the treatment
with GAT4621 protein were seen at necropsy. At microscopic examinations of selected organs and
tissues, an increased incidence of mononuclear cell infiltrate was noted in the kidneys of males given
the high dose test diet, as compared to controls. This finding was described as minimal; it is
compatible with background microscopic findings in mice of this strain and age and considered not an
adverse effect related to treatment with GAT4621 protein. No other relevant differences in the
incidences and severity of the histopathological findings were noted between high dose test dose
group and those given the control diets.

The GMO Panel concluded that no adverse effects related to the treatment were observed in mice
exposed by diet to 595.5 (males) and 740.1 (females) mg GAT4621/kg bw per day for 28 days.

3.3.3.2. Assessment of altered levels of endogenous compounds – N-acetylated amino
acids28

The GMO Panel assessed the altered levels of N-acetylated amino acids (NAA, NAG and NAT)
observed in oilseed rape 73496 as compared to its conventional counterpart (Section 3.2.4) with
regard to their relevance for food and feed safety taking into account available toxicological studies,
other relevant information on the biological role and metabolism of N-acetylated amino acids and
dietary exposure assessment.

Toxicological studies on N-acetyl amino acids

Rodent studies

The applicant provided toxicological studies on NAA, NAG and NAT, which were already assessed by
the GMO Panel in the context of previous applications (EFSA GMO Panel, 2011c, 2013). A summary of
these studies and the outcome of the GMO Panel assessment are presented in Table 8.

Although the applicant set the no observed adverse effect level (NOAEL) for NAA at 500 mg/kg bw
per day (based on the 90-day repeated dose toxicity and in the two-generation reproductive toxicity
dietary studies in rats), the GMO Panel had previously concluded that it is appropriate to use the
intermediate dose level as the reference value for risk assessment considerations (see Table 8 and
EFSA GMO Panel, 2011c, 2013). In particular, the most conservative NOAEL was chosen for risk
characterisation (229.5 mg/kg per bw per day from 90-day repeated dose toxicity dietary study in
male rats, see Table 8).

27 Dietary exposures include a correction for the purity of the test item (84%).
28 Dossier Part II Scientific information/Section A. 4.4. Additional information 28/4/2016, 29/4/2016, 28/8/2017 and 29/8/2017.
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42-day feeding study in broiler on NAA29

To further support the safety evaluation of dietary oilseed rape 73496 in chickens, the applicant
provided a 42-day feeding study on chicken for fattening with graded supplementation levels of pure
NAA in the standard diets, to investigate growth performance and toxicological endpoints. Necropsy
with major organ weights, haematology and routine clinical blood chemistry, histopathology of the
salivary glands30 and measurement of the content of NAA and aspartic acid in liver and muscle tissues
were assessed. A total of 240 male chickens for fattening (day-old Ross 708) were randomly allocated
to five dietary treatment groups with 48 chicks per treatment (four pens per treatment, 12 birds per
pen) and fed standard diets31 alone (carrier control group) or supplemented with NAA at three
different levels (test groups), or with L-aspartic acid (Asp comparative control group) at 100 mg/kg bw
per day (Asp comparative control group). Test diets were formulated, manufactured and characterised
to provide target exposure to NAA of 25, 50 and 100 mg/kg bw per day, corresponding to an
approximate supplemental 10%, 20% and 40% incorporation of oilseed rape 73496 meal in diets.
Diets and water were offered ad libitum.

Table 8: Toxicological studies on N-acetylated amino acids provided by the applicant and outcome
of the previous assessment by the GMO Panel

Compound Study Target dose
Outcome of previous GMO
Panel assessments

NAA Rat acute toxicity 2,000; 5,000(a) No adverse effects at 2,000(a);
toxicity at 5,000(a)

Rat 28-day repeated dose toxicity
(dietary)

10/100, 100/500,
1,000(b)

NOAEL(b): 852.3 (males); 890.1
(females)

Rat 90-day repeated dose toxicity
(dietary)

100, 250, 500(b) NOAEL(b),(c): 229.5 (males); 253.2
(females)

Rat two-generation reproductive
toxicity (dietary)

100, 250, 500(b) NOAEL(b),(c): 245.7(males F1),
269.1(females F1); 237.2 (males
F2), 500 (females F2)

Bacterial reverse mutation test
(Ames test)

333, 667, 1,000, 3,333,
5,000(d)

Negative

Mouse Bone Marrow Erythrocyte
Micronucleus Test

500, 1,000, 2,000(a) Negative

NAG Rat acute toxicity 2,000(a) No adverse effects at 2,000(a)

Rat 28-day repeated dose toxicity
dietary

100, 500, 1,000(b) NOAEL(b): 914.2 (males); 1,006.6
(females)

Bacterial reverse mutation test
(Ames test)

333, 667, 1,000, 3,333,
5,000(d)

Negative

Mouse Bone Marrow Erythrocyte
Micronucleus Test

333, 1,000, 2,000(a) Negative

NAT Rat acute toxicity 2,000(a) No adverse effects at 2,000(a)

Rat 28-day repeated dose toxicity
dietary

100, 500, 1,000(b) NOAEL(b): 848.5 (males); 913.6
(females)

Bacterial reverse mutation test
(Ames test)

333, 667, 1,000, 3,333,
5,000(d)

Negative

Mouse Bone Marrow Erythrocyte
Micronucleus Test

500, 1,000, 2,000(a) Negative

(a): mg/kg body weight.
(b): mg/kg body weight per day.
(c): The GMO Panel has previously concluded that it is appropriate to use the intermediate dose as the reference value for risk

assessment consideration (EFSA GMO Panel, 2011a–c, 2013).
(d): lg/plate.

29 Additional information 29/4/2016; 29/8/2017.
30 Acinar cells hypertrophy of the salivary glands in both male and female rats orally exposed to 500 mg NAA/kg bw was

reported in a 90-day rat study (see Table 8).
31 Starter (0–21 days), grower (22–35 days) and finisher (36–42 days) diets formulated to meet the nutrient requirements of a

commercial broiler in accordance with the National Research Council’s Nutrient requirements for Poultry (NRC, 1994).
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Statistical analysis on mortality, performance and toxicology endpoints was conducted. Differences
were considered significant at a p-value of ≤ 0.05 and adjustment (FDR) was made across all
endpoints within each pairwise comparison between diet groups. For mortality data, Fisher’s exact test
was conducted. For all continuous endpoints, if < 50% of non-missing data values were at a uniform
value, a mixed model analysis was applied. For endpoints that were measured on a per pen basis,
statistical modelling was conducted on a response variable at the pen level. For endpoints that were
measured on an individual broiler basis, statistical modelling was conducted on a response variable at
the individual broiler level. For mortality data, Fisher’s exact test was conducted.

The target exposures to NAA were met, and even exceeded, during the entire phases of the study.
The mean actual exposures were at least 28.4, 62.5 and 121.6 mg/kg bw per day, respectively, in the
low, mean and high-dose test groups for the entire duration of the study, corresponding to an
approximate supplemental 11%, 25%, 48% incorporation of 73496 oilseed rape meal in diets.

Overall mortality was low (4%) with no significant difference between the groups, and no adverse
clinical signs were reported throughout the study. No statistically significant difference was seen in
body weights and body weight gains, feed consumption and feed conversion, absolute and relative
kidney and liver weights (pre-chilled), dressed carcass weights (post-chilled), breast, thigh, wing, leg
and abdominal fat weights, when the NAA test groups and Asp-positive control group were compared
to the negative control group. Moreover, there were no statistically significant differences in absolute
and relative selected organ weights, or test substance-related effects on haematology, coagulation or
clinical chemistry examined parameters when the NAA test groups, and Asp-positive control group
were compared to the negative control group.

The microscopic examination of salivary glands showed the absence or attenuation of secretory
units of one or more lobules in all groups, with a slightly higher incidence and severity in the lingual
and sublingual glands of animals fed diets with NAA at the highest dose (test group). The lack of
association of these findings with NAA consumption was confirmed by the outcome of an expert
scientific opinion provided by the applicant,32 based on the comparison of the histology of salivary
glands of broilers from the present study with that of strain, age and gender-matched control broilers
from other studies, fed either similar diets or standard commercial poultry diets (using a series of
parasagittal step sections of the lingual salivary glands); all animals were sourced from the same
breeder and housed under similar environmental conditions at the same test facility.

Variability with respect to the severity score of ‘decreased glands’ was observed among animals
within the same treatment groups, and there were no differences in nuclear cytology or evidence of
significant cellular pathology or other morphologic changes (e.g. inflammation, degeneration, necrosis)
in any of the test animals that would suggest an adverse effect. Furthermore, the composition and
cellularity of the salivary glands were highly dependent on the plane of section. Therefore, although
subtle quantitative histological intergroup differences were observed in the salivary tissue of broiler
chickens, they were considered a consequence of the normal variability of salivary gland histology and
the variation in the plane of section of a dispersed gland, and no pathological alterations were
observed to indicate a treatment-related effect of NAA on the salivary glands of broiler chickens under
the conditions of this study.

There were no statistically significant differences in NAA or Asp concentrations in the breast or liver
tissues of fasted or non-fasted broilers when the NAA test groups or the Asp comparative control
group were compared to the carrier control group.

Based on the results of this study, the EFSA GMO Panel concludes that administration of diets
containing NAA for 42 consecutive days at an average overall dose level of 121.6 mg/kg bw per day
(highest dose evaluated) to broilers, did not cause adverse effects on mortality, growth performance or
clinical and anatomic pathology variables and no effects on NAA and Asp tissue concentrations of male
Ross 708 broiler chickens. The mean actual dose of 121.6 NAA mg/kg bw per day corresponds to an
approximate supplemental 48% incorporation of 73496 oilseed rape meal in diets that exceed the
standard incorporation of conventional oilseed rape into commercial animal’s diets.

Therefore, the GMO Panel considers the use of oilseed rape 73496 as feed material safe for the
broiler and that the incorporation of this GM oilseed rape into animal’s diet has no limitations other
than those of conventional oilseed rape.

32 Additional information 29/8/2017.
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Other information on N-acetylated amino acids.33

NAA and NAG are produced by the mammalian metabolism and are normal constituents of many
foods and feedstuff (Hession et al., 2008), with NAA being detected in human bio-fluids as reported in
the Human Metabolome (https://hmdb.ca/) and Chemical Entities of Biological Interest (https://
www.ebi.ac.uk/chebi/) databases.

N-acetylation and de-acetylation of cellular proteins are widespread processes with a regulatory
function in metabolism (Perrier et al., 2005; Smith and Denu, 2007; Hwang et al., 2010).

A number of both specific and unspecific N-acetyltransferases acetylate free amino acids, amines
and drugs. The synthesis of NAA is known to occur in brain neurons and has important roles in the
function of the central nervous system, following release into the extracellular fluid and uptake by glial
cells, where it is hydrolysed to aspartic and acetic acid (Baslow, 2003; Baslow, 2010).

Hydrolase enzymes from the aminoacylase family catalyse the hydrolysis of acylated L-amino acids
to their constituent L-amino acids and an acyl group. Aminoacylases genes (ACY1 and ASPA) are
nearly ubiquitously present in organs and tissues, with sequences moderately to highly conserved
across animal species (Yates et al., 2020). Acylase I and acylase II enzymes catalyse the stereospecific
hydrolysis of N-acetylated amino acids, including NAA, and are identified in multiple tissues from
various species including intestine, liver and kidneys, presumably mediating the catabolism of ingested
N-acetylated amino acids under normal dietary conditions (Birnbaum et al., 1952; Birnbaum, 1955;
Nadler and Cooper, 1972; D’Adamo et al., 1973; Endo, 1978; Endo, 1980; Daabees et al., 1984;
Giardina et al., 1997; Giardina et al., 1999; Lindner et al., 2000; Arnaud et al., 2004; Hershfield et al.,
2006; Surendran et al., 2006; Mersmann et al., 2011; Luna et al., 2013).

Deacetylation of NAA was shown to be rapid in studies in mice using radiolabelled NAA and
L-aspartic acid; after intraperitoneal injection, both substances were metabolised at a similar rate (as
determined by measurement of expired radioactive CO2) indicating a rapid hydrolysis of the N-acetyl
group (Berlinguet and Lalibert�e, 1966). Studies in premature infants, rats, dogs and pigs with enterally
or parenterally administered N-acetylated amino acids (cysteine, tryptophan, tyrosine, methionine,
threonine, glutamine) have shown that the nutritional value of the N-acetylated amino acids was
comparable to that of free amino acids, also suggesting an efficient de-acetylation (Boggs, 1978;
Neuh€auser-Berthold et al., 1988; Gouttebel et al., 1992; van Goudoever et al., 1994; Arnaud et al.,
2004; L�opez-Pedrosa et al., 2007).

Dietary exposure assessment to N-acetyl amino acids

Human dietary exposure to N-acetyl amino acids

Humans are habitually exposed to N-acetyl amino acids since they are natural constituents of
different foods; the presence of NAA and NAG has been described and quantified in a broad range of
foods including meat, fish, eggs, brewed coffee, vegetables and fruits (Hession et al., 2008). Likewise,
other N-acetyl amino acids, among them NAS and NAT, are described as frequent components of
dietary proteins although concentration levels have not been reported (Persson et al., 1985; Van de
Mortel et al., 2010a; Van de Mortel et al., 2010b). Table 9 shows a selection of foods with quantified
levels of NAA and NAG; it can be seen that in several cases, the levels are similar or higher than those
measured in the protein isolates from oilseed rape 73496.

Table 9: Selection of different foods with reported levels of NAA and NAG(a),(b) (complete food list
in Hession et al., 2008), and levels of NAA and NAG as reported in seeds and protein
isolates from oilseed rape 73496

NAA (lg/g) NAG (lg/g)

Soybean 0.3–0.7(c) 0.7–1.2

Stout beer 0.14 0.21
Brewed coffee 3.8 0.3

Brewed espresso coffee 15.4 1.8
Cocoa powder 26.8 62.2

Dark chocolate 4.5 10.2
Broccoli 0.09 0.8

33 Dossier Part II Scientific information/Section A4.4. Additional information 10/9/2020 and 10/11/2020.
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Dietary intake of NAG and NAT

Even though the levels of NAG and NAT in oilseed rape 73496 were significantly higher than those
present in the conventional counterpart, no dietary intake estimations were considered needed for these
N-acetyl amino acids. This decision was based on 1) the relatively low levels of these N-acetyl amino acids
as compared to those of NAA, 2) their very low levels or absence in oilseed processed commodities, e.g.
protein isolates and RBD oil, 3) their presence in conventional foods, in particular NAG, at similar or
higher levels than those present in the seeds, 4) toxicological information (see Table 8).

Dietary intake of NAA

Based on the levels of NAA described for the different conventional foods (see Table 9), the
baseline intake of NAA was estimated across different ages classes in the European population using
individual consumption data from the EFSA Comprehensive European Food Consumption database
(EFSA consumption database).34 In the young population (including adolescents) and in the adult
population, the maximum dietary intake estimates (95th percentile) were 47.3 and 99.0 lg/kg bw per
day, respectively (see Appendix B).

As today, oil is almost the only food commodity derived from oilseed rape regularly consumed by the
European population,35 although other food commodities derived from oilseed rape have been
approved as novel food in recent years, e.g. protein isolates (EFSA NDA Panel, 2013) and rapeseed
powder (EFSA NDA Panel, 2020). Different preparations of protein isolates from oilseed rape meal are
found under commercial names (Puratein®, SuperteinTM, etc.). However, protein isolates from oilseed
rape are literally absent in the European market as verified in Mintel’s Global New Products Database.36

This was further confirmed by the absence of consumption data for protein isolates/meat imitates from
oilseed rape in the EFSA consumption database. The protein meal resulting from oil extraction is
currently almost exclusively used as animal feed since the food industry is still often encountering
diverse challenges, e.g. undesirable flavour/colour, functional properties of the proteins, etc., when
using the protein fraction (Wanasundara et al., 2016; Chmielewska et al., 2020; Fetzer et al., 2020).

Different dietary intake scenarios for NAA were conducted taking into account the food commodities
from oilseed rape available today in the market: RBD oil, protein isolates and oilseed rape powder:

1) N-acetyl amino acids are not present in RBD oil from oilseed rape 73496 (Section 3.3.1);
therefore, consumption of RBD oil from the GM oilseed rape is not expected to contribute to
the dietary intake of N-acetyl amino acids.

2) A conservative intake scenario was conducted assuming that protein isolates from oilseed
rape 73496 could be used as protein supplements by the adult population. Using the
highest concentration of NAA reported in protein isolates (18 lg/g, see Section 3.3.1.) and
a daily consumption of 30 grams of protein isolate, this would result in an additional intake

NAA (lg/g) NAG (lg/g)

Spinach 0.04 1.8
Whole egg 1.5 0.05

Ground chicken 4.7 0.07
Ground turkey 7.4 0.09

Canned sardines 10.2 0.2
Seeds from oilseed rape 73496(b) 1,670(c) 28.9

Protein isolate from oilseed rape 73496 13–18 0.43–0.61

NAA: N-acetyl aspartate; NAG: N-acetylglutamate.
(a): Levels of NAA and NAG are the result of two determinations.
(b): Seeds treated with the intended herbicide.
(c): Result expressed in dry weight.

34 Accessed on January 2021. Consumption data from the UK were included in the EFSA Comprehensive European Food
Consumption Database when the UK was a member of the European Union.

35 From double low cultivars, i.e. varieties with a low content of erucic acid (< 2% expressed as percentage of total fatty acids)
and reduced content of glucosinolates (< 25 mmol/kg at a moisture content of 9%) under Regulation (EC) No 2316/1999.

36 The Mintel’s GNPD is an online database which monitors new introductions of packaged goods in the market worldwide. It
contains information of over 2.5 million food and beverage products of which more than 1,000,000 are or have been available
on the European food market. Mintel started covering EU’s food markets in 1996, currently having 25 out of its 28 member
countries and Norway presented in the Mintel GNPD.
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of ~ 8 lg/kg bw per day, considering a default body weight of 70 kg in adults (EFSA
Scientific Committee, 2012). This additional intake based on the consumption of protein
isolates from oilseed rape 73496 represents less than 10% of the maximum baseline dietary
intake of NAA observed in adults.

3) No data were available on the presence of NAA in the recently approved novel food oilseed
rape powder. In a worst-case scenario (overly conservative), it was assumed that oilseed rape
powder might have a similar concentration of NAA to that in the seeds (~ 1,500 lg/g), i.e. no
losses of NAA occur during the production of the oilseed rape powder. A dietary intake
scenario was conducted considering the described proposed uses of oilseed rape powder in
food products (EFSA NDA Panel, 2020), the concentrations of NAA analysed in the
conventional foods (see Table 9) and the consumption of protein isolates as protein
supplements. The EFSA consumption database was used as a source of individual
consumption data. The maximum dietary intake estimates of NAA (95th percentile) were
992.9 and 444.8 lg/kg bw per day in the young population (including adolescents) and in the
adult population, respectively (see Appendix C).

When using this dietary intake scenario in the risk assessment of NAA, one should take into
account the overly conservative nature of the intake estimations. This mainly refers to the assumption
that all NAA present in the seeds will also be present in the oilseed rape powder, with no losses during
a production process that includes different washing and extraction steps (EFSA NDA Panel, 2020).

Animal dietary exposure to N-acetyl amino acids

Dietary exposure to N-Acetylaspartate (NAA), N-Acetylglutamate (NAG) and N-Acetylthreonine
(NAT) in oilseed rape 73496 was estimated by the applicant across different animal species, as
summarised below (for details, refer to Appendix D) following conservative approaches. Estimations of
exposure to NAA, NAG and NAT are based on the assumption that the totality of oilseed rape products
fed to animals is derived from oilseed rape 73496 (100% replacement scenario). Moreover, in the
absence of a feed consumption database for animals (EFSA, 2019), estimations are based on default
values for theoretical maximal inclusion rates of feed materials in diets, selected from the literature.

Dietary exposure to NAA, NAG and NAT in poultry, swine, cattle and sheep was estimated based on
the consumption of oilseed rape 73496 meal.37

1) Background exposures to NAA in poultry, swine, cattle, sheep, salmon, dog and cat were
estimated based on the consumption of simple diets (not nutritionally balanced) consisting of
the combination of two conventional feed materials (i.e. maize grains and distillers grain with
solubles, forage/silage from maize, alfalfa and grass, soybean, oilseed rape and fish meal)
with known concentration of NAA; a comparison was also made with the exposures based on
the consumption of simple diets containing oilseed rape meal 73496 as one of the combined
feed materials in order to determine whether a safe comparative consumption could be
established.38 Among the different outcomes, the most conservative exposures were selected
for further risk characterisation (see below), as reported in Table 10:

Table 10: Conservative Dietary Exposures to NAA

Animal species
Simple diet:

oilseed rape 73496 meal + conventional feed material

Daily feed intake (kg DM
animal/kg body weight)

Dietary exposure
mg/kg bw

IR%

Cattle

Cattle for fattening (8/400) 14.5 Oilseed rape 73496 meal (20%) + grass silage (50%)
Swine

Pig for fattening (2.20/60) 25.9 Oilseed rape 73496 meal (20%) + maize DDGS (75%)
Comp. animals

Cat (0.06/3) 14.0 Oilseed rape 73496 meal (20%) + maize grain (25%)

37 Dossier Part II Scientific information/Section B.
38 Additional information: 6/12/2017.
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2) Dietary exposure to NAA and NAG in calf was estimated based on the consumption of milk
replacer, making the conservative assumption that 100% of the protein in milk replacer would
be from oilseed rape protein isolates.20

3) Simulation of dietary exposure to NAA, NAG and NAT in ruminants (i.e. cattle for fattening,
dairy cow and sheep/goat) was estimated based on the consumption of oilseed rape solubles
(whey), alone or combined with oilseed rape meal. As oilseed rape protein isolate production
is not a common industrial practice, soy protein isolate and the corresponding whey fraction
productions were examined as a surrogate; theoretical inclusion rates for oilseed rape were
derived from the literature, considering the reporting of adverse nutritional impact of soy
solubles at experimental inclusion rates above 10% in diets.22

The GMO Panel notes that the incorporation in the diet of oilseed rape 73496 meal in substitution
of conventional oilseed rape meal determines an increased exposure to NAA, NAG and NAT in all the
animal species investigated and in all the proposed scenarios. Feed products other than meal for
incorporation into the diet would include oilseed rape protein isolates and its by-product whey.
However, these products, at the current status of knowledge, do not represent common ingredients
currently used in animal rations and diets. To date, there is very little or no consumption of oilseed
rape protein isolates as feed, due to relatively low protein yield and high costs of production compared
to available alternatives (Campbell et al., 2016); however, their future use as feed cannot be excluded
(e.g. as milk replacer for calves, but also in piglets). Whey from protein isolate production is highly
diluted and most often considered a waste stream of the process; soluble products from whey could
be produced and used as feed ingredient; however, this process requires substantial energy and
therefore is not economical.39 Therefore, the products were not considered for risk characterisation in
the context of this application.

The GMO Panel notes that these human and animal intake estimates of N-acetyl amino acids only
considers the food and feed commodities from oilseed rape that can currently be used in the European
market, making use of consumption/feeding data of food and feed assumed to be replaced by food
and feed from oilseed rape 73496. In the future, the intakes to N-acetyl amino acids might vary due to
changes in consumption/feeding patterns and, above all, by the introduction in the market of new
products from oilseed rape (e.g. seeds, whey fraction, etc.).

RISK CHARACTERISATION

Human risk characterisation

Human dietary exposure to NAA was estimated considering the presence of NAA in conventional
foods and the processed foods from oilseed rape that can currently be in the European market (RBD
oil, protein isolates and oilseed rape powder). The maximum dietary exposure to NAA combining the
consumption of conventional food and considering the processed foods from oilseed rape 73496 was
estimated in the age class ‘Other children’ (992.9 lg/kg bw day, 95th percentile dietary intake). In the
adult population the maximum 95th percentile dietary intake estimate was 444.8 lg/kg bw day (age
class ‘Adults’). A NOAEL of 229.5 mg/kg bw day was derived for salivary glands hypertrophy in male
rats in a 90-day repeated dose toxicity study with NAA (see Table 8, Section 3.3.3). The highest
dietary exposure estimates in the age classes ‘Other children’ and ‘Adults’ provide Margin of Exposures
(MoE) to the NOAEL of ca. 225 and ca. 500, respectively. These MoE are considered acceptable as
they exceed the default 100 fold factor applied when extrapolating from animal data to humans and
noting the extent of the information currently available on NAA (see Section 3.3.3.2). The GMO
Panel concludes that the human dietary exposure to NAA as estimated from the combined
consumption of conventional food and considering the processed food from oilseed rape 73496 is
unlikely to present a risk to health in humans.

Animal risk characterisation

The levels of NAG and NAT were significantly higher in seeds from oilseed rape 73496 than in those
the conventional counterpart (see Section 3.2.3) and noted to achieve even higher concentration in

39 This waste stream is typically disposed of as municipal waste. In a limited number of cases where this is not possible due to
both municipal restrictions and the inability to treat waste on site, a soy soluble product can be produced which could be used
in animal diets (personal communication from Solae LLC, St Louis, Missouri, USA). The soy soluble product is produced by
concentrating the soy whey via drying. Consumption of soy solubles produced from whey is not currently authorised as a feed
ingredient in the EU, and no pending EU applications for either soy or oilseed rape solubles produced from whey fractions are
known).
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the defatted toasted meal from the GM oilseed rape, as compared to the non-GM one (Section 3.3.1).
Based on the 28-day toxicity studies on NAG and NAT (Table 8) and the dietary intake estimates
provided by the applicant (see Animal dietary exposure to N-acetyl amino acids above and
Appendix D), the GMO Panel notes that the margin of exposure for NAG and NAT is at least 1,000 fold
for all animal species. The GMO Panel concludes therefore that exposures to NAG and NAT via animal
feed from oilseed rape 73496, as described in this application, pose no concerns to animal health.

The initial estimated exposures provided by the applicant indicates that NAA in animals via feed
result in low MoEs (less than 100) to the most conservative NOAEL (229.5 in male rats from the 90-
day toxicity study, see Table 8) for most species. The GMO Panel concluded that a potential concern
on animal health could not be excluded and requested additional information from the applicant to
address exposures to NAA from feed from oilseed rape 73496.

A 42-day study on NAA in the broiler to provide target exposure to NAA of 25, 50 and 100 mg/kg
bw per day, corresponding to an approximate supplemental 10%, 20% and 40% incorporation of
oilseed rape 73496 meal into commercial poultry’s diets confirmed that there are no limitations in the
use of oilseed rape 73496 as feed material at the currently used inclusion rate for poultry (around
20%). The GMO Panel did not consider it necessary to elaborate further the risk assessment on fish
(no salivary glands are present in fish).

The applicant provided further exposure estimates in animal species other than poultry (see
Appendix D), as well as generic information on the normal occurrence and metabolism of NAA in
animals and on the function and physiology of salivary glands. Moreover, the applicant provided
studies on the toxicokinetics of NAA in rats, goats and pigs, together with a proposal to base the
assessment on a Compound Specific Assessment Factor (CSAF) approach.

Description of the CSAF based approach proposed, information on the toxicokinetics provided to
support the exercise and the actual CSAF based assessment of NAA in feed from oilseed rape 73496
are summarised below. Additional details are given in Appendix E.

CSAF based approach (see also Appendix E)

The default assessment factor used when deriving an acceptable human exposure level from the
no-observed adverse effect levels (NOAEL) in animal studies is 100. This factor accounts for
differences in sensitivity between the experimental animal and the average human and for variations in
sensitivity within the human population to protect sensitive sub-groups. This factor of 100 has also
been utilised in the assessment of feed additives as an indicator of the expected margin between the
NOAELs in laboratory animal studies and intakes in farm and domestic animals (MoE) (EFSA FEEDAP
Panel, 2017a,b).

Where specific data are available, it is possible to derive Chemical Specific Adjustment Factors (also
known as Chemical Specific Assessment Factors and Data Derived Evaluation Factors) to replace the
default 100-fold assessment factor. The overall CSAF can be lower or higher than the default of 100.
The concept was developed by comparing the findings seen in humans and experimental animals
exposed to pharmaceuticals and was described in detail by the World Health Organisation (IPCS 2005).
The CSAF approach splits the default factor of 100 into four separate factors addressing differences in
toxicokinetics (how a compound is absorbed, metabolised, distributed and excreted) and
toxicodynamics (how a specific level of exposure affects the target tissue). Each individual factor can
be modified, if suitable data are available, and then combined to give the overall CSAF. CSAFs have
been referenced by EFSA in the Scientific Opinions on Default values (EFSA Scientific Committee,
2012) and Uncertainty Analysis (EFSA Scientific Committee, 2018). A CSAF based approach has been
used by EFSA in the re-evaluation of phosphates (EFSA FAF Panel, 2019).

Information on toxicokinetics submitted to EFSA (see also Appendix E)

To address the low margins between estimated exposures and the NOAEL of 229.4 mg/kg bw per
day (see Section 3.3.3.2) and to support a CSAF approach, the applicant performed studies in goats
(representative ruminant), pigs (representative monogastric animal) and rats (the species used in the
toxicity studies) to investigate the toxicokinetics of NAA. The results have been used to develop a
CSAF based assessment to determine if exposures to NAA from animal feed derived from oilseed rape
73496 present an acceptable risk. Details of the studies are presented in Appendix C.

The key results from the studies relevant to the CSAF approach are described below:

– NAA is a normal component of the blood plasma, present at similar levels in all three tested
species;
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– NAA is rapidly metabolised and there is no accumulation over 14 doses at 25 mg/kg bw per
day in all species;

– in the goat, plasma levels of NAA are much lower than in the rat at the dose of 25 mg/kg bw
per day;

– the plasma levels of NAA are similar in the pig and rat at a dose of 25 mg/kg bw per day;
– there were no notable differences between results in males and females.

CSAF based assessment of NAA in 73496 oilseed rape (see also Appendix E)

When performing a CSAF based assessment it is valuable if the mode of action underlying the
adverse effect is well understood. The mode of action underlying the salivary gland hypertrophy seen
in some rats exposed to NAA has not been investigated in detail by the applicant but generic
information is available. This was used by the GMO Panel to develop on two scenarios (direct or
systemic mode of action) detailed below.

Direct Mode of Action

Given the physiological mechanisms controlling the production of saliva and mechanisms producing
hypertrophy the GMO Panel considered that salivary glands hypertrophy in rats exposed to NAA was
likely due to a direct mode of action in the mouth. Data supporting this is presented in Appendix E.

On the basis that NAA acts on the salivary glands via a direct action in the mouth, the salivary
glands findings would be essentially independent of absorption, distribution, metabolism and excretion.
Therefore, both toxicokinetic factors can be removed leaving an overall CSAF of 8 based on the
revised toxicodynamic factors (see Table 11). This would apply when extrapolating from rats to any
other species and life-stages.

When comparing exposures on a body weight basis the MoE between the highest predicted
exposure and the chosen NOAEL (229.5 mg/kg bw per day see Table 8) is > 8 in all cases (Table 12)
and therefore considered acceptable.

For some local effects, it is the concentration of the chemical in the feed or vehicle that is critical,
rather than the dose in mg/kg bw per day. An additional assessment was therefore performed
comparing the concentration of NAA in the diet in the 90-day rat study on NAA with the estimated
NAA concentration in the feed; a MoE of 8 or more was identified, indicating an acceptable risk
(Table 12).

The GMO Panel considers that based on the more likely mode of action of NAA on salivary glands,
which involves direct action in the mouth, current and predicted exposures to NAA in animal feed do
not pose a concern to animal health.

Systemic Mode of Action

As the mode of action of NAA on salivary glands has not been investigated in detail, the GMO
Panel also performed a supplementary CSAF based exercise in the unlikely case of systemic mode of
action, to determine if any significant risks might be missed by adopting the more likely direct mode of
action approach. Using the data from the submitted toxicokinetic studies and noting that in a rat two-
generation study on NAA there was no evidence of any sensitive life-stages (see Table 8) and that
expression data on the main enzymes metabolising N-acetylated amino acids are widely conserved
across species (see Other information on N-acetylated amino acids in Section 3.3.3.2), the CSAFs were
adjusted by modifying the toxicokinetic factors, based on the available toxicokinetic data, but retaining
the default toxicodynamic factors, as detailed in Table 11 below.

Table 11: Outline of the derivation of the overall CSAFs based on the toxicokinetic data and
potential modes of action behind the effects of NAA on salivary glands

Rat to standard species*
Standard species to different life

stages or related species Overall
CSAF

Toxicokinetic Toxicodynamic Toxicokinetic Toxicodynamic

Default 4 2.5 3.16 3.16 100

Direct action (all
species and life-stages)

1 2.5 1 3.16 8
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The calculated MoEs and estimated exposures to NAA via feed are presented in Table 12. For
ruminants, swine and horses, all scenarios based on feed incorporating defatted toasted meal from
oilseed rape 73496 gave MoEs that are acceptable. For cats (the monogastric species with the highest
estimated exposure) the only estimated exposures available were based on theoretical diets with a
high (worst case) incorporation rate of 20% defatted toasted meal from oilseed rape (see Table 10);
these gave a MoE of 16. The GMO Panel notes that this MoE is lower than the CSAF of 25 for other
monogastrics (Table 11) by a factor of ca 1.5. Given the conservative nature of the exposure estimate
(see section on Animal dietary exposure to N-acetyl amino acids above) the GMO Panel consider this
to present an acceptable risk.

Overall, the GMO Panel concludes that exposures to NAA by feed from oilseed rape 73496 in this
application do not pose a concern to animal health, based on the acceptable outcomes from the likely
direct mode of action of NAA in the mouth, supported by the similar outcomes in the case that the
mode of action were systemic.

The GMO Panel notes that the intakes of NAA and, therefore, the outcome of the risk
characterisation might vary in the future due to changes in consumption/feeding patterns and, above
all, by the introduction in the market of new products from oilseed rape after the completion of this
risk assessment (e.g. seeds, whey fraction, etc.).

3.3.3.3. Assessment of altered levels of compounds other than NAAs

Compositional analysis studies indicated that the levels of some endogenous compounds (other
than NAAs) were altered in oilseed rape 73496 when compared to its conventional counterpart and
showed a lack of equivalence with a set of non-GM oilseed rape reference varieties. These compounds
were the free amino acid glycine, crude fibre, crude fat, ADF, NDF, magnesium, pyridoxine,
pantothenic acid and 4-hydroxyglucobrassicin (see Section 3.2.4). The GMO Panel assessed the
toxicological relevance of these findings taking into account the biological role of the compounds and
the magnitude of the changes observed and concluded that they do not pose toxicological concern for

Table 12: Assessment of NAA based on predicted exposures from feed uses of oilseed rape using a
CSAF approach

Type of effect Species
CSAF (see
Table 11)

Predicted high
exposure mg/kg

bw per day

MoE vs NOAEL
(229.5 mg/kg
bw per day)

Acceptable

Direct/local
(more likely
mode of action)

All, body weight basis
(mg/kg bw per day)

8 25 9 Yes

All concentration
basis (ppm)

8 300–700 ppm 8–34$ Yes

Systemic Ruminants 1.3 14.5 16 Yes

Horse 8 11** 21 Yes

Swine 8 25.9 9 Yes

$: NOAEL = 5,530 ppm; LOAEL= 10,143 ppm based on concentrations in the rat 90 day study on NAA.
**: Based on feed consumption values used by EFSA CONTAM Panel (2019).

Rat to standard species*
Standard species to different life

stages or related species Overall
CSAF

Toxicokinetic Toxicodynamic Toxicokinetic Toxicodynamic

Systemic action

Ruminant 0.17 2.5 1 3.16 1.3
Swine 1 2.5 1 3.16 8

Other monogastric 1 2.5 3.16 3.16 25

*: Standard species are those used in the toxicokinetic studies i.e. goat for ruminants; pigs for swine and other monogastric
animals.
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food and feed from oilseed rape 73496. Further information on the safety of these compounds is
provided in Section 3.3.5.

3.3.3.4. Testing of the whole genetically modified food/feed40

Based on molecular characterisation studies and on the outcome of compositional analysis, the
GMO Panel considered that animal studies on the whole food/feed are not necessary to conclude on
the safety of this crop (EFSA GMO Panel, 2011a).

In particular, the assessment of the increased levels of N-acetyl amino acids noted at compositional
analysis was based on specific NAA, NAG and NAT toxicological studies, dietary exposure assessment,
information on the biological relevance and metabolism of these compounds and on a subsequent risk
characterisation.

The applicant spontaneously provided a 90-day toxicity study in rats and a 42-day study in broilers
receiving diets containing whole food/feed derived from oilseed rape 73496, which were assessed by
the GMO Panel.

a) 90-day toxicity study in rats41

A total of 168 Crl:CD(SD) rats (84 per sex) were randomly allocated to seven treatment groups
(one control group, two oilseed rape 73496 test groups – treated or untreated with the intended
herbicide, respectively – and three reference variety test groups, n = 12/sex per group) according to a
randomised complete block design. Animals were individually housed.

This study is adapted from OECD Test Guideline 408 (OECD, 1998) aligned with EFSA Scientific
Committee guidance (2011) and complies with the principles of GLP, except for the lack of analytical
determination of concentration, homogeneity and stability of the test item in the formulated diets. It is
recognised that it may not always be technically possible to generate information on homogeneity and
concentration for a test item administrated or formulated, and the lack of such data and its impact on
the validity of a study should be justified (OECD, 2018). The GMO Panel acknowledges that there are
no practical methods available to analytically determine these for complex test items such as oilseed
rape meal and oil in formulated diets and considers adequate the application of proper diet preparation
procedures and regular evaluations of the mixing methods. Based on the information received from
the applicant, the GMO Panel considers that the diet preparation procedures in place in the facilities
where the diets for this study were prepared guaranteed their homogeneity and the proper
concentration of the respective test or control items. As regards the stability of the test, control and
reference items (defatted toasted meals and oil) in the diet, the applicant considers that, in
accordance with product expiration declared by the diet manufacturer, the constituents of the diets
used in these studies are stable for the duration of the treatment. The GMO Panel considers this
justification acceptable.

The diets contained around 19–24% (w/w) dehulled defatted toasted meal and around 1.5–2.1%
oil from an appropriate conventional counterpart (control diet), from oilseed rape 73496 treated with
the intended herbicide (IH test diet) or with conventional herbicides (CH test diet), or from three
commercial oilseed rape varieties, respectively (reference diets). The seeds used to produce the test
and control materials (i.e. defatted toasted meal) were sent to the processing facility in about one
month from harvest, then maintained at room temperature for about one month and finally processed
into defatted toasted meal. The oilseed fractions were introduced in substitution of other dietary
ingredients and balanced diets were prepared according to the specifications for PMI Certified Rodent
LabDiet#5002 within four months from processing. The identity of the GM materials (oilseed rape
seeds and dehulled defatted toasted meal) and of the diets was confirmed by PCR, and ELISA was
used to assess the presence of the GAT4621 protein in the diets. The test item, control and reference
materials, as well as test, control and reference diets were analysed for proximates, amino acids,
minerals, mycotoxins, pesticides and antinutrients. In addition, the concentrations of NAA, NAG, NAT,
NAGly and NAS were measured in the diets and demonstrated to be higher in GM diets42 when

40 Dossier Part II Scientific information/Section A, 4.5.
41 The study was also published (Delaney B, Appenzeller LM, Roper JM, Mukerji P, Hoban D and Sykes GP, 2014. Thirteen week

rodent feeding study with processed fractions from herbicide tolerant (DP-Ø73496-4) canola, Food and Chemical Toxicology,
66, 173-184, ISSN 0278-6915, https://doi.org/10.1016/j.fct.2014.01.042

42 Oilseed rape 73496 containing diets (CHT and IHT, respectively): NAA: 694 � 5 and 609 � 94 µg/g DM; NAG: 12.7 � 1.3
and, 15.2�1. Control diet: NAA: 2.47 � 0.66 µg/g DM; NAG: 1.55 � 0.22 µg/g DM. Reference varieties diets: NAA up to 2.85
� 0.61; NAG up to 1.63 � 0.19 µg/g DM. Dossier: Part II, Section A, 4.5, Annex 41_PHI-2011-047.
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compared to the control diet and reference varieties diets. In-life procedures and observations and
terminal procedures were conducted in accordance to OECD Test Guideline 408.

Histopathology was carried out on control and GM diet fed rats; on gross lesions from all groups;
and on the thymus from all females and one intercurrent death.

Three intercurrent deaths occurred during the treatment period; one male given the control diet
and one male given a reference diet were killed due to urinary tract calculi; one male given the (CHT)
GM diet was sacrificed due to osteoarthritis. These deaths were considered incidental.

No test diet-related adverse findings were identified in any of the investigated parameters. A small
number of statistically significant findings were noted but these were not considered adverse effects of
treatment for one or more of the following reasons:

• were within the normal variation for the parameter in rats of this age;
• were of small magnitude;
• were identified at only a small number of time intervals with no impact on the overall value;
• exhibited no consistent pattern with related parameters or endpoints.

Detailed description of statistically significant findings identified in rats given diets containing oilseed
rape 73496 is reported in Appendix A, Table A.2.

No gross pathology findings related to the administration of the test diets were observed at
necropsy, and the microscopic examinations of a wide range of organs and tissues did not identify
relevant differences in the incidence or severity of the histopathological findings related to the
administration of the test diet compared to the control group.

The GMO Panel concludes that no treatment-related adverse effects were observed in rats after
feeding diets including 19–24% dehulled defatted toasted meal and 1.5–2.1% oil from oilseed rape
73496 for 90 days. The GMO Panel notes that the applicant only tested one dose level. However, the
dose tested was close to the highest possible without inducing nutritional imbalance according to the
current knowledge, and in accordance with the limit test dose as described in OECD TG 408.
Therefore, this is not considered to affect the above conclusions.

b) 42-day feeding study in broiler43

A 42-day feeding study with chickens for fattening (day-old Ross 708) was provided. Groups of
animals given diets including meal from oilseed rape 73496, treated and untreated with the intended
herbicide, were compared to animals given diets containing the conventional counterpart and to four
non-GM commercial oilseed rape varieties (45H72, 45H73, 46A65, and 44A89). The chickens were fed
starter (day 0–21), grower (day 22–35) and finisher diets (day 36–42) in mesh form containing 10%,
20% and 0% of rapeseed meal, respectively. Since all diets in the last experimental week were free of
rapeseed meal, all statistical analyses of the zootechnical parameters were performed for the periods
0–35 days and 0–42 days. Since male and female birds were kept together in cages, the influence of
gender on feed intake and feed:gain ratio could not be evaluated, and for all zootechnical parameters
the potential interaction of treatment x sex could not be calculated. Thirty-five-day body weight, and
feed:gain ratio did not show differences between the treated and untreated GM diets and the
conventional counterpart, average body weight was 1,678 g, feed:gain ratio 1.85. These data were
within the 95% confidence interval established by the four diets with non-GM commercial oilseed rape
varieties (1,494–1,836 g bw, 1.59–1.88 feed:gain ratio), however, they were considerably below the
reference values (2,005 g bw, 1.55 feed:gain ratio) published by the breeder company for the strain.44

Consequently, the power of the study to detect adverse effects is reduced. The EFSA GMO
Panel considered this study not sensitive enough to detect potential small adverse effects on
performance, since the performance data (body weight, feed intake and feed to gain ratio) collected
on day 35 (end of grower phase) were not considered sufficient to conclude on the safety of dietary
rapeseed 73496 in chicken for fattening; moreover performance data reported were considerably
below the reference values published by the breeder company Ross for the broiler strain 708 used in
the study.

43 The study was also published (McNaughton J, Roberts M, Rice D, Smith B, Hong B, Delaney B, Iiams C. Comparison of broiler
performance and carcass yields when fed diets containing genetically modified canola meal from event DP-Ø73496-4, near-
isogenic canola meal, or commercial canola meals. Poult Sci. 2014 Jul;93(7):1713–1723. https://doi.org/10.3382/ps.2013-
03645).

44 Aviagen, 2012. Ross 708 Broiler Performance Objectives. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_
Broiler/Ross708BroilerPerfObj2012R1.pdf
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3.3.4. Allergenicity

The strategies to assess the potential risk of allergenicity focus: i) on the source of the recombinant
protein; ii) on the potential of the newly expressed protein to induce sensitisation or to elicit allergic
reactions in already sensitised persons; and iii) on whether the transformation may have altered the
allergenic properties of the modified plant. Furthermore, the assessment also takes into account
potential adjuvant properties of the newly expressed proteins, which is defined as the ability to
enhance an allergic reaction.

3.3.4.1. Assessment of allergenicity of the newly expressed proteins45

A weight-of-evidence approach was followed, taking into account all the information obtained on
the newly expressed protein, as no single piece of information or experimental method yield sufficient
evidence to predict allergenicity (Codex Alimentarius, 2009, 2011a–c).

The gat4621 gene originates from B. licheniformis, which is not considered to be an allergenic
source.

Updated bioinformatic analyses46 of the amino acid sequences of the GAT4621 protein, using the
criterion of 35% identity in a sliding window of 80 amino acids, revealed no relevant similarities to
known allergens. The studies on protein stability of the GAT4621 protein have been described in
Section 3.3.2.

The EFSA GMO Panel has previously evaluated the safety of the GAT4621 protein and no concerns
on allergenicity were identified in the context of the application assessed (EFSA GMO Panel, 2013). In
addition, the GMO Panel did not find an indication that the newly expressed protein GAT4621 at the
levels expressed in oilseed rape 73496 might be adjuvants.

In the context of this application, the EFSA GMO Panel considers that there are no indications that
the newly expressed GAT4621 protein in oilseed rape 73496 may be allergenic.

3.3.4.2. Assessment of allergenicity of the whole GM plant47

The GMO Panel regularly reviews the available publications on food allergy to oilseed rape.
However, to date, oilseed rape is not considered a common allergenic food48 (OECD, 2011). Therefore,
the GMO Panel does not request experimental data to analyse the allergen repertoire of GM oilseed
rape.

In the context of this application and considering the data from the molecular characterisation, the
compositional analysis and the assessment of the newly expressed protein (see Sections 3.4.1, 3.4.2
and 3.4.3), the GMO Panel identifies no indications of a potentially increased allergenicity of food and
feed derived from oilseed rape 73496 with respect to that derived from its conventional counterpart.

3.3.5. Nutritional assessment

The intended trait of oilseed rape 73496 is herbicide tolerance, with no intention to alter the
nutritional profile. However, levels of different compounds were significantly different from its
conventional counterpart and showed a lack of equivalence with a set of non-GM reference varieties.
This mainly refers to the levels of NAA, NAG, NAT, the free amino acid glycine, crude fibre, crude fat,
ADF, NDF, magnesium, pyridoxine, pantothenic acid and 4-hydroxyglucobrassicin (see Section 3.2.3).

The safety assessment of the N-acetyl amino acids NAA, NAG and NAT is described in
Section 3.3.3.2. For the remaining compounds, a nutritional assessment was conducted to assess their
biological relevance, the role of oilseed rape as contributor to their total intake and the magnitude and
direction of the observed changes.

3.3.5.1. Human nutrition

The main food commodity derived from oilseed rape regularly consumed by the European
population is oil, which is typically devoid of fibre, proteins/amino acids, water-soluble vitamins (e.g.

45 Dossier Part II Scientific information/Section A5.1.
46 Additional information 9/7/2020.
47 Dossier Part II Scientific information/Section A5.2. Additional information 2/12/14, 22/6/15.
48 Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food

information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of
the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC,
Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and
Commission Regulation (EC) No 608/2004.
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pyridoxine, pantothenic acid) and minerals. The presence in the European market of other oilseed rape
derived food commodities such as protein isolates and oilseed rape powder can be currently
considered as negligible; however, the nutritional assessment also considered the consumption of
these commodities.

Overall, the relatively small increase in crude fat (~ 5%) is not considered relevant for human
nutrition also based on the fact that no significant differences in the profile of fatty acids were
observed as compared to its conventional counterpart. The decrease in free glycine (19–23%) which is
not an essential amino acid does not represent nutritional concerns.

Slightly higher contents of fibre (crude fibre, ADF, NDF) were reported in seeds from oilseed rape
73496 as compared to that of its conventional counterpart (up to 7% for crude fibre). In the context
of human nutrition, fibre is referred to as dietary fibre, which primarily includes non-starch
polysaccharides (mainly cellulose, hemicelluloses, pectins and other hydrocolloids) and lignin (EFSA
NDA Panel, 2010). While protein isolates typically contain very small amounts of fibre, this is one of
the main components of oilseed rape powder (EFSA NDA Panel, 2020). The safety and tolerability of
oilseed rape powder with special focus on its fibre content was confirmed during the risk assessment
of this novel food (EFSA NDA Panel, 2020). The relatively small increase of fibre reported in seeds
from oilseed rape 73496 is unlikely to represent any nutritional concern for humans.

Dietary reference values are set for both pyridoxine (vitamin B6)49 and pantothenic acid (vitamin
B5); deficiency of these vitamins is considered rare (EFSA, 2017c). Foods rich in vitamin B6 include
grains, pulses, nuts, seeds, potatoes and meat and meat products. Together with cruciferous
vegetables, foods rich in pantothenic acid include meat and meat products, eggs, nuts and avocados.
Protein isolates and oilseed rape powder are not typical sources of these water-soluble vitamins.
Therefore, the decrease in the levels of pyridoxine and pantothenic acid in seeds from oilseed rape
73496 does not raise any nutritional concern. Adequate intakes (AI) are also set for magnesium as it is
involved in numerous physiological functions (EFSA NDA Panel, 2015). Foods rich in magnesium are
nuts, whole grains and grain products, fish and seafood, several vegetables, legumes, berries, banana
and some coffee and cocoa beverage preparations. Protein isolates and oilseed rape powder are not
typical sources of this mineral. Therefore, the decrease (up to 7.5%) in the levels of magnesium in
seeds from oilseed rape 73496 does not raise any nutritional concern.

Levels of the glucosinolate 4-hydroxyglucobrassicin in oilseed rape 73496 were around three times
higher than in the conventional oilseed rape (up to 0.290 lmol/g DM). The maximum reported levels
of total glucosinolates in oilseed rape 73496 were 2.59 lmol/g DM, values that were significantly
higher than those in its conventional counterpart (1.81 lmol/g DM) but within the natural variability
represented by non-GM oilseed rape reference varieties (see footnote to Table 3 in Section 3.2.3) and
well below the maximum glucosinolate content of 25 lmol/g at a moisture content of 9% as set-out
for double-zero oilseed rape varieties under Regulation (EC) No 2316/199950. Considering the total
glucosinolate levels in oilseed rape 73496 and that humans are typically exposed to them through the
consumption of Brassicaceae vegetables (cauliflower, cabbages, broccoli, kale, Brussels sprouts, etc.),
no safety concerns are identified related to the increase of 4-Hydroxyglucobrassicin.

Therefore, the changes in glycine, crude fibre, crude fat, ADF, NDF, magnesium, pyridoxine,
pantothenic acid and 4-hydroxyglucobrassicin observed in seeds from oilseed rape 73496 are unlikely
to represent any nutritional concern for humans.

3.3.5.2. Animal Nutrition

Oilseed rape is a valuable protein source of vegetable origin widely used in animal nutrition, mainly
in ration formulations for farmed animal species (e.g. poultry, pigs, cattle and aquaculture). The main
oilseed rape product entering the feed supply chain is the meal (mostly un-hulled but also de-hulled),
left after the removal of the oil (e.g. solvent-extracted and expeller meal). Other oilseed rape products
which may enter the feed chain are the oil and seeds, which may be used as part of the total rations.
On the contrary, the production of oilseed rape protein isolates and concentrates is not a common
industrial practice due to relatively low protein yield and high costs, compared to available alternatives
(Campbell et al., 2016), although there is evidence that oilseed rape protein isolates have been a topic

49 Pyridoxine is one of the derivatives considered as vitamin B6 together with pyridoxal, pyridoxamine and their respective
phosphorylated forms, pyridoxine 50-phosphate, pyridoxal 50-phosphate and pyridoxamine 50-phosphate (PMP).

50 Commission Regulation (EC) No 2316/1999 of 22 October 1999 laying down detailed rules for the application of Council
Regulation (EC) No 1251/1999 establishing a support system for producers of certain arable crops.
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of research also in feed.51 Therefore, their future application cannot be excluded. One of the largest
potential use of rape protein isolates for livestock could be reasonably as milk replacer, which is
primarily used for calves and in piglets. The potential use of whey as a feed ingredient must be
assessed together with the prevalence of protein isolate production. If oilseed rape protein isolate
were to be produced, there is a possibility for oilseed rape solubles (whey) to be used as a feed
ingredient. Although it is very unlikely that oilseed rape protein isolate and the corresponding whey
fraction will be available as commercial feed products, this might be kept under monitoring in the next
future.

4-Hydroxyglucobrassicin is a derivative of glucobrassicin, one of the several glucosinolates that can
be found in Brassicaceae. The GMO Panel considers that the increased level reported in seeds of
oilseed rape 73496 does not represent an issue for animal nutrition. The maximum reported levels of
total glucosinolates in oilseed rape 73496, significantly higher than those in its conventional
counterpart, fall within the natural variability represented by non-GM oilseed rape reference varieties,
and are well below the maximum glucosinolate content set-out for double-zero rapeseed varieties
under Regulation (EC) No 2316/1999 (see Section 3.3.5.1). Moreover, Mejicanos et al. (2016) reports
4-hydroxyglucobrassicin content of 1.2 and 0.3 lmol/g in oilseed rape meal from Brassica napus and
Brassica juncea, showing a certain variability of these compounds across varieties which can be fed to
animals.

Glycine is considered a non-essential amino acid, even though Wu, 2014 suggests that adequate
provision of all amino acid is important to improve efficiency of animal production. The magnitude of
the decrease observed in oilseed rape 73496 (treated and non-treated) as compared to the non-GM
comparator does not constitute an issue for animal nutrition.

Dietary fibre (crude fibre, NDF, ADF) is considered essential for animal health due to its influence
on gastrointestinal tract physiology in animals. The observed increase of crude fibre, ADF, NDF in
oilseed rape 73496 (treated and not treated), as compared to the non-GM comparator does not
constitute an issue for animal nutrition.

The observed increase of crude fat in treated oilseed rape 73496 as compared to the non-GM
comparator does not constitute an issue for animal nutrition.

Magnesium is an essential mineral in animal nutrition, and the diet must supply the adequate
amount to satisfy the requirement. Many feeds are a good source of magnesium, and several
magnesium sources, among which magnesium oxide is the most used, are included in the diet when
the content in feeds is not sufficient, or when antagonists to magnesium absorption are present, i.e.
high level of potassium. The lower level of magnesium found in oilseed rape 73496 (treated and not
treated with the intended herbicide) as compared to non-GM counterpart does not represent an issue
for animal nutrition.

Pyridoxine, a form of vitamin B6, plays an essential role mainly in amino acid metabolism. Vitamin
B6 is produced by microorganisms in intestinal tracts of animals, but whether significant quantities are
absorbed and utilised is in doubt. Muscle, liver, vegetables, whole grain cereals and their by-products,
are among the best sources of pyridoxine. The bioavailability of two common feed ingredients is 65%
for soybean meal with corn varying from 45% to 56% (McDowell and Ward, 2008). The level of
vitamin B6, as other vitamins, contained in all feeds is affected by processing, subsequent storage and
presence of antagonist in some feeds, i.e. hydrazic acid in linseed meal. In ruminants, vitamin B6 is
mainly obtained by microbial synthesis in the rumen. The decrease observed in the non-treated oilseed
rape as compared to the non-GM comparator does not constitute an issue for animal nutrition,
considering also that hydrosoluble vitamins can be added in the diet of animals.

Pantothenic acid is a component of enzymes involved in carbohydrate, fat and protein metabolism.
This vitamin is found in several feeds, i.e. wheat and rice bran, yeast, but the quantity present is
generally insufficient to satisfy nutrient requirements for most monogastric species, so as many other
micronutrients is added to the diet of animals. Pantothenic acid, as many other hydrosoluble vitamins,
is synthesised in the rumen. The decrease observed in the non-treated oilseed rape as compared to
the non-GM comparator does not constitute an issue for animal nutrition.

3.3.6. Post-market monitoring of GM food/feed

In accordance with Article 6(5)(e) of Regulation (EC) No 1829/2003, based on the outcome of the
risk assessment of oilseed rape 73496 and, in particular, on the safety assessment of NAA, EFSA

51 http://www.canproingredients.ca/research_development.php
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recommends to implement a PMM plan. This PMM plan should initially focus on the collection of import
data to Europe of oilseed rape 73496 and/or its products, entering the food and feed supply chains. If
imports are identified, consumption data should be collected for humans and animals (e.g. through
dietary surveys) on oilseed rape 73496 and/or its food and feed products to confirm the predicted
consumption data and to verify that the conditions of use are those considered during the pre-market
risk assessment.

3.3.7. Conclusion on the food/feed safety assessment

The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the
GAT4621 protein as expressed in oilseed rape 73496 and finds no evidence that genetic modification
would change the overall allergenicity of oilseed rape 73496.

No safety concerns are identified with regards to the increased levels of the N-acetyl amino acids
NAA, NAG and NAT in food and feed derived from oilseed rape 73496 as considered during this risk
assessment. The GMO Panel recommends to implement a PMM plan to confirm the predicted
consumption of oilseed rape 73496 and/or its food and feed products and the application of conditions
of uses considered during the pre-market risk assessment.

Based on the outcome of the comparative assessment and the nutritional assessment, the GMO
Panel concludes that the consumption of oilseed rape 73496 does not represent any nutritional
concern, in the context of the scope of this application.

The GMO Panel concludes that oilseed rape 73496, as described in this application, is as safe as its
conventional counterpart and the non-GM reference varieties tested.

3.4. Environmental risk assessment and monitoring plan52

3.4.1. Environmental risk assessment

Considering the scope of application EFSA-GMO-NL-2012-109, which excludes cultivation, the
environmental risk assessment (ERA) of oilseed rape 73496 mainly takes into account: 1) the exposure
of microorganisms to recombinant DNA in the gastrointestinal tract of animals fed GM material and of
microorganisms present in environments exposed to faecal material of these animals (manure and
faeces); and 2) the accidental release into the environment of viable oilseed rape 73496 seeds during
transportation and/or processing (EFSA GMO Panel, 2010b).

3.4.1.1. Persistence and invasiveness of the GM plant

Oilseed rape (Brassica napus AACC) is an annual allotetraploid species (2n = 38, genome
constitution AACC), which has probably evolved through hybridisation and polyploidisation between the
two diploid species Brassica rapa (2n = 20, AA) and Brassica oleracea (2n = 18, CC). Oilseed rape
seeds have the ability to survive in soils for more than 10 years (Hails et al., 1997; Begg et al., 2006;
Lutman et al., 2004; Lutman et al., 2005; Lutman et al., 2008; Mess�ean et al., 2007; D’Hertefeldt
et al., 2008; Gruber et al., 2008; Beckie and Warwick, 2010; Peltonen-Sainio et al., 2014; Belter, 2016)
and demographic studies and surveys have shown the ability of oilseed rape (B. napus) seed to
establish self-perpetuating populations outside agricultural areas, mainly in semi-natural and ruderal
habitats in different countries (e.g. Crawley et al., 1993; Pascher et al., 2010, 2017; Devos et al.,
2012; Bauer-Panskus et al., 2013; Hecht et al., 2014; Schulze et al., 2014; Katsuta et al., 2015; Bailleul
et al., 2016; Busi and Powles, 2016; Franzaring et al., 2016; Nishizawa et al., 2016). Oilseed rape is
generally regarded as an opportunistic species, which can take advantage of disturbed sites (e.g.
mowed areas, semi-natural habitats) to germinate and capture resources rapidly. In undisturbed
natural habitats, oilseed rape lacks the ability to establish stable populations over successive years,
possibly due to the absence of competition-free germination sites (Crawley et al., 1993, 2001; Meffin
et al., 2015) and exposure to biological and abiotic stressors likely limiting fitness (COGEM, 2013; Busi
and Powles, 2016). Once established in competition-free germination sites, feral populations decline
over a period of years (Crawley and Brown, 1995, 2004; Knispel et al., 2008; Squire et al., 2011;
Banks, 2014; Busi and Powles, 2016). However, if habitats are disturbed on a regular basis, then feral
populations can persist for longer periods (Pessel et al., 2001; Claessen et al., 2005a, 2005b; Garnier
et al., 2006; Elling et al., 2009; Pascher et al., 2010; Banks, 2014) and can have the characteristics of
a weed or ruderal (Banks, 2014). The persistence or recurrence of a population in one location is

52 Dossier Part II Scientific information/Sections E3 and E4. Additional information: 28/1/2014, 3/10/2016 and 28/9/2018.
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variously attributed to replenishment with fresh seed spills, to recruitment from seed emerging from
the soil seedbank or shed by resident feral adult plants or to redistribution of feral seed from one
location to another (Pivard et al., 2008a, 2008b; Banks, 2014; Bailleul et al., 2016). Banks (2014)
showed that the substantial increase in small and large (100–1,000 plants) feral populations occurred
throughout the studied area during study years in Scotland.

It is unlikely that the intended trait of oilseed rape 73496 will provide a selective advantage to
oilseed rape plants, except when they are exposed to glyphosate-containing herbicides. Should these
plants be exposed to such herbicides, their abundance may increase locally (Londo et al., 2010, 2011;
Watrud et al., 2011), allowing the establishment of transient populations. However, the likelihood of
such an event will be restricted to managed environments, which may occasionally be treated with
such herbicides. Moreover, this fitness advantage will not allow oilseed rape 73496 to overcome other
biological and abiotic factors (described above) limiting plant’s persistence and invasiveness.

In conclusion, the GMO Panel considers it unlikely that oilseed rape 73496 will differ from
conventional oilseed rape varieties in its ability to survive and establish feral populations under
European environmental conditions in case of accidental release into the environment of viable oilseed
rape 73496 seeds.

3.4.1.2. Potential for gene transfer

A prerequisite for any gene transfer is the availability of pathways for the transfer of genetic
material, either through HGT of DNA or through vertical gene flow via cross-pollination from feral
plants originating from spilled seeds.

Plant-to-microorganism gene transfer

Genomic DNA can be a component of food and feed products derived from oilseed rape. It is well
documented that such DNA becomes substantially degraded during processing and digestion in the
human or animal gastrointestinal tract. However, bacteria in the digestive tract of humans and animals,
and in other environments, may be exposed to fragments of DNA, including the recombinant fraction
of such DNA.

Current scientific knowledge of recombination processes in bacteria suggests that horizontal
transfer of non-mobile, chromosomally located DNA fragments between unrelated organisms (such as
from plants to bacteria) is not likely to occur at detectable frequencies under natural conditions (for
further details, see EFSA, 2009).

The only mechanism known to facilitate horizontal transfer of non-mobile, chromosomal DNA
fragments to bacterial genomes is homologous recombination. This requires the presence of at least
two stretches of DNA sequences that are similar in the recombining DNA molecules. In the case of
sequence identity with the transgene itself, recombination would result in gene replacement. In the
case of identity with two or more regions flanking recombinant DNA, recombination could result in the
insertion of additional DNA sequences in bacteria and thus confer the potential for new properties.

In addition to homology-based recombination processes, at a lower transformation rate, the non-
homologous end joining and microhomology-mediated end joining are theoretically possible (H€ulter
and Wackernagel, 2008; EFSA, 2009). Independently of the transfer mechanism, the GMO Panel did
not identify a selective advantage that a theoretical HGT would provide to bacterial recipients in the
environment.

The updated bioinformatic analysis of the inserted DNA did not identify sufficient sequence identity
with bacterial DNA (including the gat4621 gene, which was originally derived from B. licheniformis, but
which has been codon-optimised for expression in plants) that would facilitate homologous
recombination-mediated gene transfer between plants and bacteria.

In summary, there is no indication for an increased likelihood of horizontal transfer of DNA from
oilseed rape 73496 to bacteria. Given the nature of the recombinant DNA, the GMO Panel identified no
safety concern linked to an unlikely but theoretically possible HGT.

Plant-to-plant gene transfer

For plant-to-plant gene transfer to occur, imported GM oilseed rape seeds need to germinate and
develop into plants in areas containing sympatric wild relatives and/or cultivated oilseed rape with
synchronous flowering and environmental conditions favouring cross-pollination.

Oilseed rape is an open pollinating crop plant capable of cross-pollinating with other Brassica crops
(Eastham and Sweet, 2002). It can also spontaneously hybridise with sexually compatible feral and wild
relatives. Several hybrids between oilseed rape and wild relatives have been reported in the scientific
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literature. Evidence suggests that transgenes could readily introgress into B. rapa, B. juncea and
B. oleracea, and is expected to be rare with B. nigra, Hirschfeldia incana, Raphanus raphanistrum and
Sinapis arvensis (reviewed by Liu et al., 2013; Ellstrand et al., 1999, Ellstrand et al., 2013; FitzJohn
et al., 2007; Devos et al., 2009; Tang et al., 2018). Under field conditions, transgene introgression has
only been confirmed for B. rapa (Hansen et al., 2001, 2003; Jørgensen et al., 2004; Norris et al., 2004;
Warwick et al., 2003, 2008; Jørgensen, 2007). For transgene introgression to occur, feral GM oilseed
rape must require some overlap in flowering in time and space with compatible relatives. Subsequently,
transgenes must be transmitted through successive backcross generations or selfing, so that they
become stabilised into the genome of the recipient (de Jong and Rong, 2013; Garnier et al., 2014).
Because of these barriers (Luijten et al., 2015), reported incidences of hybrids and backcrosses with
B. rapa were found to be low in fields (Jørgensen et al., 2004; Norris et al., 2004; Warwick et al., 2008;
Elling et al., 2009), or at ports, along roadsides and riverbanks (Saji et al., 2005; Aono et al., 2006,
2011; Yoshimura et al., 2006; Elling et al., 2009; Katsuta et al., 2015; Luijten et al., 2015).

The GMO Panel does not consider the occurrence of feral oilseed rape 73496 plants, pollen
dispersal and consequent cross-pollination as environmental harm in itself, as there is no evidence that
the intended trait will enhance the vertical gene flow potential, or fitness, persistence or invasiveness
of feral oilseed rape 73496, or cross-compatible plants such as hybridising wild relatives. However,
when exposed to glyphosate-containing herbicides, occasional cross-compatible plants that acquired
the herbicide tolerance trait through vertical gene flow are likely to exhibit a selective advantage,
which may lead to their increased abundance. The likelihood of such an event to happen will be
restricted to managed environments, which may occasionally be treated with such herbicides, so that
environmental impacts will be minimal. Therefore, the GMO Panel considers that the acquisition of the
herbicide tolerance trait by cross-compatible plants would not create additional environmental impacts.

In conclusion, the GMO Panel considers that the likelihood of environmental effects because of the
spread of genes from oilseed 73496 rape in Europe will not differ from that of conventional oilseed
rape varieties.

3.4.1.3. Interactions of the GM plant with target organisms

Taking the scope of application EFSA-GMO-NL-2012-109 (no cultivation) and thus the absence of
target organisms into account, potential interactions of feral oilseed rape 73496 plants arising from
seed import spills with target organisms are not considered a relevant issue.

3.4.1.4. Interactions of the GM plant with non-target organisms

Given that environmental exposure of non-target organisms to spilled GM seeds or feral GM oilseed
rape plants arising from spilled oilseed rape 73496 seeds is limited, and because ingested proteins are
degraded to a great extent before entering the environment through faecal material of animals fed GM
oilseed rape, potential interactions of oilseed rape 73496 with non-target organisms are not considered
by the GMO Panel to raise any environmental safety concern.

3.4.1.5. Interactions with the abiotic environment and biogeochemical cycles

Given that environmental exposure to spilled seeds or feral oilseed rape 73496 plants arising from
seed import spills is limited, and because most proteins are degraded before entering the environment
through faecal material of animals fed GM oilseed rape, potential interactions with the abiotic
environment and biogeochemical cycles are not considered by the GMO Panel to raise any
environmental safety concern.

3.4.2. Post-market environmental monitoring

The objectives of a post-market environmental monitoring (PMEM) plan, according to Annex VII of
Directive 2001/18/EC, are to: 1) confirm that any assumption regarding the occurrence and impact of
potential adverse effects of the GMO, or its use, in the ERA are correct; and 2) identify the occurrence
of adverse effects of the GMO, or its use, on human health or the environment that were not
anticipated in the ERA.

Monitoring is related to risk management, and thus, a final adoption of the PMEM plan falls outside
the mandate of EFSA. However, the GMO Panel gives its opinion on the scientific rationale of the PMEM
plan provided by the applicant (EFSA GMO Panel, 2011b).

As the ERA does not identify potential adverse environmental effects from oilseed rape 73496, no
case-specific monitoring is required.
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The PMEM plan proposed by the applicant for oilseed rape 73496 includes: 1) the description of an
approach involving operators (federations involved in import and processing), reporting to the
applicant, via a centralised system, any observed adverse effect(s) of GMOs on human health and the
environment; 2) a coordinating system established by EuropaBio for the collection of information
recorded by the various operators; and 3) the review of relevant scientific publications retrieved from
literature searches (Lecoq et al., 2007; Windels et al., 2008). The applicant proposes to submit a
PMEM report on an annual basis and a final report at the end of the authorisation period.

The scope of the PMEM plan provided by the applicant is consistent with the intended uses of
oilseed rape 73496. The GMO Panel agrees with the reporting intervals proposed by the applicant in its
PMEM plan.

3.4.3. Conclusion on the environmental risk assessment and monitoring plan

It is unlikely that oilseed rape 73496 would differ from conventional oilseed rape varieties in its
ability to persist under European environmental conditions. Considering the scope of the application
EFSA-GMO-NL-2012-109, interactions of feral oilseed rape 73496 plants with the biotic and abiotic
environment are not considered to be relevant issues. The analysis of HGT from oilseed rape 73496 to
bacteria does not indicate a safety concern. Therefore, considering the introduced trait, the outcome
of the agronomic and phenotypic analysis, and the routes and levels of exposure, the GMO
Panel concludes that oilseed rape 73496 would not raise safety concerns in the event of accidental
release of viable GM oilseed rape seeds into the environment.

The scope of the PMEM plan provided by the applicant and the reporting intervals are in line with
the intended uses of oilseed rape 73496.

4. Conclusions

The GMO Panel was asked to carry out a scientific assessment of oilseed rape 73496 for import,
processing and food and feed uses in accordance with Regulation (EC) No 1829/2003.

The molecular characterisation data establish that oilseed rape 73496 contains a single insert
consisting of one copy of the gat4621 expression cassette. Upon transformation, a region of
chromosome C02 was potentially inverted and a putative tpt gene interrupted. The relevance of the
gene interruption and potential chromosomal inversion for the risk assessment of oilseed rape 73496 is
addressed. Bioinformatic analyses of the sequences encoding the newly expressed protein and other
ORFs within the insert or spanning the junctions between the insert and genomic DNA do not raise
any safety concerns. The stability of the inserted DNA and introduced trait is confirmed over several
generations. The levels of the GAT4621 protein were obtained and reported adequately. The protein
characterisation data of the plant- and microbial-derived GAT4621 proteins indicate that both proteins
are equivalent, and thus, that the microbial-produced protein (2 batches) can be used in the safety
studies.

None of the identified differences in the agronomic/phenotypic endpoints between oilseed rape
73496 and its conventional counterpart needs further assessment. Among the differences identified in
seed composition between oilseed rape 73496 and its conventional counterpart the levels of NAA, NAG
and NAT, the free amino acid glycine, crude fibre, crude fat, ADF, NDF, magnesium, pyridoxine,
pantothenic acid and 4-hydroxyglucobrassicin were further assessed and found not to raise nutritional
and safety concerns.

No safety concerns are identified regarding toxicity and allergenicity of the GAT4621 protein as
expressed in oilseed rape 73496. No evidence is found that the genetic modification would change the
overall allergenicity of oilseed rape 73496. Based on the outcome of the comparative and nutritional
assessments, the consumption of oilseed rape 73496 does not represent any nutritional concern, in the
context of the scope of this application.

The implementation of a PMM plan is recommended to confirm the predicted consumption of
oilseed rape 73496 and/or its food and feed products; and the application of conditions of uses
considered during the pre-market risk assessment.

There is a low likelihood of environmental effects resulting from the accidental release of viable
seeds from oilseed rape 73496 into the environment. The PMEM plan and reporting intervals are in line
with the intended uses of oilseed rape 73496.

The GMO Panel concludes that oilseed rape 73496, as described in this application, is as safe as its
conventional counterpart and the non-GM oilseed rape reference varieties tested with respect to
potential effects on human and animal health and the environment.
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5. Documentation as provided to EFSA

• Letter from the Competent Authority of The Netherlands received on 24 May 2012 concerning a
request for authorization of the placing on the market of oilseed rape 73496 submitted in
accordance with Regulation (EC) No 1829/2003 by Pioneer Overseas Corporation.

• Application EFSA-GMO-NL-2012-109 validated by EFSA, 4 December 2012.
• Request for supplementary information to the applicant, 20 February 2013.
• Request for supplementary information to the applicant on behalf of EURL-GMFF, 2 April 2013.
• Receipt of supplementary information from the applicant, 9 April 2013.
• Receipt of supplementary information, from the applicant to EURL-GMFF, 26 April 2013.
• Request for supplementary information, from EURL-GMFF to the applicant, 22 May 2013.
• Receipt of supplementary information, from the applicant to EURL-GMFF, 4 June 2013.
• Request for supplementary information to the applicant, 13 August 2013.
• Receipt of supplementary information from the applicant, 17 September 2013.
• Request for supplementary information to the applicant, 12 December 2013.
• Receipt of supplementary information from the applicant, 28 January 2014.
• Request for supplementary information to the applicant, 11 July 2014.
• Request for supplementary information to the applicant, 8 December 2014.
• Receipt of supplementary information from the applicant, 23 January 2015.
• Request for supplementary information to the applicant, 11 March 2015.
• Receipt of supplementary information from the applicant, 16 April 2015.
• Receipt of supplementary information from the applicant, 27 April 2015.
• Receipt of supplementary information from the applicant, 29 September 2015.
• Request for supplementary information to the applicant, 2 December 2015.
• Receipt of supplementary information from the applicant, 15 December 2015
• Request for supplementary information to the applicant, 29 February 2016.
• Receipt of supplementary information from the applicant, 29 April 2016.
• Request for supplementary information to the applicant, 19 May 2016.
• Receipt of supplementary information from the applicant, 3 October 2016.
• Receipt of supplementary information submitted spontaneously by the applicant, 22 November

2016.
• Request for supplementary information to the applicant, 2 December 2016.
• Request for supplementary information to the applicant, 16 December 2016.
• Receipt of supplementary information from the applicant, 2 May 2017.
• Receipt of supplementary and spontaneous information from the applicant, 29 August 2017.
• Request for supplementary information to the applicant, 6 October 2017.
• Receipt of supplementary information from the applicant, 6 December 2017.
• Request for supplementary information to the applicant, 19 December 2017.
• Receipt of supplementary information from the applicant, 20 June 2018.
• Request for supplementary information to the applicant, 3 July 2018.
• Receipt of supplementary information from the applicant, 28 September 2018.
• Request for supplementary information to the applicant, 29 October 2018.
• Request for supplementary information to the applicant, 13 November 2018.
• Receipt of supplementary information from the applicant, 18 December 2018.
• Receipt of supplementary information from the applicant, 10 January 2019.
• Receipt of supplementary information submitted spontaneously by the applicant, 16 April 2019.
• Request for supplementary information to the applicant, 27 May 2019.
• Request for supplementary information to the applicant, 23 April 2020.
• Request for supplementary information to the applicant, 18 May 2020.
• Receipt of supplementary information from the applicant, 9 July 2020.
• Receipt of supplementary information from the applicant, 10 September 2020.
• Request for supplementary information to the applicant, 7 October 2020.
• Receipt of supplementary information from the applicant, 8 October 2020.
• Request for supplementary information to the applicant, 14 October 2020.
• Receipt of supplementary information from the applicant, 10 November 2020.
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ADF acid detergent fibre
ATG translational start codons
bp base pair
bw body weight
dw dry weight
ELISA enzyme-linked immunosorbent assay
ERA environmental risk assessment
FA fatty acid
fw fresh weight
GLP good laboratory practice
GM genetically modified
GMO genetically modified organism
GMO Panel EFSA Panel on Genetically Modified Organisms
HGT horizontal gene transfer
HR homologous recombination
IgE immunoglobulin E
JSA Junction Sequence Analysis
LOQ limit of quantification
MS mass spectrometry
NCBI National Center for Biotechnology Information
NGS Next Generation Sequencing
NDF neutral detergent fibre
OECD Organisation for Economic Co-operation and Development
ORF open reading frame
PCR polymerase chain reaction
PMEM post-market environmental monitoring
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
T-DNA transfer-DeoxyriboNucleic Acid
UTR untranslated region
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Appendix A – Statistically significant findings in toxicological studies

Table A.1: Statistically significant findings in GAT4621 protein treated mice in the 28-day study

Statistically
significant
parameter/
endpoint

Finding GMO Panel interpretation

Defecation score
(count)

Decrease in males from the low and high
dose groups, when compared to the basal
control group only

Incidental, within normal variation, not an
adverse effect of treatment.

Mean monocyte
counts (%)

Decrease in the GAT4621 intermediate
(–51%) and high (–44%) dose groups
when compared to BSA control group. No
statistically significantly differences in
comparison to the basal control group.

No changes in the absolute mean monocyte
count, no dose relationship. Expression of
normal variability, not an adverse effect of
treatment.

Mean eosinophil count
(absolute)

Increase in GAT4621 high dose group males
compared to both control groups (around
70%, 0.07 vs. 0.04)

All individual values within the concurrent
control ranges. Expression of normal
variability, not associated with significant
changes in total White Blood Cell Count
(WBC) not an adverse effect of treatment.

Mean alanine
aminotransferase
(U/L)

Increase in GAT4621 intermediate dose
group females compared to both control
groups (41 U/L vs 31 or 28 U/L in control
and BSA control, respectively).

Minimal increase, no dose response, no
consistent pattern of increased levels of
other liver marker enzymes, no
histopathology changes in liver. Not an
adverse effect of treatment.

Mean thyroid/
parathyroid gland
weights (g, % to final
body weight, % brain
weight)

Increase in the GAT4621 treated females
compared to both controls (intermediate
dose group: around +17% absolute and
relative to brain weight, and +14% relative
to final body weight; high-dose group:
around +20% absolute and relative to final
body weight)

Minimal increase, no microscopic correlates
in the high dose group. Not an adverse
effect of treatment.

Table A.2: Statistically significant findings in 90-day study on the whole food feed from oilseed rape
73496

Statistically significant
parameter/endpoint

Finding GMO Panel interpretation

Body weight and related
parameters (mean body
weights, mean body weight
gains, mean terminal body
weights, feed intake, overall
feed efficiency)

Increase in males (IHT and
CHT diet groups)

Limited in magnitude (10 - 20% overall), within
the normal variability. Not an adverse effect of
treatment.

Body weight gain (g) Increase in females (day
21–28, IHT and CHT diet
groups)

Transient, not associated with differences in
terminal body weight or cumulative body weight
gains. Not an adverse effect of treatment.

Forelimb grip strength Increased in males
(IHT & CHT diet groups).

Small in magnitude (< 11%), within normal
variation set by reference varieties groups. Not an
adverse effect of treatment.

Serum calcium (mg/dL) Increase in males
(10.2 � 0.5 CHT diet group
vs. 9.9 � 0.4 mg/dL control
diet group)

Small in magnitude (3%), within normal variation.
No changes in related parameters, including
kidney histopathology. Not an adverse effect of
treatment.
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Statistically significant
parameter/endpoint

Finding GMO Panel interpretation

Potassium (mEq/L) Decrease in males
(4.5 � 0.2mEq/L IHT diet
group vs. 4.8 � 0.2 mEq/L
control diet group).

Small in magnitude (6%), within normal variation
set by reference varieties groups. No changes in
related parameters, including kidney
histopathology. Not an adverse effect of
treatment.

Mean heart weight (g, % to
body weight)

Decrease in females (8%
IHT diet group as compared
to control diet group)

Minimal, within normal variation, not associated
with histopathological changes. Absolute and
relative to brain weight values are unaffected. Not
an adverse effect of treatment.

IHT diet: Intended Herbicide Test diet, i.e. containing ingredients from oilseed rape 73496 treated with the intended herbicide.
CHT diet: Conventional Herbicide Test diet, i.e. containing ingredients from oilseed rape 73496 treated with conventional
herbicides.
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Appendix B – Summary statistics of the baseline dietary intake of NAA
(lg/kg bw per day) across European dietary surveys

Dietary intake (lg/kg bw per day)

N
Mean dietary intake 95th percentile dietary intake

Min Median Max Min Median Max

Infants 13 1.1 3.2 15.3 8.7 16.4 47.3

Toddlers 20 3.2 6.9 15.5 10.8 22.7 45.3
Other children 30 3.7 7.2 12.6 11.8 20.3 34.8

Adolescents 30 2.7 5.5 7.6 9.1 17.7 23.7
Adults 35 2.8 16.7 39.9 11.5 42.0 99.0

Elderly 25 2.8 15.7 46.0 9.4 35.6 92.9
Very elderly 17 4.3 14.9 43.3 12.2 36.4 52.7

Pregnant women 5 5.9 7.9 8.8 13.4 21.8 28.3

Lactating women 2 4.6 – 15.2 12.9 – 35.8

NAA: N-acetylaspartate.
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Appendix C – Summary statistics of dietary intake of NAA (lg/kg bw per
day) across European dietary surveys considering the presence of NAA in
conventional foods, and the consumption of protein isolates and oilseed
rape powder from oilseed rape 73496

Dietary intake (lg/kg bw per day)

N
Mean dietary intake 95th percentile dietary intake

Min Median Max Min Median Max

Infants 13 1.1 22.6 144.8 9.0 114.4 651.5
Toddlers 20 6.9 104.4 375.7 36.6 461.9 933.8

Other children 30 17.8 90.9 412.6 55.3 428.6 992.9
Adolescents 30 13.3 56.6 244.6 51.3 252.2 674.1

Adults 35 13.4 52.2 217.5 49.4 211.4 444.8
Elderly 25 11.2 47.9 210.2 32.9 175.3 418.6

Very elderly 17 14.8 44.7 201.3 54.2 193.5 305.1
Pregnant women 5 12.1 40.5 57.1 53.4 164.1 214.9

Lactating women 2 40.0 – 75.6 214.3 – 236.7

NAA: N-acetylaspartate.
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Appendix D – Animal dietary exposure to N-acetyl amino acids via oilseed
rape 73496 and derived feed

a) Technical Dossier: Part II, section B

Dietary exposure to N-Acetylaspartate (NAA), N-Acetylglutamate (NAG) and N-Acetylthreonine
(NAT) in oilseed rape 73496 was estimated by the applicant across different animal species (i.e.
poultry, swine, cattle and sheep), assuming the consumption of oilseed rape meal, the main rapeseed
by-product entering the feed supply chain. A conservative scenario with 100% replacement of
conventional oilseed rape meal by oilseed rape 73496 meal was considered. Mean levels (dry weight)
of NAA, NAG and NAT in un-hulled toasted meal processed from oilseed rape 73496 seeds treated with
the intended herbicide (i.e. glyphosate) were used as occurrence data (see Table D.1). Dietary
exposure was based on estimates for animal body weight, daily feed intake and inclusion rates
(percentage) of oilseed rape meal in diets (OECD, 2009). Estimated dietary exposures in livestock
animals is reported in Table D.1.

b) Additional information: 6/12/2017

The applicant provided estimations of background exposures to NAA in poultry, swine, cattle,
sheep, salmon, dog and cat, based on the theoretical consumption of simple diets (not nutritionally
balanced) consisting of the combination of two selected conventional feed materials (i.e. maize grains
and distillers grain with solubles, forage/silage from maize, alfalfa and grass, soybean, oilseed rape and
fish meal) with known concentration of NAA; a comparison was made with the exposures based on the
theoretical consumption of simple diets containing oilseed rape meal 73496 as one of the combined
feed materials in order to determine whether a safe comparative consumption could be established.
Concentration of NAA for selected feedstuffs and for dog and cat foods were used as occurrence (see
Table D.2). Dietary exposure was based on estimates for body weight and daily feed intake obtained
from EFSA’s guidance on the assessment of the safety of feed additives for the target species (EFSA
FEEDAP Panel, 2017b), combined with feedstuff inclusion rates obtained from OECD Guidance
Document on Residues in Livestock (OECD, 2013), Canola Council of Canada (2015), Food and
Agriculture Organization of the United Nations (FAO, 2017), Advisory Committee on Animal
Feedingstuffs (ACAF Secretariat, 2001), Atti et al. (2007), Mandell et al. (1997), Windsor (2001) and
Purina (personal communication). Estimated dietary exposures in farmed and companion animals is
reported in Table D.2.

Table D.1: Dietary exposure (DE) to NAA, NAG and NAT (mg/kg bw per day) in livestock animals
based on the consumption of oilseed rape meal

Animal species
Body
weight
(kg)

Daily feed intake
(kg DM/Animal)

Inclusion
rate (%)

NAA(a) NAG(b) NAT(c)

mg/kg bw
per day

mg/kg bw
per day

mg/kg bw
per day

Poultry Broiler 1.7 0.12 18 38.99 0.68 0.04

Layer 1.9 0.13 10 21 0.37 0.02
Turkey 7 0.50 20 43.90 0.77 0.04

Swine Breeding 260 6 20 14.18 0.25 0.01
Finishing 100 3 20 18.42 0.32 0.02

Cattle Beef 500 12 – – – –

Dairy 650 25 10 13.43 0.23 0.01

Sheep Ram/ewe 75 2.5 – – – –

Lamb 40 1.7 – – – –

(a): NAA concentration in meal: as-is for poultry and swine (3070 mg/kg); dry weight basis for cattle and sheep (3,489 mg/kg).
(b): NAG concentration in meal: as-is for poultry and swine (53.7 mg/kg); dry weight basis for cattle and sheep (61 mg/kg).
(c): NAT concentration in meal: as-is for poultry and swine (2.90 mg/kg); dry weight basis for cattle and sheep (3.30 mg/kg).
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Table D.2: Dietary exposure (DE) to NAA (mg/kg bw per day) in food-producing and non-food-
producing animals based on the consumption of simple diets consisting of the
combination of two conventional feed materials

Simple
diets

Animal daily
feed intake
(kg DM
animal/kg
body weight)

Inclusion rate (%)/NAA (mg/kg bw per day)

Maize
grain

Maize
forage/
silage

Alfalfa
silage

Grass
silage

Maize
DDGS

Soybean
meal

Fish
meal

Oilseed
rape
meal

Oilseed
rape 73496

meal

Maize
Grain

Chicken for
fattening 0.158/2

70%
0.058

NA NA NA 60%
0.585

40%
0.103

10%
0.274

18%
0.292

18%
49.7

Laying hen
0.106/2

70%
0.039

10%
0.111

NA NA 50%
0.333

25%
0.058

10%
0.184

10%
0.126

10%
18.5

Turkey for
fattening
0.176/3

50%
0.031

NA NA NA 50%
0.357

45%
0.068

10%
0.191

20%
0.224

20%
41.0

Sow lactating
5.28/175

70%
0.022

20%
0.104

NA 20%
0.355

75%
0.274

30%
0.035

10%
0.105

20%
0.121

20%
21.1

Pig for fattening
2.20/60

70%
0.027

NA NA NA 75%
0.333

30%
0.042

10%
0.127

20%
0.148

20%
25.6

Cattle for
fattening
8/400

80%
0.017

80%
0.235

25%
0.333

50%
0.569

30%
0.083

20%
0.022

5%
0.044

20%
0.083

20%
14.0

Dog
0.25/15

45%
0.008

NA NA NA NA 15%
0.011

NA 20%
0.063

20%
11.6

Cat
0.06/3

25%
0.005

NA NA NA NA 30%
0.014

NA 20%
0.071

20%
14.0

Maize
DDGS

Chicken for
fattening
0158/2

70%
0.585

NA NA NA 60%
0.527

40%
0.572

10%
0.743

18%
0.761

18%
50.1

Laying hen
0.106/2

70%
0.333

10%
0.367

NA NA 50%
0.295

25%
0.314

10%
0.440

10%
0.382

10%
18.8

Turkey for
fattening
0.176/3

50%
0.357

NA NA NA 50%
0.326

45%
0.364

10%
0.487

20%
0.520

20%
41.3

Sow lactating
5.28/175

70%
0.274

20%
0.334

NA 20%
0.585

75%
0.252

30%
0.265

10%
0.334

20%
0.351

20%
21.3

Pig for fattening
2.20/60

80%
0.333

NA NA NA 75%
0.306

30%
0.321

10%
0.406

20%
0.427

20%
25.9

Maize
Forage/
Silage

Cattle for
fattening
8/400

80%
0.235

80%
0.218

25%
0.535

50%
0.771

30%
0.285

20%
0.224

5%
0.245

20%
0.284

20%
14.2

Dairy cow
20/650

30%
0.261

60%
0.252

40%
1.03

60%
1.27

30%
0.354

25%
0.262

5%
0.294

10%
0.302

10%
11.0

Grass
Silage

Cattle for
fattening
8/400

80%
0.569

80%
0.771

25%
0.869

50%
0.553

30%
0.619

20%
0.558

5%
0.580

20%
0.618

20%
14.5

Dairy cow
20/650

30%
1.03

60%
1.27

40%
1.80

60%
1.02

30%
1.12

25%
1.03

5%
1.06

10%
1.07

10%
11.8

Sheep/goat
1.2/60

30%
1.00

NA 40%
1.50

90%
0.995

30%
1.06

25%
1.00

10%
1.05

15%
1.04

15%
11.5

Fish
Meal

Salmon
0.0021/012

NA NA NA NA NA 12%
0.156

32%
0.153

20%
0.211

20%
12.4

Note: NA: not applicable.
Concentrations (lg/g) of NAA for select feedstuffs: maize grain 1.04; maize forage/silage 13.6; alfalfa silage 63.3; grass silage
55.3; maize DDGS 11.1; soybean meal 1.42; fish meal 27.4; oilseed rape meal 16.5; oilseed rape 73496 meal 3489; dog food
2.81; cat food 9.50.
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c) Additional information: 29/8/2017

The applicant provided estimations of exposure in calves based on the consumption of milk
replacer, making the conservative assumption that 100% of the protein in milk replacer would be from
oilseed rape protein isolate. Concentration of NAA and NAG in oilseed rape protein isolates were used
as occurrence (see Table D.3). Estimated dietary exposures in calves are reported in Table D.3.

d) Additional information: 20/6/2018

The applicant simulated estimations of exposure in ruminants (i.e. cattle for fattening, dairy cow
and sheep/goat) based on the consumption of oilseed rape solubles (whey), alone or combined with
oilseed rape meal. Dietary exposure was based on estimates for body weight and daily feed intake
obtained from EFSA’s guidance on the assessment of the safety of feed additives for the target species
(EFSA FEEDAP Panel, 2017b), combined with oilseed rape inclusion rates obtained from OECD
Guidance Document on Residues in Livestock (OECD, 2013). Since oilseed rape protein isolate
production is not a common industrial practice, soy protein isolate and the corresponding whey
fraction productions were examined as a surrogate; theoretical inclusion rates of 10% were indeed
derived from the literature, considering the reporting of adverse nutritional impact of soy solubles
(whey) at experimental inclusion rates higher than 10% in diets (Perry et al., 1976; van Eys, 2012).
Concentration of NAA, NAG and NAT, in oilseed rape solubles (whey) were used as occurrence (see
Table D.4).

Table D.3: Dietary exposure to NAA and NAG (mg/kg bw per day) in calves based on the
consumption of milk replacer (protein isolates)

Animal species
NAA(a) NAG(b)

mg/kg bw per day mg/kg bw per day

Calf(c) 0.072 0.0024

(a): NAA concentration in oilseed rape protein isolates (18 mg/kg).
(b): NAG concentration in oilseed rape protein isolates (0.611 mg/kg).
(c): The total protein intake from milk replacer was estimated by multiplying the content of protein in milk replacer powder

(EFSA GMO Panel, 2011c; BAMN, 2008) by the solids content in prepared liquid milk replacer (Krishnamoorthy and Moran,
2011) to determine the total protein content in the prepared liquid milk replacer. This was multiplied by consumption (high
end value) of liquid milk replacer by a calf at 5 days of age (Krishnamoorthy and Moran, 2011) and divided by the average
calf birth weight of a Jersey calf, one of the smaller breeds of cattle (Queensland Government, 2012) to determine the
approximate total protein intake, 4 g/kg BW per day by a 5-day old calf.

Table D.4: Dietary exposure to NAA, NAG and NAT (mg/kg bw per day) in ruminants based on the
‘theoretical’ consumption of whey from oilseed rape protein isolate and oilseed rape
meal, alone or combined

Animal daily feed
intake (kg DM animal/
kg body weight)

Oilseed rape by-products (IR%)

NAA(a) NAG(b) NAT(c)

mg/kg bw
per day

mg/kg bw
per day

mg/kg bw
per day

Cattle for fattening 8/400 Oilseed rape meal (20%) 14.0 0.244 0.0132

Oilseed rape whey (10%) 9.71 0.379 0.00897
Oilseed rape meal + whey (20%) + 10%) 23.7 0.623 0.0222

Dairy cow 20/650 Oilseed rape meal (20%) 10.7 0.188 0.0101
Oilseed rape whey (10%) 14.9 0.583 0.0138

Oilseed rape meal + whey (20%) + 10%) 25.7 0.770 0.0239
Sheep/goat 1.2/60 Oilseed rape meal (20%) 10.5 0.183 0.00989

Oilseed rape whey (10%) 9.71 0.379 0.00897

Oilseed rape meal + whey (20%) + 10%) 20.2 0.562 0.0189

(a): NAA concentration in oilseed rape meal (3070 lg/g) and in Whey 1 Fraction of oilseed rape protein isolate production
(140.8 lg/g).

(b): NAG concentration in oilseed rapemeal (53.7 lg/g) and inWhey 1 Fraction of oilseed rape protein isolate production (5.49 lg/g).
(c): NAT concentration in oilseed rape meal (2.90 lg/g) and in Whey 1 Fraction of oilseed rape protein isolate production (0.13

lg/g).
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Appendix E – NAA risk characterisation by the use of Chemical Specific
Adjustment Factors (CSAF) with reference to exposures to N-acetylated
amino acids found in oilseed rape 73496

Background

• The default assessment factor used when deriving an acceptable human exposure level from
the no-observed adverse effect levels (NOAEL) in animal studies is 100. This factor accounts for
differences in sensitivity between the experimental animal and the average human and for
variations in sensitivity within the human population, to protect sensitive sub-groups. This
factor of 100 has also been utilised an indicator of the expected margin between the NOAELs in
laboratory animal studies and intakes in farm and domestic animals (EFSA FEEDAP Panel,
2017a,b).

• Where specific data are available, it is possible to derive Chemical Specific Adjustment Factors
(also known as Chemical Specific Assessment Factors and Data Derived Evaluation Factors) to
replace the default 100-fold assessment factor. The overall CSAF can be lower or higher than
the default of 100. The concept was developed by comparing the findings seen in humans and
experimental animals exposed to pharmaceuticals and was described in detail by the World
Health Organisation (IPCS, 2005). The CSAF approach splits the default factor of 100 into four
separate factors addressing differences in toxicokinetics (how a compound is absorbed,
metabolised, distributed and excreted) and toxicodynamics (how a given exposure affects the
target tissue) – see Figure E.1. Each individual factor can be modified, if suitable data are
available, and then combined to give the overall CSAF.

• CSAFs have been referenced by EFSA in the Scientific Opinions on Default values (EFSA
Scientific Committee, 2012) and on Uncertainty Analysis (EFSA Scientific Committee et al.,
2018). A CSAF based approach has been used by EFSA in the re-evaluation of phosphates
(EFSA FAF Panel et al., 2019). A CSAF based approach has been proposed by the applicant for
the assessment of N-acetyl aspartate (NAA) present in feed derived from GM 73496 oilseed
rape in the context of this application and this is described below.

• The CSAF approach as above described was developed for assessments of human safety
extrapolating from experimental animal data. In the context of this dossier the extrapolation is
conducted from experimental animals to a representative animal for an order or sub-order. In
this evaluation the interspecies factors are considered to apply between rats and goats/pigs
and the interindividual factors apply between pigs/goats and all respective other relevant
species and life stages. The finding of concern (i.e. salivary gland hypertrophy) was seen in
some but not all of the rats exposed at the effect dose in the relevant studies (see Table 8 in
Section 3.3.3.2 of the scientific opinion) and can be considered as including some conservatism
in affecting the more sensitive individuals. In addition, rats exposed during gestation, lactation
and post-weaning and through maturity showed no greater sensitivity to the salivary gland

Figure E.1: Sub-division of the default 100-fold assessment factor (from IPCS, 2005)
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effects than those exposed as young adults, as noted in a rat two-generation reproductive
toxicity study (see Table 8 in Section 3.3.3.2 of the scientific opinion).

Data submitted in support of a CSAF

• The applicant has performed comparison studies in goats (representative ruminants), pigs
(representative monogastric) and rats (the test species) to investigate the toxicokinetics of
NAA, and results are presented below.

Goats: groups of Boer goats (3/sex per group) received NAA (99.9% pure) in gelatine capsules
at a nominal dose of 25 mg/kg bw per day for 14 days. Blood samples were taken regularly
pre-dosing and from 5 min to 12 h after dosing on days 1 and 14. Samples of blood plasma
were analysed by UHPLC and LC/MS/MS for NAA and aspartic acid.53

Pigs: groups of Landrace cross pigs (3/sex/group) received NAA (99.9% pure) in a small
volume of feed at a nominal dose of 25 mg/kg bw per day for 14 days (actual dose 26 mg/kg
bw per day). Blood samples were taken and analysed as described above for goats.53

Rats: groups of Sprague Dawley rats (6/sex/group) received NAA (99.9% pure in water) by
gavage at doses of 10, 25, 75, 250 or 500 mg/kg bw per day for 14 days. Blood samples were
taken and analysed as described above for goats.53

• In addition to the toxicokinetic studies, relevant information was presented on:

○ the physiology and anatomy of salivary glands,
○ the background exposure to NAA in the diet,
○ the presence and function of NAA in animals,
○ the metabolism of NAA and on the expression levels of the main metabolising enzymes

across species.

The information confirmed that NAA was a natural component of the diet/feed but at levels
much lower than those associated with oilseed rape 73496; that NAA was naturally present in
the body of animals, with a function in the CNS; the initial step in the metabolism is a simple
transamination to give aspartic acid and that the primary metabolising enzymes are present in a
wide range of species (see also Section 3.3.3.2 of the Scientific Opinion).

• The key results from the toxicokinetic studies are presented in Table E.1 below and a summary
comparison between rats, goats and pigs is presented in Table E.2 below. The were no notable
differences between males and females of any species. The derivation of the relevant CSAF is
outlined in Table E.3. Data are available only for the toxicokinetics of NAA across species in
blood plasma with no data on levels in the salivary gland, therefore no adjustment of the
toxicodynamic factors can be performed.

Potential modes of action

a) Direct mode of action in the mouth

When performing a CSAF based assessment it is valuable if the mode of action underlying the
adverse effect is well understood. The mode of action underlying the salivary gland hypertrophy seen
in some rats exposed to NAA (see Section 3.3.3.2) has not been investigated in detail, but generic
information is available. The GMO Panel considered that given the physiological mechanisms controlling
the production of saliva and mechanisms leading to hypertrophy it is likely that the findings in rats
exposed to NAA were due to a direct mode of action of NAA in the mouth. Data supporting this
include:

• Compensatory or adaptative hypertrophy is considered to represent a physiological response to
a repeated/high stimulus (King, 2007; Mastorides & Maronpot, 2002).

• Factors resulting in stimulation of saliva excretion include taste and presence of food in the
mouth. (https://www.britannica.com/science/human-digestive-system/Salivary-glands).

• Saliva is alkaline and buffers acid food, acid compounds stimulate secretion (vinegar/lemon
juice). NAA is acidic – pKa ~ 3.5. (https://hmdb.ca/metabolites/HMDB0000812)

• Some studies indicated that substances may produce salivary gland hypertrophy when given in
the diet but not by gavage. This effect was suggested to be an outcome of the exposure to the

53 Additional information 10/9/2020.
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test substance in the oral cavity rather than being a systemic effect by a limited number of
studies (Wells and Voelkel, 1963; Burdock et al., 2000). In their studies, Wells and Voelkel and
Burdock et al., administered the test substances in question (RP-1 and pancreatin), known to
cause salivary gland enlargement when administered through the diet, both by diet and by
gavage.

• Some chemicals can act systemically to increase saliva secretion (e.g. pesticides which result in
increased levels of acetylcholine) but salivary gland hypertrophy is not a common finding in
toxicity studies with these types of compounds. No reports of NAA having a similar activity
likely to increase acetylcholine were identified.

On the basis that NAA acts on the salivary glands via a direct action in the mouth, the effects
would be essentially independent of absorption, distribution, metabolism and excretion. Therefore,
both toxicokinetic factors can be removed leaving a residual CSAF of 8 based on the toxicodynamic
factors. This would apply when extrapolating from rats to any other species and life-stage (see
Table E.3 below).

b) Systemic MoA

As the mode of action of NAA on salivary glands has not been investigated in detail, a
supplementary CSAF based approach assuming a systemic mode of action was performed to see if any
significant risks might be missed by adopting a direct mode of action approach. Using the data from
the submitted toxicokinetic studies and noting that in a rat two-generation study there was no
evidence of any sensitive life-stages and that expression data on the main enzymes metabolising N-
acetylated amino acids are widely distributed across species (Yates et al., 2020), adjustment of the
CSAFs by modifying the toxicokinetic factors was evaluated for the various species but retaining the
default toxicodynamic factors (see below and Table E.3).

Systemic CSAF for goats/ruminants

The toxicokinetic data on NAA (Table E.1 below) show that the peak plasma concentration in goats
is over 20 times lower than in rats administered the same dose (25 mg/kg bw per day). The Area
Under the Curve (AUC) is sixfold lower in goats than rats on day 1, and 33-fold lower on day 14.
These data support a reduction in the interspecies toxicokinetic factor to 0.17 using the most
conservative comparator of AUC on day 1 (see Table E.2 below).

The low systemic exposure to NAA in goats appears to be due to its degradation in the ruminant
digestive tract as there is no initial peak and being a small molecule extensive absorption of NAA
would be expected. The ruminant digestive tract is reported to be consistent across ruminant species
and degradation in the digestive tract is independent of absorption and distribution. Therefore, there
would be expected to be little variation across the ruminant species. Suckling ruminants might be
outliers in terms of the toxicokinetics of NAA as they have a less developed ruminant digestive system,
but as NAA is not lipophilic and is unlikely to concentrate in milk, exposures to NAA via milk are not
considered to be significant compared to those from direct consumption of feed. An interindividual
toxicokinetic factor of 1 would be supported.

In conclusion, an overall CSAF in ruminants would be 1.3 (0.17 3 2.5 3 1 3 3.16).

Table E.1: Results of the toxicokinetics of NAA in the plasma of goats, pigs and rats

Compound
Time

point (h)

Species, route of exposure, dose (mg/kg bw per day)

Goat Pig Rat

Capsule Feed (small amount) Gavage

25 25 25 500

Day 1

NAA (ng/mL) 0* 45 47 71 74
0.5 53 3,795 8,300 40,300

1 58 4,930 4,525 77,400
2 208 1,840 766 98,150

12 51 42 65 296
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Systemic CSAF for pigs/swine

The toxicokinetic data on NAA (Table E.1) show that the peak concentration in pigs is lower, by a
factor of < 2, on days 1 and 14 than that in rats administered the same dose (25 mg/kg bw per day).
The AUC is lower in pigs than rats on day 1, but higher (1.2-fold) on day 14. These data indicate that
the toxicokinetics of NAA in pigs is essentially the same in pigs and rats and support a reduction in the
interspecies toxicokinetic factor to 1. The toxicokinetics in pigs (assuming a body weight 30 kg) and

Compound
Time

point (h)

Species, route of exposure, dose (mg/kg bw per day)

Goat Pig Rat

Capsule Feed (small amount) Gavage

25 25 25 500

Cmax (ng/mL) – 410 4,930 8,550 98,100

AUC 0–12 h (h.ng/mL) – 1,700 8,545 10,160 314,335
Tmax (h) – 4 1 0.25–0.5 2

Aspartic acid (ng/mL)$ 0* 1,245 1,555 6,900 3,970
0.5 993 1,415 4,530 4,680

1 855 1,460 5,120 8,080
2 1050 2,120 4,000 5,950

12 970 1,650 4,300 3,830
Day 14

NAA (ng/mL) 0* 52 51 70 112
0.5 53 4,700 9,915 52,300

1 58 7,240 3,650 97,000
2 130 2,570 4,400 98,500

12 56 58 74 400
Cmax (ng/mL) – 171 7,200 13,000 98,500

AUC 0–12 h (h.ng/mL) – 625 12,430 10,300 318,350
Tmax (h) – 2–4 1 0.25–0.5 2

Aspartic acid (ng/mL) 0* 1,415 1,550 4,730 1,260
0.5 914 1,170 5,500 3,420

1 952 2,520 6,060 5,430
2 1,015 2,000 5,690 3,140

12 1,150 2,115 5,620 1,720

*: Sample taken prior to dosing, representing the background concentration..
$: Aspartic acid is reported to be the primary metabolite of NAA and is itself rapidly metabolised.
AUC – Area Under the Curve – an integration of the concentration in plasma over time.
Cmax – The peak concentration in plasma – modelled to cover changes between sampling times.
Tmax – The time at which Cmax occurs.

Table E.2: Summary comparison of the mean toxicokinetic values of NAA on rats, goats and swine

Species

Dose (mg/kg/bw per day)
Goat Pig Rat

25 25 25 500

Day 1

NAA Cmax (ng/mL) 410 (0.05)* 4,930 (0.6) 8,550 98,100
NAA AUC 0–12 h (h.ng/mL) 1,700 (0.17) 8,545 (0.84) 10,160 314,335

Day 14
NAA Cmax (ng/mL) 171 (0.013) 7,200 (0.55) 13,000 98,500

NAA AUC 0–12 h (h.ng/mL) 625 (0.06) 12,430 (1.2) 10,300 318,350

*: Expressed as proportion of rat value at 25 mg/kg bw per day.
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rats (assuming a body weight 200 g) are similar and the key metabolic step(s) in the degradation of
NAA is likely to be simple, as it is water soluble and would not require conjugation for excretion. NAA
is a normal component of the blood of rats, goats and pigs and it is considered reasonable to assume
that there will be no significant differences in the toxicokinetics of NAA between pigs and other swine.
Suckling animals might be outliers in terms of the toxicokinetics of NAA, but as NAA is not lipophilic
and is unlikely to concentrate in milk, exposures to NAA via milk are not considered to be significant
compared to those from direct consumption of feed. A reduction in the interindividual toxicokinetic
factor to 1 is proposed.

In conclusion, an overall CSAF for swine would be 8 (1 9 2.5 9 1 9 3.16).

Other monogastric animals

As data are available only from two monogastric animals (rats and pigs), it is considered that any
change from the default values for extrapolating from pigs to different species of monogastric animals
is not appropriate, as it is not supported by any specific data.

Therefore, an overall CSAF for other monogastric animals would be 25
(2.5 9 3.16 9 1 9 3.16).

Table E.3: Outline of the derivation of the overall CSAFs based on the toxicokinetic studies and
potential modes of action behind the effects of NAA on salivary glands

Rat to standard species*
Standard species to different life

stages or related species Overall CSAF
Toxicokinetic Toxicodynamic Toxicokinetic Toxicodynamic

Default 4 2.5 3.16 3.16 100

Direct Action$ 1 2.5 1 3.16 8
Systemic action

Ruminant 0.17 2.5 1 3.16 1.3
Swine 1 2.5 1 3.16 8

Other monogastric 1 2.5 3.16 3.16 25

*: Standard species are those used in the toxicokinetic studies i.e. goat for ruminants; pigs for swine and other monogastric
animals.

$: Considered to be the more likely mode of action for the salivary gland hypertrophy.
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