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Abstract

An information entropy based approach for the discharge measurements is evaluated for the gag-
ing of the Isère river at the Grenoble university campus. Over a four month period, six discharge
measurements were made using a vessel-mounted aDcp. Simultaneously, particle tracking ve-
locimetry (PTV) from video images was used to estimate surface velocities. The surface veloci-
ties are projected along the regularly surveyed river section of the Isère-Campus gaging station.
The vertical velocity profile at each stream-wise location is approximated by a 1D entropy pro-
file. Information entropy 1D velocity vertical profile depends on two parameters which are fitted
using aDcp and surface velocity measurements. The inclusion of the surface velocities reduces
the dispersion of the estimated entropy parameters. The measurements show that the two param-
eters are linearly related with a slope that is stage dependent and thus, surface velocity dependent.
From there, the information entropy theory for 1D velocity distribution offers a protocol by which
surface velocities only are used to compute the discharges. The protocol is calibrated with both
aDcp and surface velocity measurements. It is finally validated with several events during which
only surface velocities are measured. For the high water flood event the estimated discharge falls
within 2% of the one estimated with the rating curve of the gaging station.
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1. Introduction1

Discharge measurements in natural streams and rivers are of fundamental interest for hy-2

drology and water resources management. Estimating river discharges is therefore paramount3

for flood mitigation, predicting hydro-electrical production, urban planning, hydraulic structure4

design, the calibration of hydrological models and many other water related issues.5

The discharge or flow Q is the volume of water crossing the flow area per unit time and no6

instrument measures it directly. Because it is the flux of the water, traditional approaches to7

discharge evaluations break down to the estimation of the stream wise water velocity distribu-8

tion across the river flow area. This distribution is surveyed at specific locations along selected9
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verticals. Pairs of adjacent verticals define panels of the cross-section spanning the entire wa-10

ter column. An elementary discharge through each panel can be estimated. Methods differ on11

how a velocity is assigned to the panel. For measurements using flow meters with propellers12

the panels can span the entire water column while with surface aDcp’s (acoustic Doppler current13

profilers) parts of the panels close to the free surface and the bottom are not surveyed. These14

parts are known as blanking zones. The uncertainties of this type of panel method are discussed15

by Le Coz et al. (2012).16

Rating curve techniques measure a flow variable, usually at a low cost, such as the free17

surface elevation or the free surface slope (Rantz, 1982; Manfreda et al., 2020). They are said to18

be continuous in the sense that these instruments can be set up to measure all the time at given19

sampling frequency as long as the data storage capacity allows for it. However, these continuous20

methods require calibration. They imply gaging the river discharge now and then to provide a21

correspondence between Q and the flow variable that is measured. This correspondence takes the22

form of a so-called rating curve. Discharge gaging techniques such as an aDcp can be sensitive23

to the presence of sediment load (suspended or bed load) but also dangerous and impossible to24

deploy during floods. For all these reasons, alternative methods have been developed for decades25

such as video imaging or radar probing of free surface water velocities.26

Video image-based methods are extensions of conventional PIV (Particle Image Velocimetry)27

which has been used for many decades in experimental fluid dynamics. Using the same principles28

based on the analysis of the cross-correlation of image patterns, the extension and adaptation to29

large scale flows (LSPIV) was pioneered by Fujita and Komura (1994). This technique became30

widely used in river hydrometry for the measurement of surface velocities and the estimation of31

discharge (Fujita, 1997; Creutin et al., 2003; Muste et al., 2008; Le Coz et al., 2010). In order32

to reduce the impact of the heterogeneity and variability of surface textures, the influence of33

lighting conditions and shooting angle, variants such as Particle Tracking Velocimetry (PTV)34

and Space–time Image Velocimetry (STIV) were developed or adapted. While PTV is based on35

the detection and tracking of individual particles using cross-correlation, optical flow or other36

techniques (Tauro et al., 2019; Perks, 2020), STIV stacks image frames along a few search lines37

in the flow direction and searches for gradients in the resulting space-time image (Fujita et al.,38

2007, 2019). In practice many motion estimation methods used in computer vision can be used.39

Discharge estimations from surface video based velocities require at least two extra pieces40

of information. Firstly, since all these methods provide surface velocities measurements, some41

assumptions need to be invoked to transform these surface velocities in vertically averaged ve-42

locities. The velocity index kv is as straightforward way of linking a surface velocity to a vertical43

average velocity. Secondly, the other piece of information required is the bathymetry/water depth44

cross wise distribution necessary to compute a volume flux through the water column.45

The idea of the velocity index goes back to (De Prony, 1804; Dulos, 1877, p. 73) and46

continues to be a subject of applied research (Gunawan et al., 2012; Moramarco et al., 2017;47

Kästner et al., 2018). The flow shallowness of large rivers (top width much larger than the depth)48

is expected to shape velocity distributions to be two-dimensional, and the velocity vertical pro-49

file is deemed to follow amongst others the classical logarithmic law or Prandtl’s seventh power50

law over the water depth (Cheng, 2007). In the latter case, the theoretical velocity index for51

the seventh power law is kv = 0.875. The value of the velocity index depends on the shape of52

the vertical velocity profile which is a signature of the boundary layer vertical structure. This53

velocity index also depends on how close from the banks the vertical is. Indeed, the velocity dis-54

tribution is strongly influenced by bank induced friction (Mueller, 2013) and secondary currents.55

The boundary layer is affected by the turbulence of the flow which depends on the flow aspect56
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ratio, on the bed-roughness, on bed forms, the Froude and the Reynolds numbers.57

Assumptions on the velocity vertical profile are also used in aDcp commercial softwares to58

complement the vertical profile in the blanking zones near the free surface and the bottom. The59

log-profile and 1/6th or 1/7th power laws are the most popular way of extrapolating for velocity60

values outside the measured range of water column (Le Coz et al., 2012). Strictly speaking the61

log-profile is not supposed to describe the velocity distribution of the top 70 to 80 % of the62

water column (Nezu and Nakagawa, 1993). Power law profiles are mere approximations with63

little physical grounds. The information entropy (Shannon, 1948; Jaynes, 1957) provides an64

interesting alternative.65

The maximization of the entropy (Jaynes, 1957) ensures that the probability distribution as-66

signed to a series of values of a random variable subject to physical constraints, is the least biased67

(Jaynes, 2003). By information entropy theory, velocity profiles are derived by maximizing the68

entropy that depends on three parameters, the surface velocity us and two Lagrange multipliers69

in the case of two integral constraints (Chiu, 1987; Singh, 2014). The surface boundary condi-70

tion imposes a relationship between these three parameters. Chiu (1987) showed that 1D vertical71

profiles derived from the information entropy theory match very closely the measured profiles, a72

result verified and refined by many later studies (Luo et al., 2018; Yeganeh and Heidari, 2020).73

As explained by Chiu (1987) fitted entropy-based profiles can be connected to log profile char-74

acteristics and especially used to determine the friction velocity. The study by Chiu (1987) has75

triggered a large amount of investigation using information entropy.76

Information entropy theory can also be applied to describe 2D velocity distributions in a77

cross-section of a river Chiu (1988); Singh (2014). Because of the geometric extra degree of78

freedom compared to 1D cases, entropy based 2D distributions theories resort to assumptions on79

the shape of the isovel pattern in the cross-section (Chiu, 1988; Moramarco et al., 2004, 2017,80

2019). These assumed isovel distributions have been thoroughly validated (Marini et al., 2017).81

This opens the way to discharge evaluations without any prior bathymetry surveys. Very recently82

such approach was effectively rendered operational by Moramarco et al. (2019) using develop-83

ments of Moramarco et al. (2004) in such a way that allows discharge evaluations using satellite84

data such surface water velocity and elevation.85

Entropy maximization yields a widely used relation between umax and the cross-sectional86

average velocity U (Chiu, 1988, 1991; Chiu and Said, 1995),87

U = umaxΦ(M) (1)88

where Φ is a uniquely defined function and M the so-called entropy parameter. Empirical ob-89

servations (Chiu and Said, 1995; Chen and Chiu, 2004; Moramarco et al., 2004; Chiu and Hsu,90

2006; Fulton and Ostrowski, 2008; Ardiclioglu et al., 2012; Moramarco and Singh, 2010; Moramarco et al.,91

2017) show that M only depends on the river cross-section and thus that equation (1) is a one-92

to-one relation. In 2D distributions the maximum velocity does not necessarily occur at the free93

surface, a characteristic known as the dip phenomenon (Moramarco et al., 2017). This implies94

that discharge estimations based on (1) require exploring the velocity distribution within the flow95

area to determine umax, an exploration only accessible to sophisticated methods such as aDcp’s.96

Moreover, (1) implicitly allows for only one local maximum umax in the cross-section which is97

not necessarily the case in river sections downstream of bends and meanders or with secondary98

currents. More generally it is reasonable to presume that because of the 3D nature of the flow99

with the complex distribution of secondary currents and the river geometry, the isovel patterns100

parametrization as given by Chiu (1988); Kumbhakar et al. (2019) is too schematic even though,101
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as indicated previously, it is relevant for ungaged rivers (Moramarco et al., 2019). Therefore, in102

the present study we re-analyze 1D entropy-based distributions for video-based discharge esti-103

mations in regularly gaged rivers.104

In section 2, the standard 1D information entropy theory is recalled. We show that it yields a105

relationship between surface velocity measurements and velocity vertical profiles characteristics106

allowing for easy discharge evaluations. Section 3 describes the gaging station were aDcp, sur-107

face imaging and stage data are acquired and at which a longstanding rating curve is available108

for our method validation. Section 4 discusses how reliable the sole use of video-based surface109

velocities is for discharge estimations. We conclude in Section 5.110

2. Information entropy theory & discharge evaluations111

For 1D vertical profiles, the time average stream-wise velocity u is assumed to be a random112

variable with a probability density function denoted p(u). The Principle of Maximum Entropy113

(POME) is used to find the best fit distribution of velocity by maximizing the entropy of p(u)114

subject to the basic constraints. Information entropy (Shannon, 1948; Jaynes, 1957; Chiu, 1987,115

1988) which is a measure of the average information content in a set of observed velocity values116

u, is expressed as117

H = −
∫

p(u) ln (p(u)) du (2)118

where p(u) is the probability density function of the velocity values and the integral taken over all119

possible values of u. Definition (2) is referred to as the Shannon entropy. Other definitions such120

as the Tsallis or Renyi entropies are also used to define and approximate velocity distributions121

(Yeganeh and Heidari, 2020). The function p(u) is by definition related to F(u), the cumulative122

distribution function (CDF), in the following way,123

F(u) = probability that (velocity ≤ u) (3)124

p(u) =
dF
du

(4)125

The probability density function p(u) is subject to the following constraints (Chiu, 1987, 1988),126 ∫ umax

0
p(u) du = 1 (5)127 ∫ umax

0
u p(u) du = u (6)128

where umax is the maximum velocity value, u the expected velocity. In the case of 1D profiles in129

wide channels Marini and Fontana (2020) showed that u is same as U, the vertical average. The130

Principle of Maximum Entropy (POME) (Chiu, 1987, 1988) involves not only (2) but also two131

Lagrange multipliers λ1 and λ2 associated to (5) and (6). Details of the calculus of variations are132

in Chiu (1987, 1988). It yields,133

p(u) = eλ0 eλ2u (7)134

λ0 = λ1 − 1 (8)135

Obtaining the velocity distribution u requires some assumption on p(u). In this paper, we136

focus on 1D distributions or said differently to rivers/channels wide compared to the water depth137
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(Chiu and Hsu, 2006). To that end Chiu (1987) assumed a monotonously increasing vertical138

velocity profile from bottom to the free surface. Thus F(u) is the fraction of water column with139

all velocities smaller than u. This writes,140

F(u(z)) =
z
D

(9)141

where D is the total water depth and z = 0 is the bottom. This form of CDF also implies that the142

maximum velocity umax lies at the surface. The probability density function now writes,143

p(u) =
1
D

dz
du

(10)144

Equating (7) to (10), integrating once and applying the boundary condition,145

u = 0 at z = 0 (11)146

gives the mean stream-wise velocity profile expression,147

u =
1
λ2

ln
[
1 + λ2 eλ0 z

D

]
(12)148

where λ2 is dimensionally the inverse of a velocity and is found to be positive in the experiments.149

Many authors (Chiu, 1987, 1988) fit measured vertical profiles of streamwise velocity with (12)150

by calibrating the two free parameters λ2 and λ0. An alternate expression of u stems from the151

boundary condition,152

u = us at z = D (13)153

or equivalently from (5) that gives a relationship between λ2 and λ0 that involves the surface154

velocity us of the profile,155

λ0 = ln λ2 − ln
(
eλ2us − 1

)
(14)156

and the following mean velocity profile expression,157

u =
1
λ2

ln
[
1 +
(
eλ2us − 1

) z
D

]
(15)158

The key idea of the present study is to only use surface velocity measurements combined with159

the cross-section bathymetry to evaluate the discharge of large streams. In a wide channel (top160

width larger than depth), lateral bank friction has little influence on the isovel pattern. Isovels are161

nearly horizontal with therefore monotonously increasing velocities from bottom to free surface.162

Thus, each vertical profile can be advantageously fitted by a 1D velocity profile such as (12).163

The sole knowledge of us is not sufficient to compute the discharge with (15), the value of the164

Lagrange multiplier λ2 is necessary. The extra assumption we introduce stems from an empirical165

observation by Singh (2014) in the case of 2D distributions that indicates a linear relationship166

between the two Lagrange multipliers. We assume that it is also true in 1D distributions and167

this will be verified in the course of this work. Therefore, we hypothesize that for a given water168

level or equivalently a given discharge, λ0 and λ2 for all verticals are linearly related. The rate of169

change of λ0 with λ2 derived from (14) writes,170

m =
∂ λ0

∂λ2
=

1
λ2
− us eλ2 us

eλ2 us − 1
(16)171
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In situations where λ2 us is large, such as in the case of wide streams, this relation rewrites as,172

λ2 =
1

m + us
(17)173

This last relation will enter the following protocol. Vertical profiles of the horizontal velocity174

measured by aDcp, complemented with video surface velocities measurements, are approximated175

with (12) by calibrating λ2 and λ0. This provides a set of quasi-straight lines (Singh, 2014),176

parametrized by us the surface velocity. These lines will be linearly fitted to yield a calibrated177

m, which is nothing else than rating the m values with us. Once this rating is robust enough,178

any surface velocity measurement us can be associated to a m value. By (17) us and m are then179

used to compute λ2 which in turn allows the evaluation of the unitary discharge q at the given X180

cross-wise location. An analytical expression of the unitary discharge q is easily computed from181

(15) by simple integration,182

q(X) =
∫ D(X)

0
u dz =

D(X)
λ2

1

eλ2 us − 1

[
1 + (eλ2 us − 1) (λ2 us − 1)

]
(18)183

Using formula (18) to compute q requires the knowledge of D(X) the water depth at the different184

cross wise locations. Once the set of cross wise q(X) values is computed, a numerical integration185

from the left bank X to the right bank X yields the total discharge Q.186

3. Case study and available measurements187

The Isère-Campus gaging station is located on the banks of the Isère River, a few kilome-188

ters upstream of Grenoble (France) on the main campus of the University of Grenoble-Alpes.189

Figure 1 shows an upstream bend and a bridge (130 m upstream of the gaging station). The190

bridge has no pier in the river thus generating no perturbations at the gaging station. The river191

bottom slope is S 0 = 0.5 10−3. The inter-annual average discharge of the Isère at Grenoble is192

179.0 m3/s. The station is equipped for measuring and exploring river discharge, water level,193

water temperature, turbidity, concentration of suspended solids, and the velocity fields.194

An unmanned vessel-mounted acoustic Doppler current profiler (aDcp; Nortek Rio Grande,195

1200 kHz operated with WIN-RIVER II) collected velocity profiles of the entire channel to cal-196

culate channel velocities and discharge. The vessel is attached to a cable-way system spanning197

over the transect of the Isère river at the station. The cable-way system tows the vessel at the free198

surface across the transect. The aDcp sensors are located 0.1 m below the water surface. The199

aDcp has a blanking distance of 0.5 m, resulting in a measurement range from approximately200

0.6 m below the water surface down to the top of the blanking zone near the river bottom. The201

blanking zone at the bottom is 0.6 m. Velocity data were collected at vertical cells of 0.10 m to202

0.20 m in size at a frequency of roughly 1 Hz. In the present study two methods were used for203

the velocity profiles and discharge. One called continuous crossing method implied towing the204

aDcp across the river at nearly constant speed of roughly 0.18 m/s and the other called fixed ver-205

tical method for which the aDcp was stationary at a discrete and finite number of locations in the206

transect. The bottom-tracking mode of the aDcp was enabled both for the continuous crossings207

and fixed verticals. For the fixed vertical method, roughly 100 vertical profiles were recorded208

at each cross-wise position. In this case the discharge is computed with the midsection method.209

The panel assigned to a vertical is in that case centered on the vertical with left and right limits210

are midway from the adjacent verticals.211
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Figure 1: Top view and location (red point) of the Isère-Campus gaging station. Aerial image obtained from Imagery
@2018 Google. The width of the river is roughly 60 m at the gaging station.

The station is also equipped with a staff gage installed on the left bank side to measure the212

stage (water level) H with a resolution of 1 cm. This stage measure is used in conjunction with a213

discharge rating curve QRC. The rating curve is a best fit power law based on discharge and stage214

measurements done at the Isère-Campus station between 1992 and 2018.215

Table 1 provides an overview of all the experiments used in this work, including the deployed216

instruments. The bottom-tracking of the aDcp was used to determine the average cross-section217

bathymetry which is necessary for the discharge computation by the entropy method (see eq.18).218

Different types of measurements were combined to this end. The bathymetric surveys of the 5219

continuous crossings for H = 0.8 m are averaged. This low discharge case does not allow for the220

higher parts of the bathymetry to be measured. To overcome this, the H = 2.04 m fixed vertical221

survey is used. The resulting average bathymetry is given in Figure 2. The cross-section shape is222

close to triangular. The right bank has a mild slope due to an alternate gravel bank whereas the223

right bank is steeper.224

A video surveillance camera AXIS P1357-E (5 megapixels, 12 frames per second) was in-225

stalled on the left bank. In order to reduce the transmission bandwidth and enable the real-time226

processing on a remote server (cloud computing), a burst of 4 images separated by 80 ms (median227

value) is sent by the camera to an FTP server. The camera was calibrated by the topographical228

survey of ground reference points visible in the camera image.229

Over a region of 20 meters around the surveyed profile, the surface velocity vector field is230
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aDcp method

date H (m)
number
of fixed
verticals

number of
continuous
crossings

surface
velocity
measure-
ments

rating
curve
discharge
QRC
(m3/s)

18/10/2017 0.8 9 5 no 61.16
07/12/2015 1.275 none 4 no 105.72
01/12/2016 1.83 16 6 no 171.34
19/03/2018 2.04 20 none yes 198.37
04/05/2018 2.92 none 6 yes 320.72
24/04/2018 3.02 none 8 yes 335.35
11/06/2018 3.39 27 none yes 390.3
23/01/2018 4.05 none 6 yes 491.57
05/01/2018 5.18 none none yes 674.9

Table 1: Conditions and parameters of the different surveys. The stage reading is H.
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Figure 2: Cross section bottom profile at the Isère-Campus gaging station. Green dots: fixed vertical measurements for
H = 2.04 m; black line: average bottom bathymetry of the 5 continuous crossings for H = 0.8 m; blue curve: average
of these two bathymetries. The X axis is along the transect. Z = 0 corresponds to the free surface level for the stage
H = 2.04 m.

measured by a PTV algorithm between successive images. The spatial resolution of this mea-231

sured field is below 1 m. A consolidated vector field is then obtained for each burst of 4 images232

(Figure 3-a). A smoothing approach is used for the estimation of the streamwise surface velocity233

profile. The surface velocity field of Figure 3-a is projected and interpolated on the cross wise234

transect (see Figure 4 and Figure 3-b). The profile is extrapolated to the banks using the con-235

servation of the Froude number hypothesis (Fulford and Sauer, 1986). This is useful for surface236

velocities far from the camera and especially close to the right bank. The median value of the237

proportion of extrapolated surface velocity profile is approximately 5 %. The velocity accuracy238

depends on the location on the profile (i.e. more dispersion on the right river bank), on the wa-239
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a)

b)

Figure 3: Surface fluid velocities extracted from surface video images on the 23/01/2018 for a stage of H = 4.03 m. a):
raw PTV surface velocity vectors; b): estimated streamwise velocity profile. Color-bars are on the left of the images.
River flowing from right to left and camera on the left bank.
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Figure 4: Surface velocity field us projected and interpolated on the surveyed cross section same date as in Figure 3
(23/01/2018) for a stage of H = 4.03 m. X: cross-wise coordinate. Black dots: velocity values. Red curve: best fit and
same curve as in Figure 3-b.

ter level and on the illumination conditions. Overall, the relative error on the average surface240

velocity is between 2 % and 15 %.241

4. Application242

Fitting a time average velocity vertical profile is the initial step in the rating procedure of m243

by us. The time averaging for the fixed vertical method is obvious since for each verticals, cor-244

responding to a cross wise position X, the vessel is stationary for a few minutes while it samples245

a sufficient number of instantaneous velocity vertical distributions. In contrast, for the continu-246

ous crossing method the vessel is towed along the transect of the cross-section measuring more247

than 200 verticals with unreferenced positions with respect to X. In this case, it was decided to248

average bins of 15 adjacent verticals together and then interpolate the obtained averaged velocity249

vertical distributions on a given X grid. This bin averaging is deemed to be equivalent to a time250

averaging since the vessel speed towed by the cable-way is small (of order 0.18 m/s) compared251

to the sampling rate of the aDcp (1 Hz).252

Examples of time averaged horizontal velocity distribution profiles are plotted in Figure 5.253

They correspond to different verticals at different distances to the left bank of the cross-section.254

The fitted entropy-based velocity distributions are computed by merging the aDcp measurements,255

the surface video-based velocities and a bottom velocity imposed at zero value. The highest256

number of measured values on each vertical are those of the aDcp, they therefore strongly con-257

strain the approximation. Video-based surface velocities are slightly scattered with respect to the258

entropy-based velocity distribution. However, the addition of video surface velocity data for the259

fitting improves the entropy parameter estimations. Figure 6 shows that the scatter of λ1 and λ2260

is significantly reduced by the incorporation of a surface velocity in the data used for the fitting.261

The relationship between λ1 and λ2 clearly benefits from this addition.262
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Figure 5: Calibration of entropy-based vertical velocity distributions. Stage H = 2.04 m case. a): X = 17.07 m; b):
X = 27.23 m; c): X = 38.02 m; d): X = 70.04 m. Red dots: aDcp measurements. Top circle/cross point: video surface
velocity. Bottom points at z = 0: circle/cross. Blue line: entropy-based velocity fitting. The z axis is the local vertical
axis.
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Figure 6: λ1 and λ2 boxplot distributions. blue boxplots: λ1 and λ2 determined with no video surface velocity incorpo-
rated in the fitting of (15); red boxplots : determined with video surface velocity incorporated in the fitting of (15). Stage
at H = 2.04 m. Box: 2nd and 3rd quartile group; black line in the box: median value; whiskers: 1st and 4th quartile;
dots: outliers

This entropy-based velocity distribution provides an extrapolation near the bed and below the263

surface in the blanking zones. It is interesting since the unitary discharge q(X) is most sensitive to264

the near surface extrapolation because it corresponds to water layers with the highest velocities.265

A first check, summarized in Table 2, is undertaken to assess if entropy-fitted vertical profiles266

yield correct discharge estimates. On the one hand (“adcp” column of Table 2) q(X) is estimated267

by a numerical integration by the trapezoidal rule of the vertical profile as given by the aDcp268
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measurements with or without surface velocity estimations. On the other hand (“entropy” column269

of Table 2) q(X) is computed by (18) for which λ2 and us are provided for each vertical by the270

entropy fitting procedure. For both approaches the total discharge Q is given by the numerical271

integration bank to bank of the cross-wise q(X) curve. Such procedure has been applied to 5 cases272

of Table 1 and the results are given in Table 2. The 5 cases where chosen so that the discharge273

increment between each estimations was roughly 100 m3/s in order to cover regularly the range274

of discharges. The outcome is that the differences in discharge between the two approaches are275

small thus validating the use of entropy-based discharge estimate.

Discharge (m3/s)
H (m) aDcp entropy diff. (%)
1.275 122.12 129.15 5.7
2.04 199.43 202.45 1.5
2.92 309.06 320.59 3.7
3.39 400.20 410.82 2.6
4.05 529.27 540.63 2.1

Table 2: Discharge computations. The stage is H. “aDcp” column: discharge computed by numerical integration of the
data points with the adcp data and the video surface velocities when available (not measured for H = 1.275 m). “entropy”
column: discharge computed with the cross-wise integration of (18). “Diff.” column: difference in % between the two
approaches.

276

The ultimate step is to understand and analyze if the discharge can be estimated just with277

video surface velocities. As discussed in section 2 we only have one theoretical relation (16)278

between λ1 (or λ0), λ2 and us. So the sole use of surface velocities is conceivable if an extra279

relation between two of the three parameters of (16) is found. It happens that for a given stage,280

thus for a given maximum surface velocity, the pairs λ1 and λ2 at each vertical form a quasi-281

straight line as plotted in Figure 7. This was observed theoretically by Singh (2014) for 2D282

velocity distributions, and it is remarkable that the slope m of this relation is only a function283

of the surface maximum velocity Umax. This provides the empirical rating between m and the284

maximum surface velocity Umax we are looking for. Obviously, the more aDcp and surface285

velocity measurements are compiled, the more robust this relationship will be. Figure 8 shows286

that the relation between m and Umax is linear and thus, can be easily used to extrapolate for287

values outside the range of those already measured and especially at high discharges. Indeed in288

Figure 8 the lowest value corresponds to a discharge Q = 61.16 m3/s which is a very low value289

for the Isère since the inter-annual three days average minimum is roughly 80 m3/s. The slope290

m is negative thus for λ2 to be positive, relation (17) says that us > |m| which is the case as291

evidenced by Figure 8. The best fit line in Figure 8 is given by,292

|m| = 0.774 Umax − 0.0544 with R2 = 0.98 (19)293

The assumption of (17) is that λ2 us is large. In Figure 9 the λ2 us cross-wise distribution294

indicates that this quantity is in most positions above 5, a large enough value to make (17) valid.295

Indeed the function eα/ (eα − 1) in (16) is within 5 % of 1 for α above 3.296

Finally the scheme to compute the discharge for a given stage H is the following:297

1. video images are processed to supply a surface velocity profile us(X);298

2. the surface maximum Umax is extracted;299

3. a unique m is determined by the “rating” curve of Figure 8 or equivalently with (19);300
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data; blue plain line: best linear fit regression line; black dashed line: 95 % confidence interval.

4. relation (17) is used to determine λ2(X) at each X where a surface velocity is given;301

5. q(X) is computed by (18);302

6. a bank to bank numerical integration of q(X) supplies the total discharge Q(H).303

The scheme described above to determine Q using only video recorded surface velocities is304

now applied to three cases given in Table 3. For two of the cases m is not in the range of those of305

Figure 8. The one for H = 5.18 is for a flood situation. For each video surface velocity us along306
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the cross-wise transect λ2 is computed by (17) using the unique m from (19). The q values along307

the transect are determined by (18). A example of the q crosswise profile is plotted in Figure 10308

for the H = 5.18 case. In the Q column of Table 3 the upper bound and lower bound of Q as309

computed by the 95 % confidence interval on m of Figure 8 are given. Predicted values are all310

close to the rating curve value QRC of the discharge. The uncertainty interval contains the QRC311

value except for the H = 1.66 case which falls very close at 4 m3/s from that interval. Recall that312

at this stage of our work, the confidence interval for the “rating” curve Figure 8 is based on only313

6 points. The uncertainties will decrease by incorporating more measurements with time.314
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date H (m) Umax (m/s) m Q (m3/s) QRC (m3/s) error (%)
13/12/2017 1.66 1.58 -1.17 170.9 ± 17.3 151 13.2
24/04/2018 3.02 2.26 -1.69 348.8 ± 20.3 352 0.9
05/01/2018 5.18 2.64 -1.99 657.3 ± 44 674.9 2.6

Table 3: Video alone discharge evaluations. The stage is H; Umax is the maximum video measured surface velocity; Q
the computed total discharge; QRC the rating curve discharge associated with H; error column is the relative difference
between Q and QRC.

Noteworthy is the double maximum of the surface velocity in Figure 10 also appearing in315

Figure 4 for another stage. This may be due to the river bend roughly 300 meters upstream316

(Figure 1). Had we used the 2D entropy based velocity distribution the determination of the317

“y-axis” would have been uncertain.318

5. Conclusions319

In the present study, we have developed, calibrated and validated a novel approach for dis-320

charge estimations with image-based surface velocities. The method draws on information en-321

tropy derived 1D velocity distributions, applicable to rivers large compared to the water depth.322

The method once calibrated only requires surface stream-wise velocities such as those provided323

by video imaging. The calibration relies on the rating of the slope m of the relation between324

the two Lagrange multipliers λ2 and λ1 of the information entropy theory. The rating of m with325

the maximum surface stream-wise velocity is provided by conventional aDcp surveys of the326

cross-sectional velocity distribution and video-based surface velocities. These heterogeneous327

data sources describing different velocity vertical profiles are merged and approximated with328

theoretical 1D velocity distributions given by the information entropy theory. Our data confirms329

that λ2 and λ1 are indeed linearly related and that the calibration clearly benefits from the addition330

of measured surface velocities. The method applied to the Isère river at the Isère-Campus gag-331

ing station is totally consistent with the longstanding rating curve between stage and discharge332

of this gaging station. The deployment of aDcps with smaller blanking zones could improve333

the calibration by providing more information especially in the top layers of the water column.334

Furthermore, extra calibration data will be valuable to improve the m-Umax rating curve.335
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