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Abstract: Extracting useful information from sensors that record water distribution network (WDN) data 
is essential to improve network performance, increase network preparedness and resilience, and 
advance network digitalisation. Due to the large volume of data generated, analysis of the pressure 
head requires advanced techniques to reduce dimensionality. While previous works were typically 
based on comparing hydraulic simulations and observed data, there is a lack of study on pattern 
recognition, a helpful method for event detection, localisation, and prevention. Since the number of 
metering devices and their operativity has a crucial role in the recognition of key patterns, a spatial 
evaluation of network behaviour (with a focus on resilience) is conducted in this study. Comparing the 
heatmaps leads to extracting key patterns (i.e., landmarks), which will be helpful for decision-makers to 
increase the preparedness by making arrangements against critical events and allow classification and 
prediction of the network behaviour. This paper focuses on recognising the possible landmarks in the 
network representing a key feature (particularly pressure) in the presence and absence of leakage 
through spatial analysis with the objective of dimensionality reduction. A dataset of incidents, 
leakage/burst events, and ordinary network operations were captured through sensors and expert 
knowledge in a WDN in Spain to obtain relevant information (in the form of landmarks) from them. 
Results were promising, recognising the patterns that characterise the network behaviour when 
influenced by leakage/burst events. 
 
Keywords: Data mining; Pressure sensor; Spatial-temporal analysis; Resilience and preparedness; 
Water distribution networks.   
 
 
1 INTRODUCTION 

 
Water distribution networks (WDNs) are known as complex critical infrastructures that provide water to 
consumers with a certain level of pressure. Leakage/burst in WDN, as a pressure-dependent event that 
affects the available pressure for consumption nodes, is a challenging issue for the network resilience 
assessment (Ayala-Cabrera et al. 2019). The potential negative impacts of such events can be 
minimised by extracting helpful information from sensors, which record WDN data. Extracting key 
information related to the network behaviour is a crucial way to improve network performance, increase 
network preparedness and resilience, and advance toward network digitalisation (Ayala-Cabrera et al. 
2018, Taghlabi et al. 2020). 
Several leakage detection, localisation, and prevention studies have been conducted to identify the 
anomalous behaviour of the network by comparing the data obtained from sensors with simulated 
pressure data (Taghlabi et al. 2020, Marzola et al. 2022). In this sense, advancing in the systematic 



S. Hoseini-Ghafari et al. / Exploring a spatial dynamic approach and landmark detection for leakage/burst… 

 

characterisation of this behaviour, through e.g., pattern recognition techniques, can increase the 
efficiency of the classification and prediction process. All of this information is essential for decision-
makers to increase the network's preparedness by providing decision criteria to make the necessary 
arrangements against potential critical events. 
 
Landmarks are the significant reference points representing properties of a shape, environment, and 
road, among others. For example, Alghani (2021) proposed machine learning techniques to detect and 
track keypoints from a human face. Landmarks are the key points to measuring behavioural 
characteristics of something. As given by Kim et al. (2021), detecting landmarks makes it possible to 
obtain a key point of the face. Landmarks and the connectivity between them can be used to capture 
the properties of a shape (Ibragimov et al. (2014). Yesiltepe et al. (2021) considered landmarks as not 
only the objects themselves but also their relationship to their surroundings. Thus, they should contrast 
with their background or have a precise shape or another specific characteristic that makes them 
prominent. Elements of the network are spatially correlated (e.g., nodal demands and pressures., etc.) 
(Jahanpour, 2018). So, spatial knowledge helps recognise these correlation relationships. In this paper, 
we explore the identification of the landmarks, in WDNs, as a potential tool that would incorporate spatial 
knowledge into the process of network characterisation. This landmark exploration can facilitate the 
identification of specific characteristics of the network that represent the behaviour of the network at 
specific operating conditions and at a particular time. Focusing on landmarks instead of analysing all 
the elements would reduce the dimensionality since landmarks are expected to provide sufficient 
information to analyse the network. 
 
This paper aims to extract key patterns by a temporal-spatial evaluation of network behaviour (with a 
focus on resilience) using pressure head data from sensors. It is proposed that extraction of these 
patterns will make it possible to recognise landmarks, which allow leakage detection, localization, and 
prevention, among others of water leakage events. With the proposed approach, events can be traced 
even when there is a lack of either historical data from sensors or records of utility experts. In addition, 
the information given by sensors can help validate the analysis. If the history of an event is missed, 
temporal-spatial analysis of pressures (and other parameters) can be practical. With a dynamic spatial 
approach, landmark detection was conducted considering ordinary network operation and operation 
under leakage. 
 
 
2 METHODS 

 
As mentioned above, this paper seeks to capture the behavioural patterns of WDNs in operating 
conditions considered as normal/ordinary (without any abnormal event) and during the occurrence of 
an abnormal event (in this case, water leakage event). This work is based first on pressure heads (which 
will be called pressure in this paper) obtained by sensors and incorporates both a temporal and spatial 
analysis for this data. In this sense, this paper proposes a methodology that allows for recognising 
potential landmarks from the pressure data available in the network in a specific period. These 
landmarks are the basis for characterising the network behaviour and will allow, among others, to make 
advances in detection, localisation, and prevention of leaks. These are essential components to 
increase the network preparedness to face future leak events and prepare the water utility for other 
types of events with more severe consequences (e.g., droughts). The proposed methodology consists 
of three steps: (1) generation of a spatial distribution matrix, (2) pressure-based anomaly indicator 
generation, and (3) migration process. Details of these steps are described in this section. 
 
 
2-1 Generation of a spatial distribution matrix 
 
Let us consider the elements associated with pressure for a WDN as a set the nodes 𝑛𝑛 (which can be 

tanks, reservoirs, or consumption nodes). The nodes that are pressure sensors (𝑛𝑠) can be an indexed 
subset from the set of all nodes (𝑛𝑠 ⊂  𝑛𝑛). The nodes have different attributes as the coordinates 𝑥 and 

𝑦; and pressure. For pressure sensors, it can be defined as 𝑠𝑥 = [𝑠𝑥1, … , 𝑠𝑥𝑛𝑠
]  for 𝑥 coordinate; 𝑠𝑦 =

[𝑠𝑦1, … , 𝑠𝑦𝑛𝑠
]  for 𝑦 coordinate; and 𝑠𝑝 = [𝑠𝑝1, … , 𝑠𝑝𝑛𝑠

]  for pressure. 

 
A homogeneous mesh was created for both the 𝑥 and 𝑦 coordinates. Each of these meshes contained 
all the network nodes and had a specific stride Δ𝑥 and Δ𝑦. The vector for coordinates 𝑥 and 𝑦 indicates 

all the elements desired in the new mesh (𝑋𝑞 and 𝑌𝑞) and these are defined as 𝑑𝑥 =



S. Hoseini-Ghafari et al. / Exploring a spatial dynamic approach and landmark detection for leakage/burst… 

 

{𝑥min − 𝑎x: Δ𝑥: 𝑥max + 𝑎x} and 𝑑𝑦 =  {𝑦min − 𝑎y: Δy: 𝑦max + 𝑎y}. Where 𝑥min and 𝑦min; and 𝑥max and 𝑦max 

represent the minimum and maximum coordinates for all nodes, respectively. 𝑎x and 𝑎y correspond to 

arbitrary numbers placed to extend the final window beyond the minimum and maximum coordinates. 

𝑑𝑥 and 𝑑𝑦 have a total of elements 𝑛 and 𝑚; respectively. MATLAB’s griddata function (𝑓), for scattered 

data was used to construct the pressure matrix, P (of size m × n), for each evaluated time, see (1). 𝑚 

and 𝑛 represent the resolution for the 𝑥-axis and 𝑦-axis of the spatial coordinates, respectively. Matrix 

𝑃 was built from the nodes with sensors that were operational at the specific time evaluated.  

𝑃 = 𝑓(𝑠𝑥, 𝑠𝑦, 𝑠𝑝, 𝑋𝑞 , 𝑌𝑞) (1) 

 
 
2-2 Pressure-based anomaly indicator 
 
To better understand the pressure response of the network to anomalies (in this case, water leaks), a 
pressure-based anomaly indicator was proposed by Hoseini-Ghafari et al. (2022). This indicator was 
obtained using a temporal-spatial analysis of the system pressure (pressure obtained through sensors). 
Based on the pressure matrix 𝑃, it is possible to create a matrix of maximum pressures, 𝑃max, for each 

leakage case and a given period, 𝑡 = {1,2, … , 𝑇} with 𝑇 as the total time evaluated, see (2). It can serve 

as the basis for the generation of a pressure-based anomaly indicator 𝑅, see (3). In this indicator, it is 

assumed that the highest pressure value (of each cell of 𝑃) can be a reference point to compare with 

the current evaluated pressure.  

𝑃𝑚𝑎𝑥 𝑖,𝑗 = max (𝑝𝑡1𝑖,𝑗
, 𝑝𝑡2 𝑖,𝑗

, … , 𝑝𝑡𝑇 𝑖,𝑗
) (2) 

𝑅𝑡 𝑖,𝑗 =
𝑃𝑡𝑖,𝑗

𝑃𝑚𝑎𝑥 𝑖,𝑗

 (3) 

where, 𝑝𝑡𝑖,𝑗 is the pressure in the 𝑖-th row (𝑖 = 1: 𝑚) and 𝑗-th column (𝑗 = 1: 𝑛) in the matrix at time step 

𝑡, 𝑃𝑚𝑎𝑥 𝑖,𝑗 is the maximum pressure during the total period (𝑇) in each cell (𝑖, 𝑗) of the matrix. 𝑅𝑡𝑖,𝑗 refers 

to the matrix of anomaly indicator constructed for each cell at each time step. 
 
 
2-3 Migration process 
 
According to the observations, the pressure-based anomaly indicator, (3), allows for recognising 
changes in the network behaviour from the ordinary state to the state affected by leakage. This indicator 
could better represent the behaviour of the network if the dependencies among the different elements 
of the evaluation system could be considered in the analysis. In other words, this consideration could 
mitigate the effect of pressure behaviour at each point and requires an implementation of pressure from 
one point to another. (4) referred to as the matrix of behavioural indicator, 𝑀, which is proposed to take 

into account the anomaly indicator affected by the surroundings for each cell at each time step. 
Obtaining 𝑀, is an iterative process that allows the migration of information towards a central point (in 

this case, each cell of 𝑅). In the first iteration, the central cell captures the behaviour of its eight closest 

neighbours. With each subsequent iteration, the central cell can obtain information from a wider radius 
of neighbours. Figure 1 shows a schematic representation of this idea to condense the information 
about the behaviour of the entire network in particular preferred points.  
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Figure 1. Dependencies between different points in the network. 

 
As mentioned, capturing the coherence of the entire network’s behaviour over a relatively large spatial 
extent can be conducted through successive iterations of the information migration (100 
iterative/migration steps were explored in this paper). This is to obtain a stable relationship, which 
means that each cell absorbs the effect of as many cell perimeter layers as iterations are performed. In 
(4), value of each cell in each iteration is calculated by the average value of the eight cells around plus 
the cell itself. The closer a layer is to each specific point, the stronger the effect of corresponding cells 
to that point.  

𝑀𝑡,𝑖,𝑗 =
(∑ 𝑅𝑡,𝑐𝑒𝑙𝑙𝑘

𝑘=8
𝑘=1 ) + 𝑅𝑡,𝑖,𝑗

9
 

(4) 

where 𝑀𝑡𝑖,𝑗 is the matrix of behavioural indicator as an improved version of 𝑅𝑡 𝑖,𝑗 that mitigates the effect 

of pressure from surrounding cells. 𝑐𝑒𝑙𝑙 = {(𝑖 + 1, 𝑗 − 1), (𝑖 + 1, 𝑗), (𝑖 + 1, 𝑗 + 1), (𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1), (𝑖 −
1, 𝑗 − 1), (𝑖 − 1, 𝑗), (𝑖 − 1, 𝑗 + 1)}; represents the pairwise of each neighbouring cell. 𝑘 is the indices of 

the elements in 𝑐𝑒𝑙𝑙; 𝑘 = {1, … ,8}. 
 
 
3 CASE STUDY, DISCUSSION 

 
In this section, a real WDN, working under normal and abnormal/degraded operating condition has 
been selected to apply the proposed methodology.  
 
 
3-1 Case study 
 
The network selected in this study corresponds to a small-size utility network (Figure 2) located in Spain. 
The reason for choosing this network was the availability of data from both sensors and the availability 
of the operators to generate a structured database of the incidents that occurred in the network, 
including information on the leak detection and repair process. The model consists of 146 demand 
nodes, each node responsible for delivering water to many consumers (mainly houses), 212 links (40 
km), two pumping stations, two reservoirs, and four tanks. There were 23 pressure sensors (recording 
pressure values every 15 minutes) in the network with different working conditions at different times 
(i.e., it is worth mentioning that the sensors were not always operative or, in some cases, relocated). 
Eight random cases of short-term leakage events (see Table 1) with various characteristics such as 
duration, location, cause, intensity, and available sensor data were selected to implement how effective 
is the recognition of patterns of pressure values in the whole network (see Figure 2). Maximum pressure 
was considered a basis for constructing an anomaly indicator, which was used to determine the network 
behavior to leakage. 
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Figure 2. Case study network with the location of pressure sensors and leaks. 

 
Table 1. Status of pressure sensors for the leakages. 
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3-2 Dataset 
 
The dataset used in this paper includes historical data from pressure sensors (dataset 1) and utility 
expert knowledge (dataset 2; e.g., type of leakage, cause, location, detection, and repair information). 
Leakage analysis was initially conducted through a data-driven method via sensors' time-series data. 
Then leakages were temporally labelled (as no event/ordinary operation and event/abnormal operation) 
by an event-driven approach from the records by utility expert knowledge. Removing outliers in the data 
was conducted through manual inspection and collaboration with the system operator.  
 
 
3-3 Spatial distribution matrix of the pressure 
 
The pressure matrix, 𝑃 (of size 74 ×  33), was created for each evaluated time following the method 

mentioned before (see Section 2). The matrix 𝑃 was built from the nodes with sensors that were 

operational at the specific time evaluated. A homogeneous mesh was created for both the 𝑥 and 𝑦 

coordinates. Each of these meshes contained all the nodes of the network. As results of multiple 
iterations, the selected mesh stride for both ∆𝑥 and ∆𝑦 corresponds to 100; 𝑎x and 𝑎y are equal to 100 

based on the coordinates of this case study.   
 
 
3-4 Pressure-based anomaly indicator and migration process 
 
Figure 3 shows the patterns of 𝑀 during the studied period for each case, where 𝑥-axis shows time and 

𝑦-axis represents the cells’ location in the matrix. 
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Figure 3. Behavioural indicator (𝑀) for (a) LC 1, (b) LC 2, (c) LC3, (d) LC 4, (e) LC 5, (f) LC 6, (g) LC 

7, and (h) LC 8. 
 
Figure 3, indicates the changes in network behaviour during the period in which leakage impacted. 
Considering sudden or frequent changes of behaviour outside the abnormal period, there can be 
discovered some issues such as undetected leakage (for example, in Figures 3(b) and 3(d)). It is 
suggested that flow analysis and other potential parameters can help identify the meaning of these 
abnormalities. Another advantage of this type of analysis is the independency of the indicator to the 
number of available sensors. Whereas available sensors were fewer in LC 1, LC 2, LC3, LC 4 and LC 
6 and higher in LC 7 and LC 8, the possibility to recognise patterns was not affected by this factor.  
 
For each case, matrix 𝑀 was flattened for ordinary (Figure 4(a)) and abnormal (Figure 4(b)) periods, 

individually. The overall behaviour of the network was achieved by the mean values of 𝑀 for the ordinary 
state of each leakage case. The resulted 𝑀𝑎𝑣𝑔 (landmark) was sorted from lower to higher and shown 

in figure 4. It should be mentioned that the location number was not necessarily the same for different 
cases. It means that the x-axis in Figure 4 presents the cell locations not ordered by cell ID but by its 
corresponding Mavg . As shown in this figure, the pattern of ordinary and abnormal are not similar. The 
possibility of distinguishing a network with or without leak is promising by comparing the curve with the 
landmark, which can be helpful for leakage detection and prediction. Another interesting point is that 
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the ordinary curves, shown in Figure 4(a), show the overall improvement in the network performance 
(based on the defined indicator) by date. One possible reason can be, for example, replacing the 
affected pipe, which might have also led to solving other problems; or it can be relevant to other factors 
and uncertainties that change during the time (such as leakage severity, location, demand pattern flow., 
etc) since lower (i.e., LC 1-Ord) and upper (i.e., LC 8-Ord) curves belong to earlier and later dates of 
occurrence in the year, respectively.  
 

  
Figure 4. Landmark (black curve) compared with flattened matrices 𝑀 for: (a) ordinary operation and 

(b) abnormal state. 
 
 
4 CONCLUSIONS AND RECOMMENDATIONS 

 
In this paper, we explored network behaviour to pressure for a dataset including eight cases of leakage 
events and the ordinary operation of a real WDN in Spain. Sensor records and expert knowledge 
provided the data. A pattern recognition technique was proposed to analyse the spatial behaviour of 
the network pressure in the condition of a limited number of available sensors. The results illustrated 
the effectiveness of intervention of pressure of the points that have strong dependencies to each point, 
which is necessary to capture the behaviour of the pressure head as a determining hydraulic parameter 
with/without leakage. The results were promising, recognising the patterns of pressure head values 
throughout the network. It was observed that the network behaviour would allow recognising landmarks 
when a leakage/burst event influences the network.  
The output of this preliminary study would be advantageous to develop research studies in many 
aspects, such as: 
• If any sensor fails or is relocated, it is still possible to identify an abnormal incident in the network 
by spatial analysis. It means that the reflection of an event would be independent of only one specific 
sensor and will be obtained through the extracted patterns. 
• The ability to extract relevant patterns (i.e., feature maps) from the preliminary results of the 
pressure head heatmaps allows for appropriate detection of landmarks. 
• It is possible to recognise the critical areas in the network to a specific parameter with/without 
leakage. Many factors can be considered to make the best decisions to improve the preparedness of 
WDN. For example, a delay in leakage detection (as an absorptive phase of resilience) might negatively 
impact the pressure of the entire network depending on the affected part. Developing this approach 
could help identify the potential landmarks. 
• This analysis with spatial dimension can be improved by including parameters such as flow. 
• The behavioural indicator could support the decision-making process regarding the 
implementation/deployment of actions likely to mitigate the effects of the event. In future research, we 
will investigate how to anticipate future events by increasing network preparedness, being proactive in 
preventing the occurrence of an event, and/or responding more quickly to events. 
• Intelligent data analysis tools are recommended for a comprehensive study of influencing 
parameters for this approach. 
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