

Comparative brain morphology of specimens with different adaptative behaviors the bongo, the Java deer mouse, the maki catta and the sea lion

Elodie Chaillou, Scott Love, Najoua Arroub, Marine Siwiaszczyk, Mélody Morisse, Quentin Derian, Baptiste Mulot, Christophe Destrieux, Raïssa Yebga Hot, Cyril Poupon, et al.

▶ To cite this version:

Elodie Chaillou, Scott Love, Najoua Arroub, Marine Siwiaszczyk, Mélody Morisse, et al.. Comparative brain morphology of specimens with different adaptative behaviors the bongo, the Java deer mouse, the maki catta and the sea lion. FENS Forum 2022, Jul 2022, Paris, France. pp.6262-6262, 2022, Welcome to FENS forum 2022. E-book of abstracts. hal-03752658

HAL Id: hal-03752658 https://hal.inrae.fr/hal-03752658

Submitted on 17 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Comparative brain morphology of specimens with different adaptative behaviors the bongo, the Java deer mouse, the maki catta and the sea lion.

Elodie Chaillou¹, Scott Love¹, Najoua Arroub¹, Marine Siwiaszczyk¹, Mélody Morisse¹, Quentin Derian¹, Baptiste Mulot², Christophe Destrieux³, Raïssa Yebga Hot⁴, Cyril Poupon⁴, Frédéric Andersson³

Autopsy

Brain Fixation

MRI acquisition

T²w

Images conversion

DICOM to NIFTI

AC-PC reorientation

Seamentation

S07-372

Abstract

One aim of comparative neuroanatomy is to better understand brain function among species. It is tempting to try and explain brain differences throughout the animal kingdom by differences in adaptive behaviors as well as ecological factors.

Based on this idea, we explored, with MRI, the brain morphology of three species with different sociality and predator avoidance (Bongo, Java deer mouse and Maki Catta). Brains were collected after death of natural causes and MR-imaged. Brain and body weights were collected, and volumes of brain were estimated after MRI segmentation.

The brain-to-body weight ratio was close to 1 for the Java deer mouse (1.04%) and the maki catta (1.05%) but only 0.26% for the bongo. Encephalization quotients (EQ) were calculated using formulas defined for human (hEQ, constants 0.12 and 2/3; Cairó 2011,

doi:10.3389/fnhum.2011.00108) and for dog (dEQ, constants 0.14 and 0.528; Saganuwan 2021, doi:10.1186/s13104-021-05638-0). Whatever the method, the Java deer mouse EQs were the smallest (hEQ=0.98; dEQ=0.88). The maki catta had a higher hEQ (1.23) than the bongo (1.14) whereas the order was reversed for the dEQ (maki catta dEQ=1.21; bongo dEQ=1.96). These values are coherent with the idea that EQ is higher in prev species using active predator avoidance (bongo) and in social species (bongo and maki catta).

APR Neuro2Co grant (Convention 2017 00117257; PI, EC) and partially funded from the European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project

This project has been funded from Région Centre-Val de Loire

Adaptative behaviors of specimen

BONGO Tragelaphus euryceru Herbivore Gregarious

Prey (vigilance in group, escape)

JAVA DEER MOUSE Tragulus Javanicus Herbivore Solitary

Prey (hiding, fight)

MAKI CATTA Lemur catta Omnivore Gregarious Hierarchy

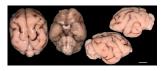
Prey (vigilance in group)

SEA LION Zalophus californianus Piscivore Gregarious Hierarchy

Predator (hunts alone, group or in cooperation)

(g)

Brain mass



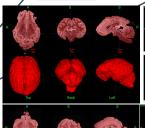
	SPECIMEN	BONGO	JAVA DEER MOUSE	MAKI CATTA	SEA LION
Volume (mm²)	Brain	353600	12080	25590	377800
	Caudate nucleus	1988 0.56% to the brain	63 0.52% to the brain	398 1.56% to the brain	4315 1.14% to the brain
	PAG	704 0.20% to the brain	58 0.48% to the brain	43 0.16% to the brain	214 0.06% to the brain
	Hippocampus	6320 1.79% to the brain	639 5.29% to the brain	624 2.44% to the brain	N.D.

The ratio of brain to body weight of the studied rtiodactyls specimens is consistent with the data previously described by Herculano-Houzel (2019). Body mass (g)

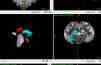
Declaration of death Brain sample

If the proportion of the brain occupied by a structure has a functional significance, is the place occupied by the PAG related to the strategy of a prey against a predator (Bongo and Maki catta: vigilance in group; Java deer mouse: hiding and fight: sea lion: predator)?

Body weight

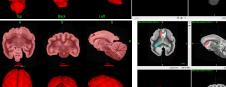

Brain weight

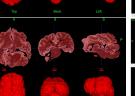
The hQE values found in the four specimens are coherent with the relationships already proposed in the literature between adaptive behaviour and EQ. The highest values are associated with social and gregarious species such as Bongo and Maki catta.


Encephalization quotient

Brain weight $(0.12 \times Body weight^{\binom{2}{3}})$

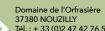
SPECIMEN	BONGO	JAVA DEER MOUSE	MAKI CATTA	SEA LION
Body weight (kg)	150	1.438	2.75	212
Brain weight (kg)	0.386	0.015	0.029	0.4
Brain-Body weight ratio	0.26	1.04	1.05	0.19
hEQ	1.14	0.98	1.23	0.94
dEQ	1.96	0.88	1.21	1.69

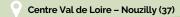

Brain volume



JAVA DEER MOUS

ROIs volume





Tél.: + 33 (0)2 47 42 76 57 elodie.chaillou@inrae.fr https://www6.val-de-loire.inrae.fr/umrprc-ethologie-neurobiologie_eng/

