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Beyond interacting with neighboring plants, crop performance is affected by 

the microbiome that includes pathogens and mutualists. While the importance 

of plant–plant interactions in explaining overyielding in intercropping is 

well known, the role of the microbiome, in particular how the presence of 

microbes from heterospecific crop species inhibit pathogens of the focal 

plants in affecting yield remains hardly explored. Here we  performed both 

field samplings and pot experiments to investigate the microbial interactions 

in the maize/faba bean intercropping system, with the focus on the inhibition 

of Fusarium oxysporum in faba bean plants. Long-term field measurements 

show that maize/faba bean intercropping increased crop yield, reduced the 

gene copies of F. oxysporum by 30–84% and increased bacterial richness 

and Shannon index compared to monocropping. Bacterial networks in 

intercropping were more stable with more hub nodes than the respective 

monocultures. Furthermore, the observed changes of whole microbial 

communities were aligned with differences in the number of siderophore-

producing rhizobacteria in maize and pathogen abundances in faba bean. 

Maize possessed 71% more siderophore-producing rhizobacteria and 33% 

more synthetases genes abundance of nonribosomal peptides, especially 

pyochelin, relative to faba bean. This was further evidenced by the increased 

numbers of siderophore-producing bacteria and decreased gene copies of 

F. oxysporum in the rhizosphere of intercropped faba bean. Four bacteria 

(Pseudomonas spp. B004 and B021, Bacillus spp. B005 and B208) from 95 

isolates antagonized F. oxysporum f. sp. fabae. In particular, B005, which 

represented a hub node in the networks, showed particularly high siderophore-

producing capabilities. Intercropping increased overall bacterial diversity and 

network complexity and the abundance of siderophore-producing bacteria, 

leading to facilitated pathogen suppression and increased resistance of 

faba bean to F. oxysporum. This study has great agronomic implications as 

microorganisms might be  specifically targeted to optimize intercropping 

practices in the future.
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Introduction

Food security is a major challenge with a growing population 
and increasing demand for healthy food (Tilman et al., 2011). 
However, global food production is subject to various threats, in 
which soil-borne pathogens account for approximately 20% of 
yield losses (Fisher et al., 2012; Savary et al., 2019). Intensive large-
scale monocultures are prone to disease outbreaks, which cause 
yield losses (Zhao et al., 2017; Li et al., 2021a). Fungal disease can 
be effectively controlled by fungicide applications (Le Cointe et al., 
2016), or alternatively through sustainable diversified cropping 
systems such as rotations and/or intercropping (Abawi and 
Widmer, 2000). In the latter case, cereal/legume intercropping 
systems are the most explored to give less reliance on fertilizer N 
and high-efficiency use of P (Fisher and Long, 1992; Hauggaard-
Nielsen et al., 2009) due to complementarity in resource use and 
facilitation in N and P between the interspecific plant species 
involved (Li et  al., 2007, 2016). Such facilitative effects are 
explained by the direct contribution of plant root traits such as 
root exudates, signals and root trait plasticity (Yu et al., 2021), or 
the enhanced beneficial microbial interactions such as nitrogen 
fixation (Zhang et al., 2010) and arbuscular mycorrhizal fungi 
(Gomez-Sagasti et  al., 2021). However, it remains largely 
unexplored whether these facilitative effects are associated with 
disease suppression, e.g., microbes favoring one crop species 
reducing pathogen attack or herbivores on neighboring focal 
plant species.

A growing body of studies on the suppression of soil-borne 
disease in the intercropping focuses mostly on the dilution effect 
or the interactions between root exudates and pathogens, e.g., 
exudates from one crop inhibit the disease incidences of the 
neighboring plants (Boudreau, 2013; Yu et al., 2021). For example, 
phenolic acids, organic acids, amino acids, and sugars are known 
to decrease disease incidence (Lv et al., 2020), while cinnamic acid 
increases disease incidence (Guo et al., 2020). Aside from these 
mechanisms, plants are tightly linked to species-specific 
microbiomes that themselves directly interact with soil-borne 
pathogens (Pang et al., 2022). Plant core microbiome (Toju et al., 
2018) and keystone microbial taxa (Banerjee et  al., 2018) 
associated plants promote plant growth and inhibit pathogen 
occurrence (Lemanceau et al., 2017), and soil biota has positive 
legacy effects on the growth and health of plants (Kuerban et al., 
2022; Wang and Song, 2022). For example, the enrichment of 
specific microbial taxa such as Pseudomonas (Song et al., 2021) or 
Xanthomonas, Stenotrophomonas, and Microbacterium spp. 
(Berendsen et al., 2018) are associated with pathogen suppression. 
Recent studies also indicate that the microbial network of healthy 

peanut plants is more complex than that of peanut infected with 
the pathogen Ralstonia (Li et al., 2021a). Similar results have also 
been reported for tomato (Wei et  al., 2018). In intercropping 
systems, the two co-cultivated crop species inevitably interact to 
affect soil microbial communities. It is thus envisaged that 
microbial communities in intercropping systems may enhance the 
overall ecological interactions in the rhizosphere microbiome to 
suppress soil-borne diseases, or specific bacterial taxa from one 
crop species may directly reduce the soil-borne pathogens of the 
neighboring plant species. However, so far there still lacks of direct 
evidence for this.

Both plants and pathogens require iron for normal growth 
and the capacity for siderophore-production is highly correlated 
with pathogen suppressiveness and plant health (Kramer et al., 
2020). Cereals such as maize are strategy II plants that mobilize 
iron by releasing phytosiderophores (Marschner and Römheld, 
1994). In contrast, legumes such as faba bean and chickpea acidify 
the rhizosphere by releasing protons and organic acids (Li et al., 
2007; Wen et al., 2021), which may increase Fe availability but 
decrease siderophore production by bacteria. Most microbial 
siderophores are synthesized by nonribosomal peptide synthetase 
(NRPS)-dependent pathway (Kadi and Challis, 2009; Verbon 
et al., 2017), and act as microbicides to suppress plant pathogens 
(Guo et al., 2022), such as the pyochelin (De Vleesschauwer et al., 
2006) and enterochelin (Lambrese et  al., 2018). Hence, 
competition for iron between crop and rhizosphere microbiome 
may be an important mechanism explaining disease suppression, 
although other mechanisms such as antibiosis or activation of 
plant immunity are also involved (Li et  al., 2021c). Here, the 
presence of maize plants may facilitate intercropped faba bean to 
outcompete pathogens. Faba bean is an economically important 
crop which is often attacked by soil-borne pathogens such as 
F. oxysporum. In the present study, we have conducted a series of 
experiments combining microbial community analysis with pot 
experiments using 16S rRNA high-throughput sequencing, 
shot-gun metagenomics, in vitro antagonistic test and inoculation 
bioassay analysis to unravel the impact of rhizosphere bacteria in 
maize/faba bean intercropping on Fusarium wilt disease 
(F. oxysporum) of faba bean. We hypothesized that: (1) rhizosphere 
bacterial diversity and network connections are enhanced in the 
intercropping, and the abundance of F. oxysporum declines; (2) 
bacteria in the maize rhizosphere may possess more siderophore-
producing bacteria than those in the faba bean rhizosphere, which 
are involved in the suppression of F. oxysporum in the faba bean 
rhizosphere; and (3) bacterial isolates exhibiting strong 
antagonistic effects on F. oxysporum may possess high siderophore 
production capacity.
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Materials and methods

Field experiment

A long-term field experiment was established in 2009 at 
Quzhou County (36.93 N, 115.17E; 40 m above sea level) in Hebei 
Province, north China. The soil is a calcareous fluvisol with a pH 
of 7.3. The climate is typical monsoon with an annual mean 
precipitation of 556 mm and mean temperature of 13.1°C. The 
properties of the topsoil (0–20 cm depth) were: organic matter 
content 14.0 g kg−1, total nitrogen content 0.84 g kg−1, 
Olsen-P  12.6 mg kg−1, and exchangeable potassium 0.21 g kg−1 
(Liao et al., 2020). The field experiment is a split-plot design with 
four fertilization treatments (Figure 1): (1) no fertilization (P0N0), 
(2) N fertilization alone (P0N1) at 180 kg N ha−1 yr.−1 as urea, (3) 
P fertilization alone (P1N0) at 40 kg P ha−1 yr.−1 as superphosphate, 
and (4) N and P fertilization (P1N1) at 180 kg N ha−1 yr.−1 and 
40 kg P ha−1 yr.−1. The sub-plots comprise three planting patterns: 
(1) monocultured maize (Zea mays L. cv. Zhengdan 958), (2) 
monocultured faba bean (Vicia faba L. cv. Lincan 5), and (3) 
maize/faba bean intercropping. There are three replicate plots of 
each treatment, giving a total of 36 plots. Details of the agronomic 
management are presented in the Supplementary material.

Crop harvest and intercropping 
overyielding calculation

From the crop yield monitoring area located in the central 
strip of each plot we collected all corncobs of two rows of maize 

with 10 adjacent plants in each row, or all pods of three rows of 
faba bean with 20 adjacent plants in each row. After the corncobs 
or faba bean pods were air-dried, the grains were separated 
manually and weighed for yield calculation. The partial land 
equivalent ratio (pLER) was calculated to explain intercropping 
advantage (Willey, 1979):

 
pLER Y RD

Y
IN

IN
=

´

where YIN and YMO are the crop yields in intercropping and 
monoculture, respectively, and RD is the relative density of crops 
under intercropping relative to monoculture (57 and 43%, 
respectively, in maize and faba bean). The land equivalent ratio 
(LER) is the sum of the pLER values of maize and faba bean, and 
a value >1 indicates intercropping overyielding and an LER ≤ 1 
indicates no overyielding.

Soil sampling

Soil samples were collected from monoculture and 
intercropped maize and faba bean plots in June 2019, at the V10 
stage of maize but the flowering stage of faba bean. The samples 
were separated into bulk soil (BS), rhizosphere soil (RS) and root 
endosphere (RE; Lundberg et al., 2012). In total, 144 samples were 
collected (3 compartments × 2 crop species × 2 planting patterns × 4 
fertilization levels × 3 replicates). Details of sampling, determination 
of soil physicochemical properties, DNA extraction, real-time 

A C E

B D F

FIGURE 1

In the field experiment, the field plots comprised three planting patterns (monocultures of maize and faba bean, maize/faba bean intercropping) 
and four fertilization treatments P0N0: no fertilization; P0N1: sole N fertilization at 180 kg N ha−1 yr.−1 as urea; P1N0: sole P fertilization at 40 kg 
P ha−1 yr.−1 as superphosphate; P1N1: P and N fertilization (A). Samples were collected from bulk soil (BS), rhizosphere soil (RS) and root 
endosphere (RE) of maize and faba bean (B). DNA was extracted from soil and root samples for 16S rRNA gene high-throughput sequencing, and 
the siderophore-producing capacity of rhizosphere soil in maize and faba bean was analyzed by shotgun metagenomic sequencing (C). Bacterial 
isolation, screening, identification and dual culture against Fusarium oxysporum were conducted in vitro (D). Pot experiments compared the 
numbers of siderophore-producing rhizobacteria and the gene copies of F. oxysporum of faba bean between monoculture and intercropping (E). 
An inoculation experiment tested the effects of selected isolates on disease suppression of faba bean (F). Created with BioRender.com.
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quantitative PCR, 16S rRNA gene amplification, high-throughput 
sequencing, bioinformatics analysis and co-occurrence network 
analysis are provided in the Supplementary material.

Disease inhibition in intercropping (pot 
experiment)

A pot experiment was conducted to test whether intercropping 
affected the abundance of the Fusarium wilt pathogen, and the 
number of siderophore-producing rhizobacteria in the faba bean 
rhizosphere. A growth substrate comprising a mixture of 100 g 
field soils with 900 g sand was sterilized and faba bean was planted. 
Two seedlings of faba bean were grown in monoculture, and one 
seedling each of maize and faba bean in intercropping. Each 
treatment had three replicates. F. oxysporum f. sp. fabae (FOF) was 
isolated from diseased faba bean plants in the field. FOF spore 
suspension (1.0 × 105 FOF spores g−1 substrate) was added 2 weeks 
after germination. Plants were grown in a chamber at 25°C and 
60–80% relative humidity. Two weeks after FOF inoculation, faba 
bean was sampled for growth measurement, and rhizosphere soils 
were sampled for the determination of FOF abundance and the 
number of siderophore-producing bacteria.

Counting siderophore-producing 
rhizobacteria and cultivation of  
Fusarium oxysporum

The siderophore-producing bacteria and F. oxysporum in the 
rhizosphere soils were sampled from the pot experiment. The 
bacteria and FOF were cultivated using specialized chrome azurol 
S medium (Schwynan and Neilands, 1987) and potato dextrose 
agar (PDA) medium, respectively. Soil suspension was processed 
by mixing 10 g fresh soil from zero P fertilizer treatment (field 
soils) with 90 ml sterile distilled water in 250-mL conical flasks to 
produce a 10−1 diluted suspension. The soil suspension was tenfold 
serially diluted to obtain dilutions of 10−2–10−5 in 10-mL 
centrifuge tubes. The suspensions in tubes were mixed by 
vortexing for 30 s. Suspensions (100 μl) were fully spread on PDA 
medium or chrome azurol S medium at pH 6.0. The plates were 
incubated at 30°C in the dark for 2 days followed by counting of 
colony-forming units (CFUs). The CFUs of the siderophore-
producing bacteria was counted when the plaques larger than 
1 mm in diameter or orange halo was produced on the azurol S 
medium. The CFUs of F. oxysporum were visually identified by 
morphological characteristics and fungal color.

Metagenomic sequencing and NRPS 
gene annotation

Differences in potential functions between maize and faba 
bean microbiomes were compared using rhizosphere DNA 

samples of monocultured maize and faba bean grown in the fields 
in the zero P fertilizer treatment. DNA was fragmented to an 
average size of ~300 bp using a Covaris M220 focused 
ultrasonicator (Woburn, MA). Paired-end libraries were 
constructed using TruSeq DNA Sample Prep Kits (Illumina, San 
Diego, CA). Sequencing was conducted using the Illumina 
HiSeq 4,000 platform in 2 × 150 bp paired-end mode, resulting in 
a total dataset of 95.7 Gb. The raw sequence data were deposited 
in the Genome Sequence Archive under accession number 
CRA005329. The low-quality reads were filtered by Fastp and the 
high-quality reads were assembled with MEGAHIT (mink = 27, 
maxk = 141, and step = 20; Li et al., 2015). Contigs ≥300 bp were 
selected as the final assembly result for further gene prediction 
and annotation. The open reading frames (ORF) were predicted 
using MetaGene (Lv et  al., 2014). The predicted ORFs with 
length ≥ 100 bp were retrieved and translated to amino acid 
sequences using the NCBI translation table. All sequences from 
gene sets with a 95% sequence identity (90% coverage) were 
clustered as the non-redundant gene catalog by CD-HIT (Fu 
et  al., 2012). Finally, high-quality reads were compared with 
non-redundant gene sets (95% identity) using SOAAPaligner, 
and the abundance of genes in the corresponding samples was 
determined (Li et  al., 2008). Representative sequences of the 
non-redundant gene catalog were compared (e-value threshold, 
10−5) against databases COG (The Clusters of Orthologous 
Groups) and KEGG (the Kyoto Encyclopedia of Genes and 
Genomes) using BLASTP (Version 2.2.28+). The annotation 
results were extracted with KOBAS (v3.0.3) software (−t 
blastout:tab, −s ko; Xie et  al., 2011). Nonribosomal peptide 
synthetase (NRPS) involved in the biosynthesis of hydroxamate-, 
catecholate-, and nitrogen heterocycle-based siderophores and 
peptide antibiotics were annotated as described previously (Kadi 
and Challis, 2009). Here, the genes involved in the biosynthesis 
of siderophore group nonribosomal peptides (KEGG pathway: 
ko01053, e.g., pchD, mbtA, irp1, entB, mxcE, dhbB, cibB) were 
selected (Satinsky et al., 2014).

Cultivation of antagonistic bacteria

Bacterial strains were isolated from bulk soil across all 
treatments of the maize/faba bean intercropping system in the field 
experiment using the Luria-Bertani (LB) medium. Soil suspensions 
were processed by serial gradient dilution as described for the 
cultivation of siderophore-producing bacteria. The plates were 
incubated in the dark at 25°C for 2 days. Representative colonies 
were picked out from the plates and a repeat streaking procedure 
on new dishes with LB medium, incubated for another 2 days to 
obtain pure colonies. The bacterial isolates were stored in LB liquid 
medium containing 20% glycerol at −80°C. A total of 95 bacterial 
isolates were identified by 16S rRNA sequencing with the primers 
27F/1492R following the protocol: initial denaturation at 98°C for 
3 min, 30 cycles of 98°C for 10 s, 56°C for 10 s, and 72°C for 30 s, 
with a final extension at 72°C for 5 min (Heuer et al., 1997). The 
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purified amplicons were sequenced by Tsingke Biotechnology Co., 
Ltd., Beijing, China, and their taxonomic identity was blasted at 
www.ncbi.nlm.nih.gov/blast/Blast.cgi.

The antagonistic activities of bacterial isolates against FOF 
were tested using the dual culture assays on PDA (Yin et al., 2021). 
Sole inoculation of FOF was used as the control. All culture plates 
were placed in the dark and incubated at 28°C for 5 days until the 
PDA medium in the controls was completely covered with FOF 
mycelia. The colony diameter was measured radially with a ruler. 
The inhibition rate was calculated as follows:

 

( ) %
-

=
Control Treatment

Inhibition rate 100
Control

×

Four bacterial isolates (B004, B005, B021 and B208) showing 
relatively strong inhibition rates (30%) of radial fungal growth 
were selected for further experiments. A neighbor joining (NJ) 
phylogenetic tree was constructed by the sequences of four 
strongly antagonistic isolates and their reference sequences from 
GenBank: Bacillus subtilis (MH666097.1), Bacillus megaterium 
(MT487648.1), Pseudomonas chlororaphis (KU977134.1) and 
P. chlororaphis (HM241942.1), as well as all OTU representative 
references of Bacillus and Pseudomonas.

FOF conidial germination and 
sporulation

Metabolites of the four strongly antagonistic bacterial isolates 
(B004, B005, B021 and B208) were used to test their antagonism 
against conidial germination and sporulation. First, the bacteria 
were separately cultured on the LB liquid medium at 28°C for 12 h 
when it reached the logarithmic growth stage. Then the bacteria 
solution was inoculated into the new LB medium at a dose of 1% 
and cultured at 28°C for 3 days. Afterwards, the liquid medium was 
centrifuged to obtain the supernatant. The supernatant was then 
filtered through 0.2-μm membrane filters to obtain sterile bacterial 
metabolites. Spore germination was evaluated by washing 7-day-old 
mycelia on PDA with sterile water and collecting the spores by 
filtering through two-layer lens papers. The spore suspensions were 
diluted to 1 × 107 spores mL−1 and 1.0 ml of spore suspension and 
9.0 ml sterilized bacterial metabolites (filtered through 0.2-μm 
membrane filters) were mixed. The tubes were incubated at 28°C 
for 12 h. A tube length of spore bud longer than the short radius of 
the spore was regarded as germination and the number of spores 
germinated were counted. Sporulation was assessed by cutting five 
5-mm agar plugs from 7-day-old cultures and inoculating into 
100 ml potato dextrose liquid medium containing 50% (v/v) 
bacterial metabolites, and incubated for 5 days at 28°C with constant 
shaking at 180 rpm. After inoculation, the culture broth was filtered 
through two layers of sterilized lens papers. The spore number was 
detected microscopically (YS100, Nikon, Tokyo, Japan) at 
400 × magnification (Guo et al., 2020).

Greenhouse plant assay (inoculation 
experiment)

Four bacterial isolates of B004, B005, B021, and B208 were 
used in a greenhouse bioassay experiment to test their inhibitory 
effects on FOF. Sand with diameter of 0.6–1.0 mm was autoclaved 
twice at 121°C for 30 min, and it was used as growth substrate. 
Faba bean seeds were surface – sterilized by immersion in 10% 
(v/v) hydrogen peroxide for 30 min, followed by three rinses with 
300 ml sterile distilled water. Seeds were then placed in a 
rectangular dish (50 × 30 cm) containing sterile water and 
incubated at 25°C in the dark until the seeds germinated (after 
60 h). Two faba bean seedlings were planted in each pot 
(6.0 × 5.0 × 7.5 cm) and one seedling was retained 14 days after 
planting. The four bacterial isolates were inoculated separately into 
the LB liquid medium and shaken at 30°C overnight. Cells were 
collected by centrifuging at 10000 rpm for 2 min and suspended in 
sterile distilled water to an optical density (OD600) value of 1.0. 
After the seedlings were thinned-out, 25 ml bacterial suspension 
were added near the plant roots, and control seedlings were 
supplied with an equal volume of sterile water. Two weeks later, 
FOF spore suspensions were added to all treatments (3.2 × 105 FOF 
spores g−1 of sand). Each treatment had four replicates. Pots were 
arranged in a randomized complete block design in plastic plates 
and incubated in a greenhouse at 25–30°C (day) / 18–22°C (night) 
and 60–80% relative humidity. The seedlings were watered daily 
with ~25 ml per pot and harvested after 5 weeks. Disease indices 
were classified according to Lv et al. (2020) and recorded at harvest. 
The number of siderophore-producing rhizobacteria was counted 
on the chrome azurol S medium.

Statistical analysis

Crop yields and F. oxysporum gene copies in the field 
experiment were analyzed using two-way analysis of variance 
(ANOVA) and mean values were compared by Student’s t-test or 
Duncan’s multiple range test using R version 4.1.01.
Spearman’scorrelation coefficients were calculated in R software 
between F. oxysporum gene copies and maize and faba bean yields. 
The inhibitory effects of Bacillus and Pseudomonas strains were 
tested by calculating the correlations between F. oxysporum gene 
copies and the relative abundance of Bacillus and Pseudomonas. 
Bacterial richness and Shannon index were calculated using 
“vegan” package. Two-way ANOVA was used to analyze alpha 
diversity differences between planting pattern and fertilization in 
each compartment of maize and faba bean. The microbial 
community structure was analyzed through principal coordinate 
analysis (PCoA) based on a Bray–Curtis distance matrix, and the 
coordinates were used to draw 2D graphical outputs (Chen et al., 
2019). Permutational multivariate analysis of variance 

1 http://www.r-project.org/
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(PERMANOVA) was conducted to test the significance of planting 
pattern and fertilization using the adonis function in the “vegan” 
package with 999 permutations (Oksanen et al., 2007). In the pot 
experiment, Student’s t-test was used to assess the differences in 
the number of siderophore-producing rhizobacteria and the 
abundance of the pathogen F. oxysporum between planting 
patterns, as well as in the number of siderophore-producing 
rhizobacteria and the functional categories or genes of NRPS and 
iron metabolism between crop species in the metagenomic 
analysis. Duncan’s multiple range test was used in the inoculation 
experiment to test the antagonistic effects of the four isolates 
against F. oxysporum.

Results

Crop productivity and Fusarium 
oxysporum gene copies

In the field experiment, intercropping increased the yields of 
maize and faba bean over monocropping by 21.3 and 14.4%, 
respectively (Figure 2A) and with an average LER of 1.2 across all 
treatments, indicating intercropping advantages (Figure  2B). 
Yields of maize and faba bean were significantly affected by 
fertilization and planting pattern (Supplementary Table S1), but 
pLER of faba bean was not significantly affected by fertilization 
treatment (F = 2.20, p = 0.17; Supplementary Table S2). 
Intercropping altered soil pH and N content while soil TC and  
AP contents were significantly affected by fertilization 
(Supplementary Table S3).

The F. oxysporum gene copies in different compartments of 
maize and faba bean were significantly affected by planting pattern 
but not by fertilization (Supplementary Table S4). Intercropping 
significantly decreased the gene copies of F. oxysporum over 
monoculture by 2.91, 7.33 and 9.56% in bulk soil, rhizosphere soil 
and root endosphere, respectively (Figure 2C). The suppression of 
F. oxysporum was much stronger in faba bean than in maize, 
especially in the RE (Supplementary Figure S1). Further analysis 
showed negative correlations between the gene copies of 
F. oxysporum and faba bean yields in the P fertilization treatment 
but not in the zero P treatment (Figure 2D). No correlation was 
observed in maize plants.

Bacterial diversity and community 
composition

Irrespective of fertilization, intercropping increased bacterial 
OTUs observed and Shannon index in both plant species at 
marginal levels, with more pronounced effects on the maize 
rhizosphere (Figures 3A,B). Planting pattern had marginal effects 
on the observed OTUs and Shannon index in the rhizosphere soils 
of maize and faba bean (p < 0.1), and only the Shannon index in 
maize RE was significantly affected by fertilization (p < 0.05; 

Supplementary Table S5). Based on the PCoA profiles, bacterial 
communities were clearly differentiated, separated by compartment 
and crop species. This was further supported by the PERMANOVA 
analysis based on a Bray–Curtis distance metric (compartment: 
R2 = 0.514, p < 0.01; crop species: R2 = 0.092, p < 0.01, 
Supplementary Figure S2A). PCoA analysis shows that the 
bacterial communities in BS, RS and RE of maize and faba bean 
were significantly affected by planting pattern, and the effect of 
fertilization was not significant except in maize RE (Figure 3C). In 
maize BS and RE, bacterial profiles in monoculture were clustered 
together and separated from intercropping along PCoA 1 
(p < 0.01). In faba bean, bulk soil samples were significantly affected 
by planting pattern (p < 0.05) but not by fertilization. Maize RS and 
faba bean RE were marginally significantly affected by planting 
pattern (maize, p = 0.051; faba bean, p = 0.051) and fertilization 
treatment (maize, p = 0.074; faba bean, p = 0.083). Similarly, at 
family level the abundant taxa present in all samples were more 
significantly affected by planting pattern than by fertilization 
(Supplementary Figure S2B; Supplementary Table S6). In addition, 
intercropping increased bacterial network complexity, as shown by 
the higher average degree, network density and more hub nodes 
compared to the corresponding monocultures (Supplementary  
Figure S3; Supplementary Tables S7, S8). Details of bacterial 
diversity, community structure and bacterial network are shown 
in the Supplementary Results.

Siderophore-producing rhizobacteria 
and microbial functional genes in the 
rhizosphere of both plant species

A pot experiment was conducted to examine the effect of 
intercropping on the reduction of pathogens. Intercropping 
increased dry weights of faba bean, especially root dry weights 
(Figure 4A). The abundance of F. oxysporum decreased but the 
numbers of siderophore-producing rhizobacteria increased in 
intercropping than in monoculture of faba bean (Figure 4B). The 
number of siderophore-producing rhizobacteria increased by 
71.1% in RS of faba bean compared to that of maize (Figure 4C).

In the field experiment, metagenomic analysis of rhizosphere 
soil in maize and faba bean showed that the total gene abundance 
of pyochelin biosynthesis was enriched in the RS of maize 
compared to that of faba bean (Figure 4D), in particular the pchF 
gene. In addition, the abundance of NRPS genes involved in 
enterochelin biosynthesis (e.g., entD, entF and entA) and 
mycobactin biosynthesis (mbtI) were significantly higher in maize 
RS, while mbtG involved in mycobactin biosynthesis was higher in 
faba bean RS. The gene irp5 involved in yersiniabactin biosynthesis 
was found only in faba bean RS (Supplementary Figure S4A).

As we targeted iron-related microbial gene functions, we sorted 
the COGs likely related to iron metabolism. Coenzyme transport 
and metabolism, energy production and conversion, and secondary 
metabolite biosynthesis, transport and catabolism were significantly 
enriched in faba bean RS (Figure 4E). Of all COGs likely related to 
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iron metabolism, 12 were enriched in faba bean RS but only three 
were enriched in maize RS (Supplementary Figure S4B). The COGs 
involved in coenzyme transport and metabolism (e.g., COG1072 
and COG2138), energy production and conversion (e.g., COG1333, 
COG1251 and COG1018, 0.0676% in faba bean RS and 0.0575% in 
maize RS), secondary metabolite biosynthesis transport and 
catabolism (COG2124, 0.126% in faba bean RS and 0.116% in maize 

RS), inorganic ion transport and metabolism [e.g., nitrate/nitrite 
transporter NarK (COG2223) and catalase (peroxidase I, 
COG0376)] and unknown functions (COG3544) were enriched in 
faba bean RS. By contrast, amino acid transport and metabolism  
and replication recombination and repair were slightly enriched in 
maize RS. Other COG0065 (homoaconitase/3-isopropylmalate 
dehydratase large subunit) for amino acid transport and metabolism, 

A

D

B C

FIGURE 2

Yields of maize and faba in monoculture and intercropping (A). Partial land equivalent ratio (pLER) of maize and faba bean in intercropping systems 
(B). Fusarium oxysporum gene copies in bulk soil, rhizosphere and root endosphere of maize and faba bean (C). Spearman correlations between 
yields of faba bean and maize with the abundance of Fusarium oxysporum in bulk soil, rhizosphere and root endosphere at zero P fertilization and 
40 kg P ha−1 yr.−1 (D). In each box plot the top and bottom of each box represent the 25th and 75th percentiles, the horizontal line inside each box 
represents the 50th percentile/median and the whiskers represent the range of the points excluding outliers. The diamonds of cyan and yellow are 
the average of the boxplot. In panel (B). The values of dashed lines are the relative densities of intercropped maize (0.57) and intercropped faba 
bean (0.43) with respect to the respective monocultures. In panel (C), bars with different letters indicate significant differences by Duncan’s 
multiple range test (p < 0.05). Monoculture, n = 24; intercropping, n = 24. BS, bulk soil; RS, rhizosphere soil; RE, root endosphere; P0, no P fertilization; 
P1, 40 kg P ha−1 yr.−1.
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COG1199 (rad3-related DNA helicase) for replication recombination 
and repair and COG1032 (radical SAM superfamily enzyme YgiQ, 
UPF0313 family, 0.077% in maize RS and 0.068% in faba bean RS) 
for general function prediction were enriched only in maize RS.

Isolate screening and identification of 
antagonistic strains

A total of 95 bacterial strains were isolated from bulk soils 
in maize/faba bean intercropping system in the field. The 
isolates were grouped into 13 genera, mainly Pseudomonas 

(36), Escherichia (20), and Bacillus (13), and the less abundant 
groups of Klebsiella, Acinetobacter, Pantoea, Chitinophaga, 
Lysobacter, and Stenotrophomonas (Supplementary Table S9). 
In the dual culture experiments, four isolates (B004, B005, 
B021, and B208) showed strong antagonistic effects on FOF 
growth based on visual agar observation (Figure  5A). The 
constructed phylogenetic tree indicates that the four 
antagonistic isolates showed high similarity to the reference 
strains for Pseudomonas (B004 and B021) and Bacillus (B005 
and B208), respectively (Figure 5B). B. megaterium (B005) was 
grouped together with OTU413, B. subtilis (B208) with 
OTU3274, and P. chlororaphis (B004 and B021) with OTU3234. 

A

C

B

FIGURE 3

Bacterial alpha diversity of observed OTUs (A) and Shannon index (B) in bulk soil (BS), rhizosphere soil (RS) and root endosphere (RE) of maize and 
faba bean as affected by planting pattern. Bacterial community composition in bulk soil, rhizosphere and root endosphere as affected by planting 
pattern and fertilization (C). P0N0, no fertilization; P0N1, sole N fertilization at 180 kg N ha−1 yr.−1 as urea; P1N0, sole P fertilization at 40 kg P ha−1 yr.−1 
as superphosphate; P1N1, N and P fertilization at 180 kg N ha−1 yr.−1 and 40 kg P ha−1 yr.−1 respectively; *p < 0.05; **p < 0.01.
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Importantly, OTU413 was the hub node in the bacterial 
network. Correlation analysis showed that the relative 
abundances of Bacillus (OTU413, OTU3274) and Pseudomonas 
(OTU3234) were positively correlated with F. oxysporum gene 
copies in the BS, RS and RE of faba bean irrespective of 
planting pattern (Figure 5C).

In vitro antagonistic activities of isolates 
against FOF and the inoculation 
experiment

In vitro analysis was conducted to quantify the inhibitory 
effect of the four antagonistic bacteria on FOF. The inhibition rates 
of B004, B005, B021, and B208 on FOF mycelial growth were 45.2, 
55.2, 54.2, and 33.8%, respectively (Supplementary Figure S5A). 

In addition, B005 and B021 were effective in siderophore 
production as shown by the orange hole on the chrome azurol S 
medium (Figure 6A). In terms of FOF spore germination and 
sporulation, all four isolates showed strong inhibitory effects 
(Figure 6B). Compared to B021 and B208, the effects of B004 and 
B005 on suppressing mycelial growth of F. oxysporum were 
stronger but their metabolites were weaker.

The disease suppressive activity of the four isolates against 
FOF was further investigated in a bioassay experiment. 
Compared to the control, the disease index of faba bean plants 
inoculated with B005 and B021 decreased by 75 and 50%, 
whereas those inoculated with B004 and B208 decreased by 33 
and 25%, respectively (Figure 6C). In addition, the CFU number 
of siderophore-producing rhizobacteria in the B005 inoculation 
treatment was the highest, followed by B004 and B021, while the 
number in the B208 treatment was the lowest. The disease index 

A
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FIGURE 4

Shoot and root dry weights of faba bean in monoculture and intercropping (A). Abundance of cultivable F. oxysporum and siderophore-producing 
rhizobacteria in faba bean rhizosphere in the pot experiment (B). Number of siderophore-producing rhizobacteria in rhizosphere of maize and 
faba bean in the field experiment (C). Relative abundance of nonribosomal peptide synthetase (NRPS) gene in maize and faba bean rhizosphere 
soil based on metagenome sequencing (D). Bacterial gene ontology (GO) analysis for all genes related to iron metabolism, showing enriched (right 
next to the dash line) or depleted (left next to the dash line) in faba bean rhizosphere (E). In panel (A,B), data (n = 3; mean ± S.E.) of faba bean 
samples collected from monoculture and intercropping are presented. In panel (C–E), data (n = 6; mean ± S.E.) of rhizosphere soil samples collected 
from maize and faba bean rhizosphere are presented. Student’s t-test was conducted to check the differences between two group samples. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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of Fusarium wilt was significantly negatively correlated with the 
CFU numbers of the siderophore-producing rhizobacteria 
(r = −0.45, p = 0.023). However, no significant differences  
in the biomass of faba bean were detected (Supplementary  
Figure S5B).

Discussion

In this study, overyielding was in line with a recent meta-
analysis showing that maize was the major contributor to 
overyielding in most intercropping studies (Li et  al., 2020). 

Facilitation is well demonstrated in cereal/legume systems for 
mutual benefit in terms of N and P nutrient use (Li et al., 2007, 
2016). In addition to nutrient supply mechanisms, decreasing the 
abundance of potential pathogens such as F. oxysporum in 
intercropping may also attribute to yield advantage (Figure 2), 
though it is difficult to directly quantify the contribution of 
disease suppression to yield increase under field conditions. On 
the one hand, there may be  a “dilution” effect because 
intercropping increased bacterial diversity (OTU richness and 
Shannon index) in nearly all compartments of maize and faba 
bean (Figures  3A,B), consisting with enhanced microbial 
biodiversity and grain yields in other intercropping studies 

A

B C

FIGURE 5

Dual culture assays for in vitro inhibition of FOF growth by bacterial isolates (A). Neighbor-joining (NJ) phylogenetic tree shows the four isolates 
B004, B021, B005 and B208 with representative sequences selected from GenBank (bold text) and representative sequences of OTUs affiliated 
with Bacillus and Pseudomonas (B). Correlations between the relative abundances of the antagonistic OTUs, Bacillus and Pseudomonas with the 
gene copies of F. oxysporum across all samples (C).
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(Zhang et  al., 2020; Li et  al., 2021b). On the other hand, the 
decline in pathogen abundance may be the result of increased 
network complexity and enhanced competitiveness against 
pathogens in intercropping (Supplementary Figure S3). Here, 
we found that bacterial networks in intercropping had higher 
complexity and higher connectivity than those in monoculture, 
indicating the potential to suppress fungal pathogens of focal 
plants by introducing microbiome of the non-host plants. Similar 
results were obtained in pea/wheat intercropping (Pivato et al., 
2021), and also in monocultures of olive cultivars exposed to 
verticillium wilt (Fernandez-Gonzalez et al., 2020) and in tobacco 
plants to wilt disease (Yang et al., 2017). Together, diversified 
cropping system such as intercropping, rotation (Zhou et  al., 
2017), and companion planting (Fu et al., 2015) is an effective 
approach to reduce pathogen abundance and disease incidence.

Soil nutrient supply and especially iron supply affects the 
pathogenicity of plant pathogens (Gu et al., 2020). Iron availability 
is particularly low on the calcareous soil, though the crops did not 
exhibit visible iron deficiency symptoms. In our second 
hypothesis, we speculated that the rhizosphere microbiome from 
neighboring maize plants might have direct effects on the disease 
suppression of faba bean plants, likely due to differences in the 
abundance of iron siderophore-producing bacteria. Our results 
partly support this hypothesis. First, the abundance of the 
siderophore-producing rhizobacteria was significantly higher in 
maize rhizosphere than in faba bean rhizosphere (Figure 4C), and 
it was higher in intercropping than in monocultured faba bean RS 
(Figure 4B). Second, results from the in vivo experiment showed 
that the two isolates B005 and B021 had higher siderosphore-
producing capacity and showed the highest suppression of FOF 

A

B C

FIGURE 6

Siderophore-producing capability of the four antagonistic isolates (A). Effect of metabolites of the four isolates on mycelial growth, spore 
germination and sporulation of FOF (B). Disease index of Fusarium wilt and the number of siderophore-producing rhizobacteria (SPRB) in the 
control (sterilized water) and inoculated treatments B004, B005, B021 and B208, and the correlation of the two indicators (C). B004 and B021 are 
affiliated with Pseudomonas chlororaphis; B005 with Bacillus megaterium and B208 with Bacillus subtilis. Different lowercase letters in each plot 
indicate significant differences according to Duncan’s multiple range test at p < 0.05.
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among the four selected isolates in terms of disease index 
(Figure 6). Finally, results from metagenomics demonstrated that 
the nonribosomal peptide synthetases genes, in particular 
pyochelin (e.g., pchF), were significantly higher in the maize 
rhizosphere relative than in the faba bean rhizosphere. The genes 
for enterochelin biosynthesis (e.g., entF, entD and entA) and total 
pyochelin biosynthesis showed similar trends though not 
statistically significant (Figure 4; Supplementary Figure S4). This 
may be associated with the rhizosphere traits of the two crops. 
Maize is a strategy II species and faba bean is strategy I (Römheld 
and Marschner, 1986). A significant decrease in soil pH and 
increase in organic acids with faba bean roots may be the major 
determinants modulating the assembly and functions of bacteria 
in the rhizosphere (Liao et al., 2022; Meng et al., 2022). Further 
studies are needed to unravel the microbial interactions mediated 
by nutrient cues of different crop species.

The bacterial community composition was altered in 
intercropping compared to monocultures of both maize and 
faba bean. This agrees with previous studies in which 
intercropping altered rhizosphere microbial communities of 
proso millet, mung bean (Dang et al., 2020), and wheat and faba 
bean (Granzow et al., 2017). Similar to previous studies (Zheng 
and Gong, 2019; Xiong et al., 2021), compartment and host 
identity but not fertilization were the predominant factors 
attributable to distinct changes in bacterial community 

composition (Supplementary Figure S2A; Figure  3; 
Supplementary Table S6). In particular, Bacillaceae was more 
abundant in RS of maize than in that of faba bean, but 
Pseudomonadaceae and Rhizobiaceae showed the opposite trend 
(Supplementary Figure S2B). Rhizobiaceae, Bacillaceae and 
Pseudomonadaceae are regarded as plant growth promoting 
bacteria (Zarraonaindia et al., 2015), and plants are shown to 
recruit specific taxa to suppress disease (Mendes et al., 2011; 
Carrión et al., 2019). We identified 60 hub nodes belonging to 
52 OTUs as keystone taxa in the bacterial network and  
these taxa belonged to Bacillaceae, Sphingomonadaceae, 
Lysobacter, Streptomycetaceae, Xanthomonadaceae and others 
(Supplementary Table S8). Some of these taxa are widely 
recognized to play an important role in regulating plant fitness, 
inhibition of pathogens and increased tolerance (Mendes et al., 
2011; Gomez Exposito et  al., 2017). After testing 95 viable 
colonies, we found that two Bacillus isolates (B005 and B208) 
and two Pseudomonas isolates (B004 and B021) showed strong 
antagonistic effects on FOF (Figure  5A). Bacillus spp. and 
Pseudomonas spp. are known to be biocontrol agents, showing 
strong antagonistic effects on plant pathogens including FOF 
(Berendsen et  al., 2012; Tao et  al., 2020). The greenhouse 
bioassay showed that B005 and B021 significantly reduced the 
disease index by 75 and 50%, respectively, while the other two 
isolates did not have such efficacy (Figure  6C). As the 

FIGURE 7

Conceptual model displaying the potential mechanisms of suppression of the fungal pathogen in the intercropping rhizosphere by building up a 
complex bacterial network to form the rhizosphere barrier and simulating more siderophore-producing bacteria to compete with pathogenic 
fungi for iron. Created with BioRender.com.

https://doi.org/10.3389/fmicb.2022.972587
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://biorender.com/


Sun et al. 10.3389/fmicb.2022.972587

Frontiers in Microbiology 13 frontiersin.org

experimental period was relatively short, no significant 
difference was observed in biomass among different treatments, 
despite of the inoculation with antagonistic bacteria showing a 
tendency to promote biomass (Supplementary Figure S5B). 
Interestingly, we found that isolate B005 (OTU413) appeared to 
be highly affiliated with keystone taxa in the empirical bacterial 
network (Supplementary Figure S3; Figure  5). The results 
indicate that keystone taxa in the bacterial network are likely to 
be important in determining species interactions and microbe-
pathogen interactions. As individual isolate showed different 
effects on the disease index of faba bean (Figure  6C), these 
results indicate that a synthetic community may be  more 
promising in the manipulation of pathogen control, although 
single isolate or simplified synthetic community inoculation has 
also been reported (Yin et al., 2021; Li et al., 2021c).

Conclusion

Increasing evidence emphasizes the importance of soil 
microbiota in the relationships of plant diversity-ecosystem 
productivity in intercropping systems. Microbial interactions in 
intercropping are superimposed and are more complex as they 
involve multiple players. Our results indicate a new perspective 
in rhizosphere microbial ecology by providing evidence that 
interactions between rhizosphere beneficial microbes and 
pathogens contribute to the suppression of plant pathogens by 
building up a complex bacterial network to form a rhizosphere 
barrier, and stimulating siderophore-producing bacteria to 
compete with pathogenic fungi for iron, then increasing the 
production of the host plants (Figure 7). This mechanism can 
be  extrapolated to the development of proper intercropping 
systems. Our study provides evidence for direct facilitative 
interactions between beneficial microbes of one crop to 
pathogen suppressiveness of the neighboring crop in explaining 
overyielding advantages in intercropping. This has broad 
agronomic implication to enhance ecosystem services in 
intercropping through the manipulation of microbial 
interactions in addition to facilitative root–root interactions.
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