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Abstract

Quantifying the variation of pathogens’ life history traits in multiple host systems is crucial to

understand their transmission dynamics. It is particularly important for arthropod-borne

viruses (arboviruses), which are prone to infecting several species of vertebrate hosts.

Here, we focus on how host-pathogen interactions determine the ability of host species to

transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever

(RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contri-

butions of livestock species to RVFV transmission has not been previously quantified. To

estimate their potential to transmit the virus over the course of their infection, we 1) fitted a

within-host model to viral RNA and infectious virus measures, obtained daily from infected

lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infec-

tious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of

each host species over the duration of their infectious periods, taking into account different

survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along

with the lifespan of infectious particles, could be sources of heterogeneity between hosts.

Given available data on RVFV competent vectors, we found that, for similar infectious titers,

infection rates in the Aedes genus were on average higher than in the Culex genus. Conse-

quently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be

2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs,

we estimated the overall infectiousness to be 1.93 times higher in individuals which eventu-

ally died from the infection than in those recovering. Beyond infectiousness, the relative

contributions of host species to transmission depend on local ecological factors, including

relative abundances and vector host-feeding preferences. Quantifying these contributions

will ultimately help design efficient, targeted, surveillance and vaccination strategies.
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Author summary

Viruses spread by mosquitoes present a major threat to animal and public health world-

wide. When these pathogenic viruses can infect multiple species, controlling their spread

becomes difficult. Rift Valley fever virus (RVFV) is such a virus. It spreads predominantly

among ruminant livestock but can also spill over and cause severe disease in humans.

Understanding which of these ruminant species are most important for the transmission

of RVFV can help for effective control. One piece of this puzzle is to assess how effective

infected animals are at transmitting RVFV to mosquitoes. To answer this question, we

combine mathematical models with observations from experimental infections in cattle,

sheep, and goats, and model changes in viremia over time within individuals. We then

quantify the relationship between hosts’ viremia and the probability to infect mosquitoes.

In combining these two analyses, we estimate the overall transmission potential of sheep,

when in contact with mosquitoes, to be 3 to 5 times higher than that of goats and cattle.

Further, sheep that experience a lethal infection have an even larger overall transmission

potential. Once applied at the level of populations, with setting-specific herd composition

and exposure to mosquitoes, these results will help unravel species’ role in RVF outbreaks.

Introduction

At the beginning of this century, 75% of emerging pathogens in humans were estimated to be

zoonotic [1] and 77% of livestock pathogens could be transmitted between different host spe-

cies [2]. Estimating the relative role different species play in sustaining or amplifying pathogen

spread is fundamental for designing control strategies [3–6], yet is hampered by an incomplete

understanding of the host(-vector)-pathogen interactions that underlie the spread of these

pathogens [7–10].

The potential of a host to contribute to virus transmission is determined by the complex

interplay of different factors. For viruses transmitted by arthropod vectors (i.e., arboviruses)

these epidemiological interactions are driven both by ecological, population-level factors (i.e.,

the presence of specific host and vector species and their respective interactions) and the indi-

vidual-level interactions of the virus with its hosts and vectors. The ability of a host species to

infect a susceptible vector upon a potentially infectious contact is determined by the latter.

Namely, it derives from i) the viral replication in the host and ii) the ability of a vector to pick

up the virus upon blood feeding and subsequently become infected and infectious. While these

processes can and have been studied in experimental settings, combining these findings into

epidemiologically meaningful parameters is challenging [11–13].

Within-host mathematical models and accompanying inference frameworks have been

developed to aid the analysis and interpretation of viral load patterns obtained in controlled

infection experiments. Such models provide insights into the biological mechanisms underly-

ing observed patterns [14–18] and how those patterns relate to the clinical expression of the

disease [12]. The majority of these modeling efforts are based on viral RNA (or DNA) data,

which are indirect measures of infectious virus. Efforts to combine these with infectious virus

data (e.g., median tissue culture infectious dose, TCID50 or plaque forming units, PFU) have

recently emerged for influenza viruses and provide better mechanistic insights into the propor-

tion of particles that are infectious and could contribute to onward transmission [19–24].

Rift Valley fever virus (RVFV) exemplifies the challenges inherent to battling multi-host

arboviruses. It was first identified in Kenya, in 1930, after description of an enzootic hepatitis

in sheep [25]. The virus has since caused outbreaks throughout the African continent as well
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as in the Southwest Indian ocean islands (Comoros archipelago, Madagascar) and the Arabian

Peninsula [26]. RVFV mainly affects sheep, goats, and cattle, in which it causes abortion

storms and sudden death of newborns [27, 28]. Spillover to humans happens through the han-

dling of infectious animal tissue or by vectorial transmission. While most human infections

remain asymptomatic or manifest as a mild illness, symptoms can range from flu-like to hepa-

titis, encephalitis, retinitis and in the most severe cases, haemorrhagic disease [29]. RVFV vec-

tor-borne transmission is mainly mediated by Aedes and Culex spp. mosquitoes, making its

establishment possible in a wide range of ecosystems [30]. While sheep are generally believed

to be the most important host species [31–33], efforts fall short of quantifying livestock hosts’

relative contribution to RVFV transmission.

Here, we aim to gain more insight into the relative importance of livestock species in RVFV

transmission. Using experimental data and mathematical modeling, we derive estimates of

hosts’ individual potential to transmit RVFV to vectors during their infectious period.

Results

Overall approach

We developed a mechanistic compartmental within-host model, representing the infection of

target cells and the subsequent production of viral particles, not all of which are infectious

(Fig 1). We distinguished the total amount of viral particles produced by infected cells, Vtot, and

the subpart capable of infecting new cells, Vinf. We fitted this model to time-series of viral RNA

(RT-qPCR) and infectious virus (TCID50), measured daily in calves (n = 8), lambs (n = 16), and

young goats (n = 8) intravenously inoculated with a virulent RVFV strain ([34], Materials and

methods). We compared the cell-level basic reproduction number R0 and mean generation

time Tg, between groups. We quantified the relationship between vertebrate hosts’ infectious

titers and transmission to mosquitoes using data we extracted through a systematic literature

review. Finally, we estimated the net infectiousness of livestock species, a metric proportional to

the number of mosquitoes a host would infect over the entire course of its infection.

Data description

All animals became viremic. In total, 10/16 lambs succumbed to the infection or were eutha-

nized, 3 to 7 days after RVFV inoculation, while others survived until the end of the experi-

ment (2 weeks). All calves and young goats survived until the end of the experiment. Animals

reached their maximum RNA levels (average 8.79 log10 copies/ml, standard deviation

0.81 log10 copies/ml) and infectious titers (average 5.16 log10TCID50/ml, standard deviation

1.16 log10TCID50/ml) on day 2 or 3 post-infection.

Within-host model of RVFV infection

We fitted a within-host model to four datasets, measuring viral RNA and infectious virus in

RVFV-infected lambs (surviving; dying), calves, and young goats, using a Bayesian framework

(Materials and methods). The model consisted of 10 parameters, 5 of which were held constant

(Table 1). We estimated the death rate δ of infected cells, their total daily production of viral

particles ξp, among which p are infectious, the degradation rate dinf of infectious viruses into

non-infectious viruses, and the clearance rate ch of viral particles. Parameter values were then

used to calculate the cell-level basic reproduction number R0 and mean generation time Tg.
Initial conditions were set using elements of the experimental protocol along with a sensitivity

analysis (Materials and methods, Table 1). Outputs from the Markov Chain Monte Carlo
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(MCMC) procedure can be found in Section S.1.1 in S1 Text. The fits satisfyingly capture the

dynamics present in the data (Fig 2).

The model selection performed highlights different viral load dynamics between livestock

species (Deviance Information Criterion (DIC) 1307 vs 1186, comparison based on surviving

animals as calves and young goats all survived, Fig 2). In particular, the ratio of daily viral RNA

over infectious viruses produced (ξ) is the highest in the goat group, meaning that the replica-

tion process might be less efficient in this species (Table 2). The highest density intervals

(HDIs) for this parameter are wide (Table 2), but the posterior distributions remain informa-

tive, as knowledge was gained compared to uniform prior distributions (Fig D in S1 Text). In

addition, among surviving hosts, the lifespan of infectious particles (dinf + ch)−1 is estimated to

be the longest in goats (Table 2). The resulting dynamics show viremia in goats peaks sooner

than in calves and in lambs, but with a lower peak value for infectious viruses (Fig 2). Lambs

have on average the most infectious viral particles. Model results indicate this could be a result

of a slightly higher daily production rate p (Table 2), as well as their initial susceptible cell pop-

ulation, which we estimated to be higher than in other species (Fig A in S1 Text).

Fig 1. Graphical representation of the within-host model. Infectious viruses Vinf were fitted to TCID50 measures, and total viral production Vtot to

RT-qPCR measures. The eclipse phase (state L) is the period between the infection of a cell by a virus and the presence of mature viruses within the cell.

Productively infected cells I are the only ones producing progeny virions. Subscripts in L and I indicate the use of Erlang distributions for the time spent

in those states. Target cells are not replenished and only productively infected cells die. Model assumptions, equations and parameter definitions can be

found in Materials and methods, Eq (1), and Table 1.

https://doi.org/10.1371/journal.pcbi.1010314.g001
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Characterizing the infectious replication process through the basic reproduction number R0

and generation time Tg (Materials and methods, Eqs (3) and (4)) shows no strong differences

between species when comparing surviving individuals (Fig 3). R0 ranges from 8.51 (median;

95% HDI 5.69—14.53) for calves, to 11.47 (median; 95% HDI 7.73—17.68) for lambs. Tg (i.e.,

the time between infection of a cell and infection of a secondary cell) ranges from 13.48h

(median; 95% HDI 12.84h—15.23h) in goats to 14.43h (median; 95% HDI 12.82h—18.31h) in

calves.

Among lambs, individuals succumbing to RVF are characterized by higher viral loads, both

total and infectious, and a slower decay after the peak is reached (Fig 2). The best model fit is

achieved when allowing parameters to vary depending on the survival of the individuals (Fig 2,

DIC 928 vs 745), indicating significantly different within-host dynamics depending on clinical

outcome. In particular, we estimated that both infected cells and infectious viral particles have

prolonged lifespans in dying lambs (δ−1 and (dinf + ch)−1 respectively, Table 2). This impacts R0

which is 1.88 times higher (median ratio; 95% HDI 0.84; 3.51) in dying individuals than sur-

viving ones, and Tg, which is 1.19 times longer (median ratio; 95% HDI 0.91; 1.65) in dying

individuals than surviving ones. Besides, the ratio of daily viral RNA over infectious viruses

produced (ξ), which does not influence R0, is higher in dying lambs than surviving ones

(Table 2).

Dose-response relationship in RVFV mosquito vectors

Through a systematic review, we identified 9 papers from which data could be extracted to

estimate the relationship between vertebrate host infectious titers and associated infection

Table 1. Parameters of the within-host model. Values if fixed, prior range (uniform distribution) if estimated.

Name Meaning Value/Estimated Reference/Prior

T0 initial number of susceptible target cells Fixed within MCMC, estimated a priori through likelihood

profiles

see Fig A in S1 Text

L0 initial number of cells in latent state 0

I0 initial number of productively infected cells 0

Vinf,0 initial number of infectious virions 12.5 for calves, 62.5 for goats, 52.6 for lambs (per ml of

plasma, total inoculum per animal being 105)

References for plasma:body weight ratios

[35–37]

β rate governing infection of target cells by infectious

virions

set such as βT0 = 48 day-1 assumed

nL, nI number of L and I states for the Erlang distributions 20 [38, 39]

κ−1 eclipse phase duration 1/3 day (8 hours) P. Wichgers-Schreur personal

communication, observed in vitro
δ death rate of productively infected cells Estimated [0.1; 10]˚ day-1

p rate of production of infectious virions Estimated [0.2; 3.104]† day-1

dinf rate of degradation of infectious virions into non-

infectious viral particles

Estimated [0.1; 10] day-1

ch host-driven clearance rate Estimated [0.1; 10] day-1

σ correction factor to convert from infectious virions

(plaque forming units) to TCID50

0.69 [40]

ξ ratio of total viral particles to infectious virions, as

produced by infected cells

Estimated [1; 1000]† day-1

†: these values were applied for each L (respectively I) states, so a daily rate per L (I) cell (not state) can be obtained by multiplying by nL (nI)
˚: δ was constrained to be inferior to κ and (ch + dinf), as advised by [41].

https://doi.org/10.1371/journal.pcbi.1010314.t001
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rates in vectors (Materials and methods, Section S.2.1 in S1 Text). Selected experiments were

performed with hamster hosts, Aedes or Culex spp. vectors, using RVFV strain ZH501.

Dose-response curves differ significantly between Aedes and Culex spp. (Fig 4, Section S.2

in S1 Text). At 5 log10 TCID50/ml for instance, which most animals could reach or exceed (Fig

2), there is 25% [17; 37] probability to infect an Aedes spp. vector and 11% [7; 18] probability

Fig 2. Data on viral RNA (RT-qPCR) and infectious virus (TCID50), in log10/ml of plasma, and model fits, for host groups showing significantly

different viral dynamics. Circles are data points. Solid colored lines show the median fit, obtained from 1000 posterior draws. Inner envelopes using

the same colors shows the uncertainty from the parameter estimation process (quantiles [2.5–97.5]% of these posterior draws). Outer grey envelopes

show the 95% uncertainty bounds associated with the observation process. We assumed this to be normally distributed with a standard deviation of 1

(log10 scale), in line with the sampling error. Purple is for viral RNA and blue for infectious viruses. For lambs which died from RVF, circled points

represent individuals’ time of death. LOD = limit of detection, 1.55 for TCID50, 1.7 for viral RNA (log10).

https://doi.org/10.1371/journal.pcbi.1010314.g002
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Table 2. Parameter estimates per host group. Median of joint posterior distributions (3 chains) and HDI = highest density interval (95%). All parameters are in unit

day-1, see Materials and methods and Table 1 for detailed definitions. The HDI is built such as every point inside the interval has higher credibility than any point outside

the interval [42].

Estimate: median [HDI]

Parameter Goat Calf Lamb surv. Lamb dead

δ I death rate 2.61 [1.91; 3.0] 2.17 [1.30; 3.0] 2.34 [1.60; 3.0] 1.52 [0.85; 2.44]

p production of Vinf 20.14 [13.33; 29.40] 14.98 [12.31; 17.89] 21.53 [17.09; 26.50] 25.27 [19.72; 31.00]

ξ ratio
Vtot
Vinf

produced 672.76 [333.96; 999.56] 75.16 [20.60; 161.05] 44.33 [9.66; 104.48] 221.15 [50.57; 510.97]

dinf degradation Vinf! Vtot 2.10 [1.36; 2.92] 3.77 [2.17; 6.63] 3.26 [2.19; 4.48] 1.60 [0.90; 2.31]

ch clearance of Vinf and Vtot 2.06 [1.88; 2.24] 1.72 [1.53; 1.92] 2.24 [1.94; 2.53] 1.43 [0.87; 2.01]

https://doi.org/10.1371/journal.pcbi.1010314.t002

Fig 3. Outcome measures per host group. Points are median estimates, lines show highest density intervals, computed from joint posterior

distributions (3 chains). Basic reproduction number R0 is computed with Eq (3) and generation time Tg with Eq (4). Note that generation times are

constrained in their lower values due to the eclipse phase duration (κ−1) and rate of virus entry into cells (β) being fixed (Table 1).

https://doi.org/10.1371/journal.pcbi.1010314.g003
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to infect a Culex spp. vector (point estimate and 95% confidence interval, Fig 4). We did not

find a significant effect of temperature and number of days post-exposure on infection rates

(Sections S.2.2, S.2.3 in S1 Text). The effect of dose is best captured by Eq (S.6) in S1 Text, used

by [43], fitted with a betabinomial likelihood accounting for overdispersal in the data (Section

S.2.3 in S1 Text). Species-specific curves were estimated for Aedes vexans, Aedes japonicus,
Culex nigripalpus, and Culex tarsalis (Section S.2.3 and Fig G in S1 Text). While there is intra-

genus variability, infection rates in Aedes vexans and Aedes japonicus are on average higher

than in Culex nigripalpus, and Culex tarsalis at similar host infectious titers (Fig G in S1 Text).

Net infectiousness of RVFV livestock hosts

Net infectiousness (NI, Eq (5)) varies with both host species and mosquito genus involved

(Fig 5). NI is lowest for goats and highest for lambs. The relative differences in NI between

host species is stronger when comparing transmission to Culex (median ratio lamb:goat

4.79; median ratio lamb:calf 3.75) than to Aedes mosquitoes (median ratio lamb:goat 3.65;

median ratio lamb:calf 2.93). Every host type studied has the highest NI when bitten by an

Aedes spp. vector, but the uncertainty around NI estimates decreases when considering

Culex bites (Fig 5).

Lambs’ NI varies with the expected death rate among lambs (Materials and methods, Fig H

in S1 Text). Lambs dying from RVF have a higher NI than lambs surviving (Fig H in S1 Text).

Fig 4. Dose-response relationships linking host infectious titers to the probability to infect mosquito vectors. Data retrieved from a systematic

review (Materials and methods, Section S.2.1 in S1 Text). Points and triangles show infection rates (presence of RVFV in mosquito bodies, legs

excluded) from experiments performed with hamsters with RVFV strain ZH501. Fits were obtained with Eq (S.6) in S1 Text using a betabinomial

likelihood to account for overdispersal in the data. Confidence intervals result from 1000 replicate trajectories. Note that infectious titers>10 log10

TCID50/ml are not to be expected in hosts, but were included to show the full curve.

https://doi.org/10.1371/journal.pcbi.1010314.g004
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Indeed, dying lambs are more infectious than their surviving counterparts during their whole

viremic period, which in 60% of cases can last longer (day 7) than the infectious period of sur-

viving individuals (probability < 1% to infect an Aedes or a Culex past day 5 post-inoculation).

When bitten by an Aedes spp. vector, lambs NI ranges from 0.24 to 2.54, increasing by a factor

1.93 (median ratio) from surviving to succumbing individuals. When bitten by a Culex spp.

vector, lambs NI ranges from 0.12 to 1.36, increasing by a factor 2.22 (median ratio) from sur-

viving to succumbing individuals.

Fig 5. Net infectiousness of RVFV livestock host species, function of the mosquito genus involved in transmission. Points are median estimates,

lines show highest density intervals, computed using 1000 parameter sets from the within-host model and dose-response curve respective fitting

procedures. For lambs, parameters were sampled in the posteriors of both surviving and dying groups, according to the survival rate observed in the

original dataset (6/16, Fig H in S1 Text). Time of death also varied according to a Weibull survival model (Materials and methods).

https://doi.org/10.1371/journal.pcbi.1010314.g005
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Discussion

We have presented the results of a data-driven estimation of livestock hosts RVFV transmis-

sion potential, providing mechanistic insights into potential sources of heterogeneity between

species. Our results demonstrate that sheep are the most infectious livestock hosts, and that

virulent infection leading to death reinforces the infectiousness of this species. We also showed

that in the current literature, lower infectious doses are needed on average to infect Aedes spp.

vectors than Culex spp.. The framework presented here can be applied to other multi-host

arboviruses to estimate transmission potential, a key component of hosts contribution to

transmission at large scale.

The suite of experimental data used in our study incorporated the major elements needed

for an epidemiologically relevant estimation of hosts’ transmission potential. We included

both viral RNA and infectious viruses, measured in vivo, in natural RVFV hosts. Similar exist-

ing models used data coming either from in vitro experiments [19, 20, 23, 24, 44], or from

model hosts, such as ferrets for influenza [21, 22]. The breeds infected in our dataset, which

are dominant breeds from Europe, make our estimates directly relevant for scenarios of RVFV

emergence on this continent [45]. A comparison with African breeds is required to know if

the relative differences in infectiousness are maintained. Heterogeneity among RVFV strains

should also be studied [46]. Performing infection through mosquito bites rather than intrave-

nous injection would ensure a natural course of infection, although the protocol presently

used was shown to yield similar viral load dynamics as mosquito-mediated infection [47]. This

would further allow for the exploration of the impact of heterogeneity of exposure (i.e., num-

ber of infectious bites or infectious titers in vector saliva) on infectiousness. Quantifying more

precisely the effect of aging on animals’ viral dynamics and pathogenesis is needed to complete

our results [48]. Finally, measuring human viral loads, as early as possible post-infection, will

be key to complete our understanding of hosts’ contribution to RVFV transmission.

Our within-host model is the second developed for RVFV [49], but the first to mechanisti-

cally represent the process of viral production from host cells. This enabled an identification of

processes driving differences between groups and an increased understanding of the cell-level

viral replication process. First, we estimated a less efficient replication in goats, further advo-

cating for the use of infectious virus measures in order not to overestimate transmission poten-

tial [50]. Besides, we estimated the lifetime of infectious viral particles and infected cells to be

longer in dying lambs than their surviving counterparts, which calls for an exploration of cor-

responding (immune) mechanisms in future experiments. The uncertainty around parameter

estimates remains important, and summarizing parameter estimates into aggregated outcome

measures R0 and Tg put those mechanistic differences into perspective. Indeed, once correla-

tions between parameters are taken into account, the replication process is most different

between severe and moderate infection within sheep and less so between host species. The

model could be refined by incorporating an explicit immune response [51, 52] or taking into

account the genomic composition of viral particles [53, 54], but the quantity of information

needed (number of timesteps and replicates, inclusion of data on immune responses) could

hamper this costly data collection. Alternatively, routinely collected data such as body temper-

ature could constitute an interesting lead to explore time-varying parameters, as a proxy of the

immune response. Dedicated modeling would first be needed to determine i) the form of the

relationship between temperature and the immune response, most likely with cytokines [55,

56], and ii) which model parameters would be impacted by such an immune response.

By gathering relevant competence studies into a meta-analysis, we quantified the relation-

ship between infectious titers and mosquito RVFV infections. To our knowledge, such dose-

response relationship had not been quantified for RVFV. This results in a lack of precision in
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between-host RVFV transmission models which usually assume constant infectiousness of

hosts over their infectious period. Quantifying how the probability to infect a vector increases

with dose will also affect the stochasticity of transmission in small populations (be it emer-

gence or extinction). Dose-response curves have been important for the study of other arbovi-

ruses, e.g., for exploring the role of asymptomatic dengue infections [12] or the epidemic

potential of Aedes albopictus for Zika virus [57]. One important originality of our work was to

highlight a higher susceptibility of Aedes spp. vectors to RVFV infection compared to Culex
spp. vectors, at similar infectious titers. Further studies are needed to confirm whether this

higher probability of infection is also accompanied by a higher probability of the mosquito

becoming infectious itself. This would require the detection of infectious particles in mosqui-

toes’ saliva, which was only performed in 23 out of 185 data points in the present systematic

review.

A lot remains unknown about the bottlenecks of arboviruses propagation in mosquitoes

[58]. It can depend on species within each genus [59, 60] or even mosquito provenance (field

vs laboratory-reared, [61–63]), in part because of the role of temperature [64]. Further experi-

ments are needed to know whether a given infectious titer sampled during the increasing or

the decreasing phase of viral dynamics would yield the same probability to infect vectors. This

comes down to defining what makes a viral particle infectious to host cells vs vector cells, and

might relate to the efficiency of genome packaging by those cells [54]. Mechanistic modeling

will help grasp the complexity of involved processes.

Our study provided key estimates of RVFV livestock hosts’ transmission potential. It quan-

tified for the first time the prominent role of sheep, which are 3 to 4 times more infectious

than cattle and goats, due to more infectious viruses and a longer infectious period. In addi-

tion, fatal infection in sheep does not diminish transmission potential but could rather

increase it, based on time of deaths observed in our dataset. This entails that most vulnerable

populations, in addition to suffering more deaths, will likely experience larger outbreaks.

Understanding the relationship between infectiousness and pathogen load represents a key

challenge to connect modeling scales [65]. We have importantly contributed to deciphering

this relationship for Rift Valley fever virus. Combining these results with ecological factors

such as vector presence, population dynamics, and trophic preference, as well as human

factors, which define the presence of livestock hosts and their mobility, will increase our

understanding of RVFV transmission dynamics at large scale. These interacting scales might

yield unexpected patterns and reshape the way we design surveillance and control strategies

for multi-host arboviruses in general.

Materials and methods

Ethics statement

The animal experiment was conducted in accordance with European regulations (EU directive

2010/63/EU) and the Dutch Law on Animal Experiments (Wod, ID number BWBR0003081).

Permissions were granted by the Dutch Central Authority for Scientific Procedures on Ani-

mals (Permit Number:AVD4010020185564). All experimental protocols were approved by the

Animal Ethics Committees of Wageningen Research.

Experimental design

Data on viral RNA and infectious viruses were obtained from a published study on a candidate

RVFV vaccine [34]. Mock vaccinated animals (8 lambs, 8 calves, 8 young goats) were inocu-

lated intravenously with 5 log10 TCID50 of strain rRVFV 35/74. Plasma was sampled daily for

10 days in goats, daily for 9 days then every two days until day 14 in calves and lambs. Animals’
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age was 2–3 weeks for calves, 8–10 weeks for lambs and goats. The average body weight of ani-

mals, used further to calibrate the inoculum per ml of plasma, was 45 kg for lambs, 30 kg for

goats, and 80 kg for calves. Animals were purchased from conventional Dutch farms, and the

breed was Texel cross for sheep, Saanen for goats, and Holstein-Friesian for cattle [34]. An

additional dataset obtained from 8 lambs, following the same protocol, was added.

Viral RNA was isolated with the NucliSENS easyMAG system according the manufacturer’s

instructions (bioMerieux, France) from 0.5 ml of plasma. Briefly, 5 μl RNA was used in a

RVFV RT-qPCR using the LightCycler one-tube RNA Amplification Kit HybProbe (Roche,

Almere, The Netherlands) in combination with a LightCycler 480 real-time PCR system

(Roche) and the RVS forward primers (AAAGGAACAATGGACTCTGGTCA), the RVAs

(CACTTCTTACTACCATGTCCTCCAAT) reverse primer and a FAM-labelled probe RVP

(AAAGCTTTGATATCTCTCAGTGCCCCAA). Virus isolation was performed on RT-qPCR

positive samples with a threshold above 105 RNA copies/ml as this has been previously shown

to be a cut-off point below which no live virus can be isolated. For the virus isolations, plasma

was used. Briefly, BHK-21 cells were seeded at a density of 20,000 cells/well in 96-well plates.

Serial dilutions of samples were incubated with the cells for 1.5h before medium replacement.

Cytopathic effect was evaluated after 5–7 days post-infection and tissue culture infective dose

50 (TCID50) was calculated using the Spearman-Kärber algorithm.

Within-host model of RVFV infection

Our mechanistic model (Fig 1) is formulated as a set of ordinary differential equations, and is

similar to existing within-host models developed for influenza [21, 24]:

dT
dt
¼ � bTVinf

dL1

dt
¼ bTVinf � nLkL1

dLi
dt
¼ nLkðLi� 1 � LiÞ; i ¼ 2; :::; nL

dI1
dt
¼ nLkLnL � nIdI1

dIj
dt
¼ nIdðIj� 1 � IjÞ; j ¼ 2; :::; nI

dVinf

dt
¼ p
XnI

j¼1

Ij � dinfVinf � chVinf � sbTVinf

dVtot

dt
¼ xp

XnI

j¼1

Ij � chVtot

ð1Þ

In this model, infectious viruses Vinf infect susceptible target cells T at rate β. Infected cells first

go through a latent state, L (eclipse phase). Then, they become productively infected cells, I.
These cells produce viral particles Vtot at rate ξp, not all of which are infectious (Vinf produced

at rate p). Infectious viruses degrade into non-infectious viruses at rate dinf, which does not

impact total viral production Vtot. A similar host clearance rate ch is applied to both non-infec-

tious and infectious particles.
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To achieve realistic distributions of time spent in L and I states, we used Erlang distribu-

tions. This means that infected cells go through nL latent stages and nI infectious stages, where

the time spent in each stage is exponentially distributed. We used nL = nI = 20, sufficient for

the resulting latent and infectious periods to be almost normally or lognormally distributed

[38, 39]. The mean of these Erlang distributions are κ−1 and δ−1, and their variance 1

nLk2 and

1

nId
2.

We used a target-cell limited model, meaning that the depletion of target cells is what trig-

gers the viral load peak and subsequent decline. We did not incorporate an explicit immune

response. However, as explained by [66], this type of model can be seen as equivalent to assum-

ing a constant effect of the immune response (IR). This IR can act implicitly by limiting the

number of cells susceptible to the infection, removing infected cells or viral particles.

We fitted Vinf to TCID50 measures and Vtot to RT-qPCR measures. As TCID50 measures the

dose needed to induce a cytopathic effect in 50% of the cells, a conversion factor σ is needed to

express it as a quantity of infectious viruses, usually measured in plaque forming units (PFUs).

Here, we set σ = 0.69 TCID50/ml, consistent with 1 ml virus stock having half the number of

(PFUs) as TCID50 using Poisson sampling [40].

We used a Metropolis Rosenbluth Monte Carlo Markov Chain (MCMC) algorithm to fit

our model, implemented in R, using the odin package (https://github.com/mrc-ide/odin) to

speed up simulations. In our composite log-likelihood f (Eq (2)), we assumed log10 viremia

measurements had normally-distributed errors. Below, φ and ϕ are respectively the probability

and cumulative density functions of the normal distribution, and �2 is taken to be 1 [14]. D is

the measure of either viral RNA or infectious viruses (subscript i), and x the associated model

prediction (either Vtot or Vinf). Measures below the limit of detection (LOD) are considered to

be at or below LOD [14]. The final log-likelihood of a given model parametrization is the sum

across types of measures i, timesteps j, and individuals k of the group under consideration.

f ¼
X

i;j;k

log
10
½φðlog

10
Di;j;kjlog10

xi;j;k; �
2Þ

1� ci;j;k �ðlog
10
LODijlog10

xi;j;k; �
2Þ

ci;j;k �

ci;j;k ¼ 0 if Di;j;k > LODi; else ci;j;k ¼ 1

log
10
ðLODRNAÞ ¼ 1:7

log
10
ðLODTCID50Þ ¼ 1:55

ð2Þ

The score f obtained at each iteration was used by the algorithm to determine if a parameter

set should be accepted. At each iteration, parameters were simultaneously sampled using nor-

mal distributions centered around their last accepted value, with a standard deviation specific

to each parameter. To obtain acceptance rates between 10% and 45% (the optimal acceptance

rate being 23.4% as shown by [67]) for each parameter, we used a custom function which

determines appropriate standard deviations for their sampling. Fixed and estimated parame-

ters can be found in Table 1, chosen in agreement with identifiability analyses of similar mod-

els [66, 68]. Priors represent the probability distribution of possible parameter values, based on

prior knowledge. We used uniform distributions, with bounds intended to allow a wide explo-

ration of parameter values while being biologically realistic.

Our fitting procedure worked as follows: for each dataset to fit, we ran small chains (10,000

iterations, 5,000 burn-in period) fixing T0 at different values spread across [3;6.5] log10/ml

plasma. The best T0 value was then assessed through maximum log-likelihood profiles (Fig A

in S1 Text) and kept for longer chains. Three long chains were run (100,000 iterations, 20,000

burn-in) for each dataset. The Gelman Rubin diagnostic test was used to assess common
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convergence of the chains (Fig C in S1 Text). Correlation between estimated parameters was

assessed (Fig E in S1 Text).

To determine whether viral load dynamics V(t) differ between livestock host groups, we

ran the inference procedure in two distinct ways: treating these groups as equal (aggregating

datasets) or different (fitting done for each dataset separately, Section S.1.1 in S1 Text). The

resulting joint posterior distributions were used to compute the Deviance Information Crite-

rion (DIC) of these models and select those with the smallest DIC (Section S.1.1 in S1 Text).

We did not attempt to find differences between individuals of a given group.

To characterize the replication process at the beginning of the infection, we computed two

outcome measures from the parameters of our model. The basic reproduction number R0 (Eq

(3), [24, 69]) is defined as the average number of new infected cells produced by one infected

cell introduced into an entirely susceptible target-cell population. The generation time Tg (Eq

(4), [24, 70, 71]) is the average time between the infection of a cell and the infection of a sec-

ondary cell, again in an entirely susceptible target cell population. The formula for Tg was

adapted to a model using Erlang distributions (for time spent in L and I states). How it changes

compared to Tg computed for models with exponential distributions is explained in Section

S.1.2 in S1 Text.

R0 ¼
bT0p

dðch þ dinf þ sbT0Þ
ð3Þ

Tg ¼
1

k
þ
nI þ 1

2nI
:
1

d
þ

1

ch þ dinf þ sbT0

ð4Þ

Dose-response relationship in RVFV mosquito vectors

A systematic review of the literature was performed to study F(V), the relationship between a

vertebrate host RVFV infectious titer and the associated probability to infect a mosquito upon

its bite (Section S.2.1 in S1 Text). We limited our quantitative analysis to experiments per-

formed with Aedes and Culex spp., with strain ZH501, on hamsters (Section S.2.1 in S1 Text).

This corresponded to 185 data points from 9 papers.

To assess the impact of the diversity of protocols from which the data originated, we tested

the effect of temperature, and number of days between mosquito feeding and dissection, in

addition to dose (log10 infectious titer) on infection rates (presence of RVFV in the body of

mosquitoes, legs excluded, Sections S.2.2, S.2.3 in S1 Text). For that we used a logistic function

(Eq (S.5) in S1 Text), fitted with a binomial and a beta-binomial likelihood, the latter to

account for overdispersal in the data (Section S.2.3 in S1 Text).

We used Akaike Information Criterion (AIC) to compare model fit of different functional

forms (Section S.2.3 in S1 Text). Best fitting functions were then used to explore differences

between and within genera (Table A and Fig G in S1 Text).

Net infectiousness of RVFV livestock hosts

We define net infectiousness (NI) as the integral of an infectiousness curve over time (Eq (5))

NIvect;host ¼
Z

FvectðVhostðtÞÞdt ð5Þ

NI combines the dose-response relationship in vectors Fvect(V) with infectious virus dynamics

in hosts Vhost(t). As such, it must incorporate the uncertainty from both estimations. This was
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done by sampling 1000 parameter sets from Fvect(V) and Vhost(t) respective fitting procedures.

For lambs, a draw in a Bernoulli distribution first determined whether the viral load dynamics

should be of a surviving or dying type. In the latter case, a time of death was sampled in a Wei-

bull survival model fitted to death times present in our dataset, and determined the end of the

viral load curve. Finally, a sensitivity analysis explored how the survival rate (probability of the

Bernoulli sampling) in the lamb population impacts the average NI of lambs.

This quantity NI is proportional to the expected number of mosquitoes infected by a host

over the entire course of its infection, assuming that biting occurs at a constant rate over this

period. By extension, the NI ratio of two host categories is identical to the ratio of the expected

number of mosquitoes infected by those two types of hosts, assuming bites to be equally dis-

tributed over both species. In the present study, NI was also vector-specific.

Supporting information

S1 Text. Supplemental details on results. Fig A: Likelihood profiles to estimate T0. Fig B:

Trace plots of selected models. Fig C: Gelman diagnostic plots, per parameter, for selected

models. Fig D: Joint posterior distributions of parameters per selected model. Fig E: Pairwise

correlation between estimated parameters, for each group. Fig F: Distribution of temperature,

days post-exposure, and infectious titers, in experimental data retrieved from the systematic

review, for Aedes and Culex spp. vectors. Fig G: Species-specific dose-response curves. Fig H:

Net infectiousness of an average lamb in relation with the expected survival rate in the popula-

tion, for transmission to Aedes and Culex spp. vectors. Table A: Number of datapoints avail-

able per vector species, retrieved from the systematic review.
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Supervision: Mariken M. de Wit, Raphaëlle Métras, Pauline Ezanno, Quirine A. ten Bosch.

Validation: Hélène Cecilia, Paul J. Wichgers Schreur, Raphaëlle Métras, Pauline Ezanno,
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