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Abstract

Alternative strategies to chemical anthelmintics are needed for the sustainable control of
equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to
reducing drug use, with the first hints of in vitro activity against cyathostomin free-living
stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin
population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected
horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period,
they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with
alfalfa pellets (control group) for 21-days. No difference was found between the average
fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval devel-
opment rate was observed for the sainfoin group, at the end of the trial. Quantification of
cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed
that the sainfoin diet did not affect the nemabiome structure compared to the control diet.
Following oral ivermectin treatment of all horses on day 21, the drug concentration was
lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group.
Our results demonstrated that short-term consumption of a sainfoin-rich diet does not
decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption
of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics,
underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy
in the field.

Introduction

Small strongyles or cyathostomins are a large group of gastrointestinal parasitic nematodes
infecting grazing equids. Cyathostomins encompass more than 50 species able to infect
domestic and wild equids (Lichtenfels et al., 2008), among which a limited group of 10–12
species emerges as a prevalent and abundant parasitic core consistently found worldwide
(Reinemeyer et al., 1984; Bucknell et al., 1995; Lyons et al., 2000; Collobert-Laugier et al.,
2002; Osterman Lind et al., 2003, 2007; Kuzmina et al., 2005, 2012). The main clinical effect
of cyathostominosis is weight loss, and the massive simultaneous emergence of larval stages
encysted in the colonic mucosa, can be fatal for horses especially for young animals (Love
and Duncan, 1992; Love et al., 1999; Peregrine et al., 2014). This larval cyathostominosis syn-
drome, characterized by protein-losing enteropathy, diarrhoea and colic (Giles et al., 1985),
remains the leading cause of parasite-mediated death of young horses in some areas like
France (Sallé et al., 2020). Cyathostominosis control has long been achieved mainly through
the use of chemical anthelmintics (Love, 2003; Peregrine et al., 2014), but this has promoted
the selection of isolates resistant to all anthelmintics used in equine medicine (Kaplan, 2002,
2004; Traversa et al., 2012; Matthews, 2014). Macrocyclic lactones, including ivermectin (IVM)
and moxidectin, remain the most effective drug class against small strongylids (Peregrine et al.,
2014; Sallé et al., 2017; Nielsen et al., 2020). They also remain the most widely used anthel-
mintic drugs in equine operations in the USA (Becher et al., 2018; Nielsen et al., 2020) or
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in the UK, where IVM and moxidectin are included in drenching
programmes in more than a third of cases (Stratford et al., 2014;
Tzelos et al., 2019). However, reduced IVM efficacy has been evi-
denced (Nielsen et al., 2020), including a reduced egg reappear-
ance period (ERP) (Lyons et al., 2011a, 2011b; Nielsen et al.,
2020). In addition, high concentrations of these molecules are
found in the feces of treated animals, with major detrimental
effects on coprophagous organisms (Lumaret et al., 2012; Verdú
et al., 2018).

This context warrants alternative strategies to the use of
chemical anthelmintics, and the prospect of using bioactive
plant compounds as nutraceuticals for the control of gastrointes-
tinal parasites in livestock has been an active research field
(Paolini et al., 2003; Heckendorn et al., 2007; Rochfort et al.,
2008; Manolaraki et al., 2010; Sandoval-Castro et al., 2012;
Hoste et al., 2015). Tannin-rich plants are studied for their anthel-
mintic activity and their use as bioactive forage (Hoste et al., 2006,
2012; Gaudin et al., 2016; Peña-Espinoza et al., 2018).

Among tannin-rich plants, sainfoin (Onobrychis viciifolia) is
often used as a model fodder (Hoste et al., 2012). Some in vitro
tests on ruminant gastrointestinal nematodes have shown that
sainfoin and the tannins reduce larval migration (Paolini et al.,
2004; Manolaraki et al., 2010). In vivo studies have reported a
decrease in fecal egg counts (FECs), associated with a reduction
in worm fertility or counts in goats or sheep fed with sainfoin
(Paolini et al., 2003, 2005; Heckendorn et al., 2006; Manolaraki
et al., 2010; Gaudin et al., 2016). In horses, a previous study
(Collas et al., 2018) evaluated the anthelmintic activity of dehy-
drated sainfoin pellets on equine strongyles. While strongyle
FEC did not differ between horses fed with sainfoin compared
to the control group, an in vitro approach using sainfoin pellet
water solutions revealed a decrease in egg hatching and larval
development (Collas et al., 2018). However, it remains unclear
whether the latter effects can be reproduced in vivo and if the
putative effects of sainfoin extracts vary across various cyathosto-
min species. The recent development of an ITS-2-based metabar-
coding approach has allowed the simultaneous identification and
quantification of strongyle abundances in domestic horses
(Mitchell et al., 2019; Poissant et al., 2021) or wild equids
(Tombak et al., 2021). This approach has been used to character-
ize the response to anthelmintic treatment of trichostrongylids in
ruminants (Queiroz et al., 2020; Halvarsson and Höglund, 2021)
or the monitoring of drug resistance in these species (Queiroz

et al., 2020). It has never been applied yet to study a plant extract
effect on any gut parasite community.

In addition to their anthelmintic activity, tannin-rich plants
contain flavonoids. These molecules modulate ATP binding cas-
sette (ABC) transporters (Morris and Zhang, 2006), thereby
affecting the in vitro and in vivo pharmacodynamics and activity
of macrocyclic lactones (Lespine et al., 2008). For instance, quer-
cetin significantly increases exposure to moxidectin in lambs
(Dupuy et al., 2003). The tannin-rich plant redberry juniper
(Juniperus pinchotii) used in combination with oral IVM treat-
ment has also increased the treatment efficacy against
Haemonchus contortus in lambs (Whitney et al., 2013).
However, an in vivo trial in sheep reported a significant decrease
in IVM efficacy in sainfoin-fed animals due to a concomitant
reduction in plasma IVM concentrations (Gaudin et al., 2016).
Such interaction remains uncharacterized in horses to date.

To bridge this knowledge gap, the current study aimed (i) to
evaluate the in vivo effect of dehydrated sainfoin pellets on
cyathostomins (fecal egg excretion and larval development),
(ii) to quantify any alterations of the cyathostomin larval
community structure using a nemabiome approach, and (iii) to
establish how the sainfoin diet may affect the efficacy of an oral
IVM treatment in horses.

Materials and methods

The in vivo experiment was conducted from September 8th to
December 15th 2020, at the French Horse and Riding Institute
experimental farm (IFCE) in Chamberet, France. The experimental
procedure received approval from the French Ministry of Research
under protocol number APAFIS#26140-2020062216271790v2. The
experimental design is summarized in Fig. 1.

Animal condition

Naturally infected saddle horses (Anglo-Arab breed, 2 years old)
left undrenched for 137 days (last anthelmintic administered on
24 April 2020; 200 μg IVM kg−1 body weight (BW) and 1mg prazi-
quantel kg−1 BW; EQVALAN® DUO, France) were allocated into 2
groups of 10 horses. Horses were mainly infected by small strongy-
lids (>95%), as revealed by larval culture (Collas et al., 2018) and
the herein reported nemabiome approach which did not disclose
the presence of Strongylus spp. Both groups were balanced for

Fig. 1. Experimental design. The figure depicts the time points and sampling done in this experiment.
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sex (8 females and 2 geldings in each group), FEC data before hous-
ing (September 8th 2020; sainfoin group FEC = 1875 ± 1253 eggs
g−1 (EPG); control group FEC = 1940 ± 1064 EPG, mean ± S.D.),
and for their BW measured on September 15th (average BW of
454.8 ± 28.1 kg and 457.6 ± 25.6 kg in the sainfoin and control
diet groups, respectively). From September 8th to 21th (day-21 to
day-8; see Fig. 1), all horses were housed in a single stall and col-
lectively fed with a transition diet composed of 77% grassland hay
and 23% of concentrate (made of 61.5% of barley, 35% of soya bean
meal, 3.5% of minerals and vitamins), designed to meet their
energy (6.0 UFC day−1) (UFC; horse feed unit) and protein require-
ments (318 g MADC day−1) (MADC; horse digestible crude pro-
tein), as previously defined for this breed (INRA, 2015).

Experimental diet

Horses were adapted (adaptation period) to their experimental diet
for a week – from day-7 to day 0 (Fig. 1), i.e. the horses were fed
individually with a decreasing proportion of the transition diet
and an increasing proportion of the experimental diet. They subse-
quently received their experimental diet for the 3 following weeks
(day 0–21, Fig. 1). The horses were housed in individual stalls dur-
ing these 2 periods (from day-7 to day 21; see Fig. 1). This duration
was in line with successful experiments in ruminants (Paolini et al.,
2005; Heckendorn et al., 2006) and with practical implementation
in the field. The sainfoin diet contained 2.3% dry matter (DM) of
condensed tannins as determined by an acetone–butanol–HCl
assay (Grabber et al., 2013); it included 70% DM Equifolia dehy-
drated sainfoin pellets (Onobrychis viciifolia; provided by
Multifolia, Viapres-le-Petit, France) and 30% grassland hay (on
DM bases). We worked with a production chain for dehydrated
sainfoin pellets, which ensured appropriate agronomic conditions
for the plant cultivation, a good conservation of sainfoin character-
istics over time and the standardization and characterization of the
batches before use. The control diet consisted of 60% DM of alfalfa
(Medicago sativa) pellets and 40% DM of grassland hay (Table 1;
Supplementary Table S1). Proportions of diet components were
chosen to maximize the amount of condensed tannins in the sain-
foin diet (while taking care not to cause digestive problems) and to
ensure each diet covered horse energy and protein requirements.
The energy requirements (UFC) were covered at 108% ± 1.3 and
103% ± 1.5 on average for the sainfoin and control groups, respect-
ively. This difference was statistically significant between the 2
groups (P < 10−4), but our previous observations have shown that
energy requirements were not affecting the outcome of the com-
parison (Collas et al., 2014). The protein requirements (MADC)
were covered at 250% ± 3.7 and 252% ± 5.5 on average for the sain-
foin and control groups, respectively (P = 0.13). These values were
safe for the duration of the treatment and showed no significant
correlation with FEC or larval development rate (P = 0.45 and P
= 0.89, respectively), in good agreement with past experimental
findings (Collas et al., 2018). Individual requirements were esti-
mated based on INRA (2015) tables for UFC and MADC as

UFC requirements (per kg BW0.75)

= 0.0594+ 0.0252 × BW gain1.4

MADC requirement (in g day−1) = 2.8 × BW0.75 + 270

× BW gain, withBW gain = 0.15 kg day−1 for 2-year-old horses.

Horses received half of their diet at 8:00 am and the other half
at 4:00 pm. Quantities offered were adjusted every Tuesday based

on BW changes and the DM content of diet components. If an
individual horse lost weight, its BW measured the week before
was used to determine its requirements. Individual refusals were
weighed every morning, and they never exceeded 5% DM of the
offered diet for more than 3 consecutive days, thereby warranting
any particular adaptation.

Fecal sample analysis

Fecal samples were collected individually from the rectum of each
horse every Monday of the experimental period (day 0, day 7, day
14 and day 21). Samples were stored at +4 °C and shipped to the
INRAE Centre Val de Loire facilities (Nouzilly, France) for further
processing. Individual FEC data were determined using a modi-
fied McMaster technique (Raynaud et al., 1970) based on 5 g of
fecal matter diluted with a dilution factor of 5. Eggs were then
counted using optical microscopy (×150 magnification), with a
minimum detection limit of 50 EPG. To evaluate the effect
of the diet on larval development, the remaining fecal matter
(40–90 g) was incubated individually for each horse for 12 days
at +25 °C and 60% relative humidity during 2 weeks as suggested
by Roberts and O’Sullivan (1950). The correlation between the
quantity of fecal matter cultured and the larval development
was not significant (Spearman’s ρ = 0.08, P = 0.4). Infective third-
stage larvae (L3) of cyathostomins were then collected using a
Baermann apparatus after 24 and 48 h of sedimentation, and
pooled together for each horse and time point. To count larval
concentration, 30 drops of 5 μL were taken from a homogenized
larval suspension (using a bar magnet in a glass beaker) and
inspected using optical microscopy. The average number of larvae
across the 30 drops was related to the total volume of larval sus-
pension collected after Baermann. Following Collas et al. (2018),
the larval development rate was then derived as:

Counted L3
FEC × quantity of fecal matter

( )
× 100

Gastrointestinal nemabiome

To identify the putative effects of sainfoin on the gastrointestinal
nemabiome, a metabarcoding approach was applied to cyathosto-
min larval populations (using pools of 20 000 L3) harvested from
fecal samples collected on day 0 and day 21 of the experiment.
Larvae were incubated with 10 μL of a 20 mgmL−1 proteinase K

Table 1. Chemical composition and nutritive value of foodstuffs offered to the 2
groups (sainfoin diet, control diet) of horses during the experimental perioda

Sainfoin
pelletsb

Alfalfa
pelletsc Grassland hayd

DM (g kg−1) 921 941 976

CP (g kg−1 DM)e 169 184 52

CF (g kg−1 DM)f 231 287 354

UFC (kg−1 DM)g 0.67 0.62 0.47

MADC (g kg−1 DM)g 99 110 14

DM, dry matter; CP, crude protein; CF, crude fibre; UFC, horse feed unit; MADC, digestible
protein.
aAnalyses were performed by UpScience, Saint-Nolff, France, on 4 samples of each foodstuff
collected all along the experimental period.
b,dIn sainfoin diet.
c,dIn control diet.
eDumas method.
fWeende method.
gFrom INRA (INRA, 2015) equations.
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(Qiagen) solution at 56 °C for 3 h; DNA was subsequently
extracted using a phenol–chloroform protocol (Sambrook and
Russell, 2006) and eluted in a 30 μL TE (Tris-EDTA) buffer solu-
tion. For metabarcoding, the ITS-2 gene region was PCR ampli-
fied using the NC1 (5′-ACGTCTGGTTCAGGGTTGTT-3′) and
NC2 (5′-TTAGTTTCTTTTCCTCCGCT-3′) primers (Gasser
et al., 1993). Between 1 and 3 random bases were added to the
5′ primer end to increase sequence complexity. Moreover, a
2-bp linker and an Illumina 28-bp overhang were added for the
forward and reverse sequences, respectively, for subsequent
ligation with Illumina adapters. PCR was run for 3 min at 95 °C
for the first denaturation, then 30 cycles starting with 15 s at
98 °C, then 60 °C for 15 s and 72 °C for 15 s, followed by a final
extension of 72 °C for 2 min. PCR products were then loaded
on a 1% agarose gel to validate the presence of an amplicon prod-
uct. After this step, 31 out of the 40 samples from 16 horses
remained for library preparation. Because MiSeq enables paired
250-bp reads, the ends of each read are overlapped and can be
stitched together to generate extremely high-quality, full-length
reads of the entire region in a single run. Single multiplexing
was performed using a homemade 6 bp index, which was added
to reverse primer during a second PCR with 12 cycles using for-
ward primer (AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGAC) and reverse primer (CAAGCAGAAGA
CGGCATACGAGAT-index-GTGACTGGAGTTCAGACGTGT).
The resulting PCR products were purified and loaded onto the
Illumina MiSeq cartridge according to the manufacturer’s instruc-
tions. Libraries were further processed for a single run of MiSeq
sequencing using 500 cycle reagent kit v3 (2 × 250 output;
Illumina, USA), the raw data of which are registered under SRA
bioproject number PRJNA840924. The quality of the run was
checked internally using PhiX, and then each paired-end
sequence was assigned to its sample with the help of the previ-
ously integrated index.

To assess the predictive ability of the nemabiome approach and
determine the best set of parameters for data processing, five mock
communities of known species composition were built from
worms collected and morphologically identified in Ukraine
(T. A. Kuzmina, personal communication) or Poland (M.
Basiaga, personal communication). Two mock communities of 5
species (a single male worm each), including Cylicocyclus nassatus,
Cylicocyclus insigne, Cyathostomum catinatum, Cyathostomum
pateratum and Coronocyclus labiatus were considered using either
raw or equimolar DNA concentrations. In addition, two mock
communities comprising C. pateratum and C. catinatum (equiva-
lent proportion or in a 1:4 ratio) were also considered to establish
the ability of the ITS-2 sequence to delineate between these
2 phylogenetically close species (Hung et al., 2000). Raw reads
were processed with Cutadapt v.1.14 (Martin, 2011) to remove
bad quality bases at the 3′ end of reads (-q 15), trim
primer sequences, remove sequences with evidence of indels
(--no-indels) or that showing no trace of primer sequence
(--discard-untrimmed). Quality filtered ITS-2 amplicon sequences
were subsequently handled with the dada2 algorithm (Callahan
et al., 2016). A set of different parameters was tested to measure
the total number of amplicon sequence variants (ASVs), the rate
of taxonomic assignment, and the proportion of false-positive
and false-negative detection in mock community samples. First,
the maximum error rate (--max-ee) was set to 1 for both reads
or 2 and 5 for forward and reverse reads, respectively. The read
truncation parameter was either 200 bp or 217 bp, corresponding
to the minimal average read length measured across all samples
as determined with FastQC v.0.11.7 (Andrews, 2010).
The BAND_SIZE parameter effect (that penalizes the number of
insertions permitted when aligning 2 sequences) was tested
using either the default or the ITS-2 recommended values

(16 and 32, respectively), or disabling banding (BAND_SIZE =
−1) to perform a full Needleman–Wunsch alignment as described
elsewhere (Poissant et al., 2021). Denoising was performed using
the pseudo-pool option, and chimaera removal was performed
under the default consensus mode. Taxonomic classification was
subsequently done using the curated ITS-2 database (https://
www.nemabiome.ca/its2-database.html), last accessed on 2
February 2022 (Workentine et al., 2020). Two taxonomic assign-
ments were considered and compared, considering mock commu-
nities as a ground truth. First, the IdTaxa (Murali et al., 2018)
function implemented in the DECIPHER package v2.18.1
(Wright, 2016) was applied with 100 bootstraps and a threshold
of 50%. Second, the dada2 assignTaxonomy (Callahan et al.,
2016) function was implemented as already described (Poissant
et al., 2021), i.e. setting tryRC = TRUE, minBoot = 0,
outputBootstraps = TRUE and retaining ASVs with 50% bootstrap
support. In both cases, the number of false-positive and false-
negative counts were determined.

Count tables data were further analysed in R v. 4.1 (R Team,
2020) using the phyloseq (McMurdie and Holmes, 2013) and
vegan packages (Oksanen et al., 2015). Rare ASVs (<50 counts
in total) were considered contaminants and removed. Samples
with less than 50 read counts (negative water control; n = 1 at
day 21) were also discarded.

Egg reappearance period

At the end of the sainfoin-fed diet (day 21), all horses were treated
with oral IVM (Eqvalan, 200 μg kg−1 BW, Boehringer Ingelheim,
Lyon, France) and were still fed with their respective experimental
diets for 4 days. In addition, the ERP was determined from mea-
surements of individual FECR data on 5 occasions over a 42-day
window (on day 36, day 50, day 63, day 71 and day 78). The ERP
was defined by WAAVP (Nielsen et al., 2022) as the time when
the upper confidence interval for the mean fecal egg count reduc-
tion (FECR) fell below the mean of FECR determined 2 weeks
post-treatment minus 10%. FECR data were calculated according
to the WAAVP guidelines (Coles et al., 1992, 2006) as

FECd21− FECi
FECd21

( )
× 100,

where FECd21 – FEC data on day 21, FECi stands for the FEC
measured at each timepoint i between day 36 and day 78.

Ivermectin dosage in plasma and pharmacokinetics
parameters

To quantify horse exposure to IVM, blood samples (9 mL) were
taken from the jugular vein of each horse in heparinized tubes
at 0, 1, 2, 24, 48, 72 and 96 h after IVM treatment. Blood samples
were kept at +4 °C before centrifugation (1500 g for 30 min), and
the plasma was frozen at −20 °C until further shipment and
processing. Plasmatic IVM concentration was determined by
high-performance liquid chromatography (HPLC) with fluores-
cence detection according to previously described and validated
methods (Alvinerie et al., 1999). Data were analysed using a non-
compartmental approach with version 4.2 of the Kinetica Tm
computer program (innaPhase, Philadelphia, USA). The partial
area under the plasma concentration–time curve (AUC) was cal-
culated from 1 to 96 h by the linear trapezoidal rule. Cmax, max-
imal concentration was then determined. Data were expressed as
geometric mean ± standard error of the mean.
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Statistical analysis

To test for the effect of the diet on FEC and larval development
rate, a generalized estimating equation model was implemented
with the geeglm function of the geepack v.1.3-1 package
(Højsgaard et al., 2006).

To test for differences in alpha diversity, a t-test was per-
formed between the Shannon index values estimated for the
sainfoin and control group on day 0 and day 21. To test for a
differential temporal trend in species abundance between both
groups during the experimental diet, species counts were
regressed upon the experimental group and the day effects and
setting horse as a random effect with the nlme package
v.3.1-155. This analysis was restricted to 12 horses with data
on both days (n = 8 in the sainfoin group, n = 4 in the control
group) and to the most abundant cyathostomin species (overall
abundance of 10 000 counts, including C. nassatus, Cylicocyclus
ashworthi, Cylicostephanus minutus and C. longibursatus).
Species counts were 4th-root transformed to better fit normality
(Shapiro–Wilk test = 0.56 and 0.96 before and after transform-
ation, respectively).

FEC measured after IVM treatment was modelled with a
linear mixed-effects model using the lme function of the nlme
package (Pinheiro et al., 2013), fitting diet, time and diet × time
interaction terms as fixed effects and horse as a random effect.
The FECR was measured according to the WAAVP guidelines
(Coles et al., 1992, 2006) with Bayesian hierarchical models
using the fecrtCI function on the eggCounts package v.3.2-3
(Wang et al., 2022).

The average IVM concentration and Cmax for the sainfoin
group were compared to the control group at every time point
(+1, +2, +24, +48, +72 and +96 h). Data were analysed with a
Mann–Whitney U test, and the P values were corrected for
multiple tests using a Bonferroni procedure as implemented
in the wilcox_test function of rstatix package v.0.6.0
(Kassambara, 2021). The pharmacokinetics (PK) parameters
(AUC) for each group were compared with an unpaired t-test,
and the P values were corrected by Bonferroni, as explained
above.

Results

Sainfoin effect on FEC excretion

When horses received their experimental diet (day 0 to day 21),
individual cyathostomin FECs significantly decreased by 35%
from 1165 ± 545 EPG to 765 ± 396 EPG on average (P = 0.017,
Fig. 2A). However, no significant difference between the sainfoin
and the control group was found at any considered time point
(P = 0.90).

Sainfoin effect on larval development rate

The average larval development rate (Fig. 2B) decreased between
day 0 and day 14 of the experiment from an average development
of 32.3 ± 12.8% at day 0 to 25.2 ± 13.3% at day 7 (P = 0.04) and
21.5 ± 10.4% at day 14 (P = 9.8 × 10−5). This decrease was similar
between the 2 diets (P = 0.27 and 0.06 on day 7 and day 14,
respectively). However, the subsequent increase in larval develop-
ment rate from day 14 to day 21 was significantly lower in the
sainfoin-fed group (P = 0.02, Fig. 2B).

Sainfoin effect on cyathostomin larval community structure

Among the combinations of parameters tested, a BAND_SIZE of
−1 combined with a truncation length of 217 bp and maximal
error rates of 2 and 5 for the forward and reverse reads were opti-
mal. This combination yielded the highest fraction of assigned
amplicon sequence variants without false-positive calls in the
mock parasite community (83.6% assigned ASVs out of the
110 ASVs detected in total; Supplementary Table S2). Using
this set of parameters and after filtering, 31 samples were left
for analysis with an average of 6768 reads per sample (ranging
between 2269 and 25 434 reads) that defined 110 ASVs. Out of
these, 15 were considered contaminants (<50 occurrences),
75 ASVs were assigned to 13 identified cyathostomin species
and 6 remained undetermined (amounting to 0.6% of total
counts). Members of the Cyathostomum and Cylicocyclus genera
accounted for the highest misassignment rate at the species level

Fig. 2. Arithmetic average of FEC (A) and larval development rate (B) measured over the experimental period. Weekly arithmetic average FEC (A) or larval devel-
opment rate (B) measured throughout the experimental period in horses receiving the control (light grey) or sainfoin (dark green) diet. The average cyathostomin
FEC on day 21 (represented by the bar) was significantly different from the average FEC on day 0 (P = 0.017) (A). *Statistically significant difference in larval devel-
opment rate from day 14 to day 21 between the sainfoin and control groups (P = 0.02). The bars indicate a significant difference in the mean larval development at
day 7 (P = 0.04) and day 14 (P = 9.8 × 10−5), both compared to day 0 (B).
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(5.78 and 2.75% of total counts, respectively), while unassigned
Cylicostephanus spp. represented 0.09% of total counts. To this
respect, taxonomic assignment with the Idtaxa function per-
formed better than the assignTaxonomy function that consistently
introduced false-positive identification of C. longibursatus instead
of Cyathostomum species. In line with this higher misassignation
rate, the inferred proportions of Cyathostomum species in respect-
ive mock communities departed from the expected ratio, with a
bias towards C. catinatum relative to C. pateratum (62.3 and
92.7% in lieu of 50 and 75% expected, Supplementary Figure S1).

On day 0, Cylicostephanus minutus was the most abundant
species in the gastrointestinal nemabiome (13.83% of overall
counts, Fig. 3), followed by C. ashworthi and C. nassatus (5.47
and 5.06% of total counts on that day, respectively, Fig. 3). At
the community level, we could not evidence any differences in
alpha diversity between larval communities of the sainfoin and
control groups, neither at the beginning [average Shannon
index difference of 0.18, 95% c. i. = (−0.71; 0.35), P = 0.47] nor
at the end of the experimental period [average Shannon index dif-
ference of 0.16, 95% c. i. = (−0.72; 0.41), P = 0.53]. Similarly,
PERMANOVA analyses did not evidence any difference between
the larval community structures of the 2 groups on day 0 (P = 0.47

and P = 0.2 with the Bray-Curtis and Jaccard dissimilarity index,
respectively) or day 21 (P = 0.24 and P = 0.55 with the Bray-Curtis
and Jaccard dissimilarity index, respectively) of the experiment.

Analysis of species abundance trajectory from day 0 to day 21
was restricted to the top 4 most abundant species (Fig. 4).
Cylicostephanus longibursatus contributed significantly fewer
individuals than the other 3 species (differential 4th-root trans-
formed count of 2.74 ± 1.27 relative to C. ashworthi, P = 0.03).
No significant variation relative to the experimental diet was
found for the top 4 most abundant species (P = 0.59–0.96, Fig. 4).

Sainfoin effect on the ERP and ivermectin concentration in
plasma following oral ivermectin treatment

Eggs reappeared 42 days after IVM treatment in the feces of both
experimental groups (1 horse in each group). On day 78 (57 days
after IVM treatment), sainfoin-fed horses excreted significantly
more eggs than their counterparts fed with the control diet (P
= 0.04, Fig. 5A). These excretion levels corresponded to FECR
of 89.6% (75.4; 95.6) for the sainfoin group. This value was sig-
nificantly lower than the FECR of the control group on the
same day [95.8% (84.1; 98.9), Table 2]. However, the ERP was

Fig. 3. Cyathostomin larval community structure estimated using the metabarcoding approach across days and groups. Relative abundance of cyathostomin
species in control (upper panels) and sainfoin-fed horses (lower panels) on days 0 and 21 of the experiment. Data are from 12 horses with samples successfully
amplified.
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above 57 days in both groups. The plasmatic IVM concentration
was also measured. The drug profiles followed a typical kinetic
curve expected after an oral drench with a maximum IVM con-
centration (Cmax) recorded at 24 h in both groups. Importantly,
the sainfoin diet negatively impacted the IVM concentration in
plasma. These IVM concentrations were twice lower in horses
of the sainfoin group when compared with those fed the control
diet (Fig. 5B). This was observed at 24 and 48 h after IVM treat-
ment (P = 0.001 and 0.006, respectively, Fig. 5B, Table 3).
Consequently, the average AUC, reflecting the animal exposure
to the IVM drug, was significantly lower in horses fed with the
sainfoin diet (P < 0.001, Table 3) than in the control group.

Discussion

The present study evaluated the anthelmintic activity of a sainfoin
diet as a possible alternative mode of control of cyathostomin
populations in domestic horses and its interaction with IVM
treatment. It provides evidence of a mild effect of dehydrated
sainfoin pellets on larval development rate in vivo and their
negative impact on the IVM pharmacokinetics. It also reports
the first application of a nemabiome approach to study the effects
of bioactive plants, which supports the lack of a systematic alter-
ation of the cyathostomin larval community structure by sainfoin.

Our results agree with previous observations by Collas et al.
(2018), who did not report any effect of dehydrated sainfoin pel-
lets (3.6% DM condensed tannins in the diet) on strongyle FEC in
horses. However, we observed a slight reduction of larval develop-
ment rate in horses fed with sainfoin between day 14 and day 21
(9.7% vs 23.4% in the control group), i.e. the end of the distribu-
tion of experimental diets). On the contrary, Collas et al. (2018)
demonstrated that sainfoin inhibited strongyle larvae develop-
ment in vitro. This discrepancy between in vitro and in vivo stud-
ies may indicate that bioactive compounds, presumably
condensed tannins (Hoste et al., 2006, 2012), may not have
reached sufficient levels in the gastrointestinal lumen of horses
to affect the cyathostomin population. In small ruminants, it is
suggested that a minimum threshold of 3–5% DM condensed tan-
nins in the diet should be applied to observe an anthelmintic
effect (Hoste et al., 2012). Here, the concentration of condensed
tannins in the diet was lower (i.e. 2.3% DM). Still, the proportion
of dehydrated sainfoin pellets in the diet (i.e. 70% DM, as in
Collas et al. (2018)) could not have been increased without
compromising the proper functioning of the horse’s digestive
system. We also relied on the same treatment duration as imple-
mented in successful experiments in ruminants (Paolini et al.,
2005; Heckendorn et al., 2006). A more extended period of the
sainfoin diet may substantially affect larval development.

Fig. 4. Most abundant species estimated using the metabarcoding approach in horses from the control and sainfoin groups. Evolution of the 4 most abundant
species in horses from the control and sainfoin groups between day 0 and day 21. Data are from 12 horses with samples successfully amplified.
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However, the excess protein intake (i.e. 250% MADC require-
ments) for more than 3 weeks could have caused health problems
in horses.

Our study also evaluated the potential interaction between the
tannin-rich diet and an oral IVM treatment, and showed a sub-
stantial decrease of IVM concentration in plasma when the
drug was given with tannin-rich diet. In a previous experiment
conducted on lambs, lower IVM plasma concentration after an
oral treatment was reported in animal fed with sainfoin compared
to their counterparts fed with a control diet (Gaudin et al., 2016).
This lower IVM plasma concentration was associated with the
chelation of the molecule by the tannins in vitro in a dose-
dependent manner (Gaudin et al., 2016). Similarly, the plasma
IVM concentration was reduced in horses fed with sainfoin
from 24 h onwards in our study. It is generally reported that
the Tmax (time to peak plasma concentration) is 8 h for oral
IVM treatment in horses (Gokbulut et al., 2001; Saumell et al.,
2017; Vyniarska et al., 2021). The measure at 8 h post-treatment
was not practically feasible under our setting. In line with this
lower IVM plasma concentration, measured fecal egg reduction
was lower in the sainfoin group and egg excretion reappeared
earlier in this group. Although the ERP was above 57 days in
both groups, this observation is in favour of a decreased treatment
efficacy associated with sainfoin.

This effect on IVM plasma concentration may be related to the
presence of tannins in the intestinal fluid that could chelate the
drug, and reduce the amount of drug available for intestinal
absorption (Gaudin et al., 2016). In addition, tannin-rich diets
contain flavonoids, like the procyanidins (Quijada et al., 2015),
which are known to modulate the expression of ABC transporters
(Morris and Zhang, 2006), like the P-glycoproteins (P-gps),
pump the drug out of tissues and the organisms, lowering plasma
IVM concentration (Bartley et al., 2009; Dupuy et al., 2010).
Their inhibition increases IVM efficacy against susceptible H.
contortus, a trichostrongylid of small ruminants (Kerboeuf
et al., 2003; Bartley et al., 2009; Lespine et al., 2012; Peachey
et al., 2017). There is evidence that polyphenols can decrease
the parasite ATP-binding cassette (ABC) transporter activity or
directly affect the parasite (Dupuy et al., 2003; Whitney et al.,
2013). In addition, differential expression of these genes was
found between IVM-resistant and IVM-susceptible isolates of
H. contortus (Mate et al., 2022) and cyathostomins (Peachey
et al., 2017) or Parascaris sp. (Janssen et al., 2015). But our results
failed to show a positive interaction between the tannin-rich diet
and oral IVM treatment and in our experimental conditions, it is
impossible to determine the origin of the low plasma IVM con-
centration in horse fed tannin-rich diet. The set-up of an equine
fermenter able to mimic the hindgut conditions similar to that

Fig. 5. Average fecal egg count (A) and plasma ivermectin concentration (B) measured after treatment. Average cyathostomin FEC (A) or IVM concentration in
plasma (B) measured after IVM treatment is represented for horses receiving the control (light grey) or sainfoin (dark green) diet. *Statistically significant difference
of FEC between the 2 groups at day 78 (P = 0.04) (A). **Statistically significant difference of average plasma IVM concentration between groups at 24 and 48 h
post-treatment (P < 0.01) (B).

Table 2. Average FECR data (%; arithmetic mean with the 95% confidence interval) in horses receiving the control or sainfoin-enriched diet after IVM treatment

Day 36 (57 days a. t.a) Day 50 (57 days a. t.) Day 63 (57 days a. t.) Day 71 (57 days a. t.) Day 78 (57 days a. t.)

Control 100 (nda.; ndb.) 100 (nda.; nd.) 98.33 (85.3; 99.8) 97.50 (88.2; 99.5) 95.83 (84.1; 98.9)

Sainfoin 100 (nda.; nd.) 100 (nda.; nd.) 99.2 (93.3; 99.9) 91.8 (77.8; 96.9) 89.55 (75.4; 95.6)

aAfter treatment.
bNot determined.
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available for the foregut (Strauch et al., 2017) could help validate
this hypothesis in horses. In any case, these observations suggest
that horse feed should be monitored in the field while measuring
ERP, as variation in plant secondary metabolites like flavonoids
may obscure the results or comparison across operations.

Because a slight difference in larval development rate was
observed between the two groups, the metabarcoding approach
was implemented to quantify the relative abundance of each spe-
cies, with a specific interest for the Cyclicocyclus genus. Previous
records using a reverse line blot assay found that members of
that genus reappeared first following IVM or pyrantel treatment
(van Doorn et al., 2014; Kooyman et al., 2016). Here, the sainfoin
diet administered had no detectable effects on the cyathostomin
larval community structure. This would be in line with the limited
effects observed on other traits or with non-specific effects that
apply to every species equally. To our knowledge, this is the
first attempt to apply the metabarcoding approach to analyse
the activity of a plant product in a parasite system. In addition,
the use of mock communities of known composition highlighted
two strands of improvement for this approach. Suboptimal taxo-
nomic assignment was detected for the members of the
Cyathostomum genus, with a high rate of uncertainty when
attempting to distinguish between C. catinatum and C. pateratum
in mock communities. This limitation adds up to the similarity
between Cylicostephanus calicatus ITS-2 sequences and that of
Coronocyclus coronatus worms, and to the presence of cryptic
cyathostomin species in the community (Bredtmann et al.,
2019; Louro et al., 2021). Additional markers like the mitochon-
drial cytochrome oxidase I (CO1) barcode may help increase the
specificity of this approach. However, its higher rate of evolution
provides a within-species resolution that may be more difficult to
handle (Ramünke et al., 2018).

This study confirmed the absence of effects of dehydrated
sainfoin pellets in vivo on cyathostomin FEC and reported a
weak impact on cyathostomin larval development. This is despite
sainfoin pellets amounting to 70% of the horse diet. Applying a
metabarcoding approach with mock communities revealed sub-
stantial margins for improvement in the taxonomic assignment.
Still, it did not evidence any effect of sainfoin on the cyathostomin
larval population structure. In addition, sainfoin significantly
reduced IVM plasma concentration in horses leading to an accel-
erated reappearance of eggs in the feces. Altogether, sainfoin,
administered as in this study, does not appear to be able to control
cyathostomin in the field.
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