Characterization of sodium relaxation in food: a mandatory step to reach quantitative sodium images Sylvie Clerjon, Guilhem Pagès, Nour El Sabbagh, Amidou Traoré, J.-M. Bonny #### ▶ To cite this version: Sylvie Clerjon, Guilhem Pagès, Nour El Sabbagh, Amidou Traoré, J.-M. Bonny. Characterization of sodium relaxation in food: a mandatory step to reach quantitative sodium images. 15. International Conference on the Applications of Magnetic Resonance in Food Science, Jun 2022, Aarhus, Denmark. hal-03757121 #### HAL Id: hal-03757121 https://hal.inrae.fr/hal-03757121 Submitted on 22 Aug 2022 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Plateforme RMN pour l'agronomie, l'agro-alimentaire et la nutrition NMR platform for agronomy, food science and nutrition INRAE, QuaPA, F-63122 St Genes Champanelle, France INRAE, PROBE research infrastructure, AgroResonance facility, F-63122 St Genes Champanelle, France Sylvie Clerjon, Guilhem Pagès, Nour El Sabbagh, Amidou Traore, Jean-Marie Bonny upper side with 6% in weight of Then, they underwent 6 hours at 24°C (smoking) and were stored at 5°C. For relaxometry, a 16 g sample was collected 6 days after salting. The gel sample used for spectroscopic analyses presented here was made with 20% of porcine pork in water and salted at 1,71 M. # Characterization of sodium relaxation in food a mandatory step to reach quantitative sodium ımages Local quantification of ²³Na in food is critical to - understand the relations between salt distribution (and relaxation) and sensory properties - construct mathematical models to optimize the salting processes. The challenge of quantitative sodium MRI deals with - the poor sensitivity of sodium nuclei - the quadrupolar interactions - the short T_2 relaxation times - B₀ and B₁⁺ inhomogeneities (similarly to other nuclei). ### The present poster deals with the relaxation issues. Sodium imaging quantification usually assumes that a single population is present in a voxel and that 3/5 of this population is invisible due to the short T_2 relaxation times compared to imaging TE. This hypothesis is true if all the sodium nuclei exhibit a biexponential super-lorentzian-like spectrum (type c) [1]. Even considering this invisibility factor, significant errors may persist [2]. That is why, we describe here an approach to check this assumption in different food matrices. A double quantum filter experiment (DQF) was first acquired on fish, gels and carrot. All samples exhibit double quantum coherences (i.e. slow motion sodium). This information is not a sufficient prerequisite to ensure quantitative MRI. A relaxometry study of SQ coherences has been added to check if all sodium presents a biexponential behaviour, i.e. type c [1]. Fish samples Reference gels Relaxometry experiments were performed on a Bruker 9.4 T magnet with a 30 mm volumetric insert. A CPMG (TE=175 µs, 256 echoes, TR=500 ms) was recorded and the signal decay was fitted using a discrete biexponential model. Relaxometry experiments were performed on a Bruker 9.4 T magnet with a 5 mm BBO coil. A CPMG (TE=160 µs, 4096 echoes, TR=400 ms) was recorded and the signal decay was fitted using a discrete biexponential model. | | Fish | Gel | Carrot | |---------------------------|---------|---------|---------| | T _{2fast} | 5 ms | 7.8 ms | 4.6 ms | | Amplitude (T_{2fast}) | 62.2% | 3.6% | 37.8% | | T _{2slow} | 48.3 ms | 21.4 ms | 24.9 ms | | Amplitude (T_{2slow}) | 37.8% | 96.4% | 62.2% | The fish is the only sample exhibiting a biexponential behaviour with the theoretical amplitudes of 3/5 and 2/5 [1]. This first conclusion shows that biexponential discrete analysis is an unfair strategy for appreciating complex relaxation behavior. Hence, signal decay was then adjusted using a continuous inversion with L2-regularization [3]. Fish sample exhibits short T_2 pools between 4 ms and 11 ms, and a slow population with a T_2 around 52 ms. Gels exhibit a minor short T_2 pool at 10 ms and a slow population with a T_2 around 21 ms. Carrot samples Carrot sample exhibits more than two pools: 2 short T_2 pools between 2 ms and 9 ms, the main population around 24 ms and a free pool around 62 ms. ## **Key takeamays** - MR spectroscopy at high field allows to finely analyze the DQ and SQ relaxation of sodium in our food matrices - SQ analysis reveals more complex relaxations than those suggested by DQ experiments - Continuous inversion can be conducted on ²³Na decay. However it should be interpret with caution due to low SNR and the possible mix of several populations in heterogeneous systems (carrot, fish...) ### Consequences for quantitative sodium MRI - Reference gels and food matrices showed contrasted behaviors and thus probable different invisibility factors. These factor need to be evaluated to construct quantitative sodium images - Because low SNR, adjustment using a continuous inversion with L2-regularization must be repeated on many samples for robust results - Because food are heterogeneous, MR spectroscopy should be performed on several parts of the food (the edge, the core, the fat, the lean ...) # Application to sensory properties Fine analysis of sodium relaxation in food matrices is important to build quantitative ²³Na MRI and then measure sodium location/diffusion in food to characterize sodium-matrices interaction because both location and interaction could be correlated with the sensory availability of sodium in food. One of the purpose of the ANR project Sal&Mieux is to demonstrate this correlation and to suggest solution to prepare food with less salt without altering the salty taste. - - Rooney, W. D. and C. S. Springer (1991). NMR in Biomedicine 4(5). - Veliyulin, E. and I. G. Aursand (2007). Journal of the Science of Food and Agriculture 87(14). Whittall, K. P. and A. L. MacKay (1989). Journal of Magnetic Resonance (1969) 84(1): 134-152.