

To dissect or not to dissect for fruit spatial metabolomics: tissue profiling or MRI

Martine Lemaire-Chamley, Guilhem Pagès, Catherine Deborde, Fabien F.

Mounet, Mickael Maucourt, J.-M. Bonny, Annick Moing

▶ To cite this version:

Martine Lemaire-Chamley, Guilhem Pagès, Catherine Deborde, Fabien F. Mounet, Mickael Maucourt, et al.. To dissect or not to dissect for fruit spatial metabolomics: tissue profiling or MRI. 3. Journées RMN du Grand-Sud, Jul 2021, Clermont-Ferrand, France. hal-03757356

HAL Id: hal-03757356 https://hal.inrae.fr/hal-03757356v1

Submitted on 22 Aug2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

M. LEMAIRE-CHAMLEY¹, G. PAGES^{2,3}, C. DEBORDE^{1,4}, F. MOUNET^{1,£}, M. MAUCOURT^{1,4}, J.-M. BONNY^{2,3}, A. MOING^{1,4}

¹ INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, ⁴ Bordeaux Metabolome, MetaboHUB, Centre INRAE de Nouvelle Aquitaine - Bordeaux,

F-33140 Villenave d'Ornon, France

² INRAE, UR QuaPA, ³ INRAE, PROBE research infrastructure, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France [£] Present address, Laboratoire de Recherche en Sciences Végétales, Univ.

Toulouse, CNRS, UPS, F-31326 Castanet-Tolosan, France

Complementary NMR approaches to characterize tomato fruit tissues

Fruit is a complex organ that protects and feeds the developing seeds and allows their dispersal at maturity. It is constituted of several interconnected tissues with specific roles. However, the majority of biochemical studies about fruit development concern the entire fruit or its largest tissue, pericarp. Here we used two strategies to investigate tissular composition: metabolomics and imagery.

Native locular tissue: 450 µL in 5-mm tube 144 µL in 3-mm tube

In vivo MRI

+ 10% (v/v) deuterated water + TSP-*d4* + EDTA-*d12*

Polar extracts Bruker AVIII 500 MHz spectrometer Inverse (BBI) probe, 5 mm NMR tube Calibration for quantitation

¹H-NMR analysis of native locular tissue Bruker AVIII 500 MHz spectrometer BBI probe, 3 or 5 mm NMR tube Relative quantification

Tissue FW distribution at ripe stage

MRSI: Magnetic Resonance Spectroscopy Imaging, one NMR spectrum per pixel **CEST:** Chemical Exchange Saturation Transfer, image specific of one chemical exchangeable moiety Bruker BioSpec 500 MHz spectrometer 72 mm i.d. volume coil for both excitation and reception

¹H-NMR spectra of native locular tissue at 3 stages

¹H-NMR profiling of fruit tissues

1D ¹H-NMR profiling of extracts of isolated tissues

Lemaire et al. 2019 Metabolites 9:93

-OH

Relative quantification of glutamate (GLU, intensity of NMR signal of CH₂-COOH)

Fruit MRI

MRSI in ripe tomato

Sugars Lipids

CEST contrasts in ripe tomato

CEST images are overlapped with the anatomical image obtained by the FLASH protocol (gray scale)

CEST-MRI principle

Sensitive to a chemical function (-OH, -NH₂, -NH)

-NH₂ -NH CEST contrast for 2 stages

CEST images on two different tomato fruits at two maturation stage: mature green and red ripe

Metabolite spatial repartition changes

With ripening, the GLU-GLN spatial distribution changes: - At mature green stage, GLU-GLN concentration is higher in fruit columella, radial pericarp and seed - At a red ripe stage, GLU-GLN concentration is increased in columella, radial pericarp and locular tissue, and is particularly high in columella In addition, CEST images highlight the fruit vasculature

But repeatability issues due to magnetic inhomogeneities

Good for locular tissue

Indirect method: effect of the exchange on the water signal Using prior knowledge about the sample to assign CEST to metabolites Semi-quantitative

Pages et al. 2021 Anal Bioanal Chem 413:1251

Conclusions & Perspectives

- Specificities of dissected tissues are clear with ¹H-NMR profiling but gradients within a tissue cannot be revealed
- **CEST MRI** appears more informative than MRSI regarding the distribution of major metabolites in tomato fruit
- To interpret CEST images, prior knowledge about metabolite concentration is mandatory
- LC-HRMS of semi-polar extracts is currently being used for the characterization of minor metabolites of dissected locular tissue and seed
- **MS imaging**, on a smaller part of the fruit compared to MRI, will complement MRI for the distribution of minor compounds

Acknowledgements:

Région Aquitaine (project No. 20051303006ABC and a Ph.D. grant to F.M.), EUSOL Integrated Project (grant No. FOOD–CT–2006– 016214), MetaboHUB (ANR-11-INBS-0010) and IB2019_GelSeed project of INRAE BAP division for financing Patricia Ballias, Aurélie Honoré and Isabelle Atienza for growing the tomato plants Florie Cassiau for help with tomato tissue images Daniel Jacob for maintaining and updating NMRProcFlow.org and biostatflow.org

17th Annual Conference of the Metabolomics Society