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Abstract. We consider the problem of variable selection when the response is ordi-
nal, that is an ordered categorical variable. In particular, we are interested in selecting
quantitative explanatory variables linked with the ordinal response variable and we want
to determine which predictors are relevant. In this framework, we choose to use the
polytomous ordinal logistic regression model using cumulative logits which generalizes the
logistic regression. We then introduce the Lasso estimation of the regression coefficients
using the Frank-Wolfe algorithm. To deal with the choice of the penalty parameter, we
use the stability selection method and we develop a new method based on the knockoffs
idea. This knockoffs method is general and suitable to any regression and besides, gives
an order of importance of the covariates. Finally, we provide some experimental results
to corroborate our method. We then present an application of this regression method for
network inference of zero-inflated variables and use it in practice on real abundance data
in an agronomic context.

Keywords. Multiclass logistic regression, ordinal data, Lasso, knockoffs variable se-
lection, cumulative logit, network inference.

1 Introduction

Regression methods are really helpful to analyze dependencies between a variable, named
the response, and one or several explanatory covariates. This is one of the reasons of
their wide use and study in statistical analysis [23]. Many models have been introduced
to respond to natural demands including the well-known linear regression for continuous
response variables or logistic regression for binary response variables. Indeed, many data
sets involve this last situation such as the occurence of a disease in medicine or voting
intentions in econometrics. Another type of data is nominal data (that is unordered cat-
egorical data) like housing types or food choice of predators. The situation is a bit more
complicated when the response is ordered categorical (ordinal), e.g. different stages of
cancer, pain scales, place ratings on Google or data collected from surveys (0: never, 10:
always). Logistic regression can naturally be extended to the case where the response is
nominal. This is named the multinomial logistic regression and it has been particularly
studied namely by [2]. In the case of ordinal data, a solution could be to forget the ordinal
nature of the variable and to treat it as nominal. But this leads to poor models since
the order of the values strongly matters. For such data, many authors [1, 13, 12, 21]
provided models based on odds ratios such as cumulative link models, adjacent-categories
logit models or continuation-ratio logit models. The choice of one of these models depends
on the kind of problem. In this paper, we focus on a particular case of the cumulative
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link models: the polytomous ordinal logistic regression using cumulative logits that uses
cumulative probabilities [20, 26, 3].

Although prediction and interpretation provide major challenges in regression motiva-
tions, another important issue is to identify the influential explanatory variables, that is
variable selection. Selection problems often arise in many fields including biology [27]. For
example, in microarray cancer diagnosis [29], a primary goal is to understand which genes
are relevant. For cost and time reasons, it can also be convenient for biologists to restrict
their studies to a smaller subset of explanatory variables (genes, bacteria populations...).
Accordingly, the sparsity assumption (that is, a few number of relevant explanatory vari-
ables) is frequently suitable and adequate, even crucial for interpretation. Indeed, with
a large number of covariates, it is also useful for interpretation to determine a smaller
subset of variables that have the strongest effects. Besides, when the number of variables
is larger than the number of observations or when variables are highly correlated, standard
regression methods become inappropriate.

Lasso penalization introduced by Tibshirani [22] offers an attractive solution to these
issues. That includes a L1 penalty in the estimation of the coefficients in order to per-
form variable selection by optimizing a convex criterion. The regularization resulting from
Lasso penalization shrinks down to zero the coefficients of predictors that have the less
effects and leads to sparse solutions and more interpretable models, making Lasso one of
the most popular penalization [9, 28, 16]. However, obtaining such models sometimes in-
volves heavy optimization issues. As far as we know, Lasso estimation for cumulative logit
regression coefficients has not been performed yet. In this case, we solve the optimization
thanks to the Frank-Wolfe algorithm [8].

Using Lasso also induces the critical choice of the penalty parameter which controls
the number of selected variables. This choice is major because two close values of the
penalty parameter can often lead to very different scientific conclusions. Many general
techniques have been proposed in the literature but they do not have the same purposes.
For instance, K-fold cross validation emphasizes prediction, the validation step involving
computing the prediction error and aiming at minimizing this. Furthermore, cross val-
idation is often quite greedy and tends to overfit the data [25]. Other techniques, like
StARS [11], can be adapted to a regression framework and aim at ’overselecting’, that
is selecting a larger set of variables which contains the relevant ones, allowing false pos-
itives. Some frameworks such as gene regulatory networks require this choice: indeed,
false positives can then be eliminated by further biological experiments whereas omitted
interactions cannot be recovered after that. On the contrary, we can prefer selecting a set
of variables included in the set of true variables to avoid false positives (’underselection’).
This constraint comes from the fact that after selection, the relevant variables have to
be studied by scientists through new experiments. But new experiments are expensive or
time-consuming and it would be a waste to involve false predictors. In this paper, we con-
centrate on the second option. Compared with our intentions, we dwell on two methods:
stability selection [15] introduced by Meinshausen and Bühlmann and we develop a new
intuitive and general method for variable selection, inspired from the knockoffs idea of
Barber and Candès [5, 6]. The principle of the former is to estimate the probability for a
variable to be in the model using bootstraps. The latter uses a matrix of knockoffs of the
covariates to determine if a variable belongs to the model. Moreover, it can be performed
in any regression framework. Note that none of these two methods lead to a choice of the
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penalty parameter. Nevertheless, they provide an order of importance on the covariates
allowing to select variables according to its target.

In this paper, we address the problem of covariate selection when the response is
ordinal. Our goal is to determine which predictors are relevant and which are noise
and we achieve it by using Lasso and by proposing a new method of type knockoffs to
select covariates. The rest of the paper is organized as follows. In section 2, we describe
the ordinal logistic regression using cumulative logits, which is a generalization of the
logistic regression for an ordinal response variable. Section 3 is about Lasso estimation
and inference using the Frank-Wolfe algorithm. In particular, we deal with the choice of
the penalty parameter by introducing our new method for variable selection. In section 5,
we present an application of our method to zero-inflated variables network inference. We
also illustrate our method on both simulated (section 4) and real (section 6) data.

2 Cumulative logit model

This model has already been introduced and studied by McCullagh [13], Williams and
Grizzle [26], Simon [20] or Agresti [1, 2]. Like logistic regression, it can be explained
by the existence of a continuous latent variable [3] whose distribution is logistic. This
regression is based on cumulative probabilities ratios.

2.1 Generalities

As written previously, the cumulative logit model is a generalization of the logistic re-
gression for a response variable Y which takes K > 2 ordered categories. Let us now
introduce the model. Consider we have p explanatory variables (X1, ..., Xp) =: X.
In the following, we denote α = (α1, ..., αK−1) ∈ RK−1, β = (β1, ..., βp) ∈ Rp and
β∗ = (α1, ..., αK−1, β1, ..., βp) = (α,β) ∈ RK−1+p.

We model pjβ∗(x) := Pβ∗(Y ≤ j|X = x) for j = 1, ...,K − 1 and x ∈ Rp, by:

logit pjβ∗(x) = αj + β1x1 + ...+ βpxp, (1)

i.e.,

pjβ∗(x) =
exp(αj + β1x1 + ...+ βpxp)

1 + exp(αj + β1x1 + ...+ βpxp)
.

Notice that the vector β of coefficients does not depend on the level j, assuming an
identical effect of the predictors for each cumulative probability. Actually, assume we
allow separate effects, that is replacing β by βj . This would imply nonparallel curves for
different logits if x takes spread enough values and would digress the proper order among
the cumulative probabilities [12, 2]. Although that model of separate effects can hold over
a narrow range of explanatory variables values, it is more careful to avoid the model of
separate effects, especially without much informations on the explanatory variables. That
is why we focus on the simpler model of similar effects (1).

As pKβ∗(x) = 1, this model includes K − 1 + p coefficients to be estimated (K − 1
coefficients for the vector α and p coefficients for the vector β).

Suppose that (Y i, Xi
1, . . . X

i
p)1≤i≤p are n independent and identically distributed vec-

tors. Denote X∗ij = (0, ..., 1, ..., 0, Xi
1, ..., X

i
p) where 1 is at the jth position, it is now

possible to define:

3



• the log-likelihood:

L(β∗) =
K∑

j=1

∑

i/Y i=j

log
[ exp(−β∗X∗ij−1)− exp(−β∗X∗ij )

(1 + exp(−β∗X∗ij ))(1 + exp(−β∗X∗ij−1))

]
, (2)

• the gradient of the log-likelihood:

∇L(β∗) =
K∑

j=1

∑

i/Y i=j

[X∗ij exp(β∗X∗ij )−X∗ij−1 exp(β∗X∗ij−1)

exp(β∗X∗ij )− exp(β∗X∗ij−1)
−

X∗ij
1 + exp(−β∗X∗ij )

−
X∗ij−1

1 + exp(−β∗X∗ij−1)

]
.

(3)

The gradient (3) will be useful at the optimization step (see subsection 3.1).

2.2 Coefficients interpretation

In the same way as for the logistic regression, we can consider odds and odds ratios for
the cumulative logit model.

For X = x fixed, for all j ∈ {1, ...,K}, the odds are defined by:

oddsj(x) = exp(logit(pjβ∗(x))) =
P(Y ≤ j|X = x)

1− P(Y ≤ j|X = x)
= exp(αj + β1x1 + ...+ βpxp).

This ratio measures the tendancy for Y to be greater or smaller than j given X = x.
We consider also cumulative odds ratios that is odds ratios of cumulative probabil-

ities which are defined by:
oddsj(x)

oddsj(x̃)
for all x, x̃ ∈ Rp. In the case where x̃ = x+zi :=

(x1, ..., xi + z, ..., xp), then for all j ∈ {1, ...,K}, oddsj(x)

oddsj(x
+z
i )

= exp(−βiz).

Observe that these cumulative odds ratios are the same for any level j. This comes
from the assumption of identical effects of the covariates and accordingly, this model is
often called proportional odds model [13].

Some references prefer the parametrization logit pjβ∗(x) = αj−β1x1− ...−βpxp instead
of the one used in (1). This parametrization only affects the interpretation of odds ratios,
the minus sign corresponding to the usual interpretation [12].

Our purpose is to select the relevant variables, which means the variables Xi such
that the regression coefficient βi is non-zero. Notice that βi also measures the conditional
dependence between Y and Xi given (X1, . . . , Xi−1, Xi+1, . . . , Xp). That is why we are
especially interested in the nullity of the coefficients β. Moreover, we make sparsity
assumption, that is only a few βi are non-null and a relatively small number of predictors
play an important role. This sparsity assumption is convenient for scientists to restrict
their studies to a smaller subset or predictors, namely in high dimensional settings. Instead
of testing the nullity of each coefficient βi, we add a L1-penalization on the coefficients β
in the log-likelihood to estimate the coefficients.
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3 Estimation, inference

Without sparsity assumption, coefficients (α,β) are usually estimated by maximization
of the log-likelihood L using Fisher scoring algorithms [13, 24].

3.1 Lasso estimation of the coefficients β

To ensure sparsity assumption, we penalize the log-likelihood L on the coefficients vector
β. For that, we need to solve the following optimization problem:

argmax
α∈A
β∈Rp

{
L(α,β)− λ||β||1

}
, (4)

whereA is the convex set of RK−1 defined by: A := {(α1, ..., αK−1) ∈ RK−1 / α1 < . . . <

αK−1}, , ||.||1 denote the L1 norm, that is ||β||1 =
p∑
i=1
|βi| and λ > 0 is the penalty pa-

rameter. Solving (4) is equivalent, by lagrangian duality, to solve:

argmax
α∈A
β∈Bτ

L(α,β), (5)

where Bτ is the following convex set of Rp: Bτ := {(β1, ..., βp) ∈ Rp / ||β||1 ≤ τ}.
There is a one-to-one correspondance between λ > 0 and τ > 0.

We solve this optimization thanks to the Frank-Wolfe algorithm [8] which is described
in further detail below. The idea is to replace the target function to be minimized by a
linear approximation. In our case, we use the gradient provided in (3) to approximate the
log-likelihood L given in (2).

Frank-Wolfe algorithm

– Step 1: Start with an initial value β∗
0 = (α0,β0).

– Step 2: At each iteration k,

• Solve sk = (sα, sβ) ∈ argmin
sα∈A
sβ∈Bτ

(−∇L(β∗
k))′

(
sα
sβ

)
.

• The new value is β∗
k+1 = (1− γk)β∗

k + γksk, where γk = 2
k+1 .

– Step 3: Iterate Step 2 until convergence.

Notice that we use the convexity of the sets A and Bτ in the step 3. We can split the
optimization problem (step 2) into two different optimization problems. The first one is
relative to the vector α:

sα ∈ argmin
s∈A

(−∇L(β∗
k))′|αs,

and turns out to be a linear optimization under constraints. The second one concerns the
vector β:

sβ ∈ argmin
s∈Bτ

(−∇L(β∗
k))′|βs. (6)
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The optimization part on the β is equivalent to solve −τ argmax
s∈B1

(−∇L(β∗
k))′|βs. This

yields to choose the coordinate ik ∈ {1, . . . , p} such that |(−∇L(β∗
k)|β)ik | maximizes the

absolute value of the gradient (restricted to β). Note that ik is not necessarily unique ; in
this case, we choose the first coordinate which verifies this. Then, we obtain the solution:
sβ = −τ sign(−∇L(β∗

k)|β)ik eik for the optimization problem (6) where ei denotes the ith

vector of the canonical basis.

3.2 Penalty parameter and variable selection

Unfortunately, all penalization methods require the choice of the (positive) penalty param-
eter, also referred as tuning or regularization parameter. We then need to tune the penalty
parameter τ (involved in the constraints of the optimization problem (5)) which controls
the number of selected variables: the closer to 0 τ is, the fewer the selected predictors are.
Remind that our goal is to select only relevant variables and as a consequence, we would
like to avoid false positives. Despite this purpose, our algorithm allows to choose its own
threshold.

Two methods suit with regard to our problems and goals: the first one is the stability
selection proposed by Meinshausen and Buhlmann [15] and we propose a new one, inspired
from the knockoffs process used by Barber and Candès [5]. Actually, these two methods
do not lead to a choice of the penalty parameter τ but they put the explanatory variables
in order from the most relevant to the less, allowing the user to make its own choice.
Furthermore, they both suit any regression.

3.2.1 Stability selection

The principle is to estimate the probability for a variable to be in the model in order to
determine which variables are the most relevant.

Let us consider a set T of values for the penalty parameter τ . For each τ ∈ T , the idea
is to estimate the probability pi(τ) for each variable i to be in the model. For that, we
perform the penalized regression on B sets of n observations obtained by bootstrap. The
estimated probability p̂i(τ) is the proportion of selection of the variable Xi among the B
bootstrapped regressions for this fixed value of τ .

Usually, variable selection involves choosing an estimated model among {Ŝτ , τ ∈ T}
where Ŝτ is the estimated model relative to the fixed parameter τ , that is: Ŝτ = {i ∈
{1, ..., p} : β̂i(τ) 6= 0} where β̂(τ) denotes the estimated coefficients of the τ -penalized
regression of Y on X. Instead of choosing one of these models, we choose here the model
Ŝ := {i ∈ {1, ..., p} : max

τ∈T
p̂i(τ) ≥ pthr} for a fixed threshold pthr (see [15] for more

details). Notice that covariates are ordered according to max
τ∈T

p̂i(τ).

The threshold value pthr has a very small influence, which is very convenient. Indeed,
results tend to be similar for a wide range of values of pthr unlike the penalty parameter
τ . However, Meinshausen and Bühlmann [15] still provide a procedure to choose the
cut-off pthr and the regularization region T . Under some simplifying assumptions, this
procedure yields a bound for the expected number of false positives (selected by stability
selection). Nonetheless, this bound depends on an unknown quantity (T -dependent) and

6



the assumptions can be a bit too strong. That is why we prefer using an arbitrary threshold
(see section 4).

3.2.2 Revisited knockoffs

With a little abuse of notation, let X denote the n× p matrix of the n observations of the
vector (X1, . . . , Xp), called the design matrix. The principle, given in [5], is to use a matrix
X̃ of knockoffs (of the variables Xi) whose structure is similar to X but independent from
Y . The goal is to determine if a variable Xi is relevant by studying if it enters the model
before its knockoff X̃i. Indeed, as the knockoff is independent from Y , if a variable enters
the model after its knockoff, we can rightfully suspect that this variable does not belong
to the model.

We mainly differ from the method proposed by [5] in the construction of the knockoffs.
We construct our knockoff matrix X̃ by swapping the n rows of the design matrix X. This
way, the correlations between the knockoffs remain the same as the original variables but
the knockoffs are not linked to the response Y . Let us note β̂(τ) the estimated coefficients
of the τ -penalized regression of Y on the augmented matrix [X, X̃]. For each variable i ∈
{1, . . . , p, p+1, . . . , 2p} of the augmented design, we consider Ti := inf {τ > 0, β̂i(τ) 6= 0}.
At this stage, we hope that Ti is small for the relevant variable, that is for i ∈ {1, . . . , p}
such that βi 6= 0 and large for the variables i ∈ {p + 1, . . . , 2p} or for the variables
i ∈ {1, . . . , p} such that βi = 0. This yields us a 2p-vector (T1, ..., Tp, T̃1, ..., T̃p) where T̃i

denotes Ti+p. Then, we consider, for all i ∈ {1, ..., p}, Wi := Ti∧ T̃i×
{

(+1) if Ti < T̃i
(−1) if Ti ≥ T̃i

.

A negative value for Wi means that the variable Xi enters the model after its knockoff
and we eliminate it. On the contrary, a positive value for Wi means that the variable
Xi enters the model before its knockoff and is more likely to belong to the model. But
variables Xi whose statistic Wi is positive are not necessarily relevant: we hope that Wi is
small for most of relevant variables and large for the others. Thus, we are interested in the
smallest positive values of the p-vector of statistics W which moreover indicates that the
variable enters the model early. This suppose to define a threshold s for Wi under which
we will keep the corresponding variables in the model. On the whole, we will choose the
model Ŝ such that:

Ŝ := {Xi : 0 < Wi ≤ s}.
About the threshold s, Barber and Candès [5] provide a data-dependent threshold

that shows attractive results relative to the false discovery rate in the gaussian setting.
Unfortunately, these results do not hold in our case. We make the assumption that there
is a breakdown in the distributions between the Wi corresponding to the Xi in the model
and the other ones (see Figure 1). Figure 1 illustrates that distributions of Wi depend
on whether Xi is relevant or not. To generate Figure 1, we have simulated a set of
p = 20 covariates, only the four first ones were linked to Y . In the knockoffs procedure,
variables 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14 had positive values for Wi. We can clearly observe
a breakdown between the values of the four first ones and the others.

Consequently, we chose to use two change detection methods: the method proposed
by Auger and Lawrence [4, 17, 18] and the CUSUM method for mean change detection.
Let W(i), i = 1, ..., w denote the sorted w positive statistics Wi, i = 1, ..., w, that is
0 < W(1) ≤W(2) ≤ . . . ≤W(w) and ej = W(j+1) − W(j) for all j = 1, . . . w − 1. Remark
that w, the number of positive statistics Wi, is random (w = 11 on figure 1). Those
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Figure 1: Example of sorted positive statistics Wi. Only variables X1, X2, X3 and X4

belong to the model (in this case, β = (8, 6, 4, 2, 0, . . . , 0)).

two methods applied to the sorted gaps e(j) provide us two thresholds and we choose the
minimum of these two thresholds. Let us name this threshold ’min threshold’ for the sake
of simplicity. It is though possible to choose its own threshold through displaying the
sorted positive statistics Wi.

4 Simulation studies

We now describe experimental results in order to study the efficiency of our methods.

For both stability selection and revisited knockoffs, we center and reduce the explana-
tory variables so that the variances do not have influence on the estimated regression
coefficients β. We have performed different simulations with various distribution for the
covariates. In the following, we present the results for p = 50 covariates, K = 3 ordered
modalities for the response Y , n = 100 and 200 samples, β = (8, 6, 4, 2, 0, . . . , 0) and α
properly chosen (so that the response Y takes enough values in each of its 3 modalities).
Covariates X are simulated as gaussian such that Xi and Xj are independent conditionally
on the other Xk with probability 1− ρ, ρ = 0.6. The vector X of covariates is simulated
with the R function huge.generator, for a random graph structure. Most of non-null
correlations are between −0.3 and 0.3 and non-null partial correlations are about −0.13.

We have also used other kind of distribution for the vector of covariates. Results are
given in Appendix A.2.

4.1 Stability selection

Settings. About stability selection, we tuned B = 100 bootstraps and the set of values
for τ is T = {0.1, 0.4, 0.7, ..., 3.7}. The tuning of the set T suits to many problems since
the covariates are centered and reduced. The set T can be changed but we would like to
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point out that too large values for the penalty parameter τ lead to the full model (for all
i, p̂i(τ) = 1). We recommend therefore to be careful. However, the threshold pthr can be
modified as needed.

We represent the results by boxplots (figure 2) and ROC curves (figure 3). Boxplots are
obtained on 50 repetitions of n = 100 and 200 samples of p = 50 variables and correspond
to the estimated probabilities, that is max

τ∈T
p̂i(τ), for each variable Xi. ROC curves exhibit

the average false positive rates (FPR) and true positive rates (TPR) on 50 repetitions
after thresholding the estimated probabilities for pthr ∈ {0.1, 0.15, 0.2, . . . , 1}.

Results and comments. Figures 2 and 3 show that the method is efficient. ROC curves
(figure 3) illustrate that the procedure is sensible and specific and that a wide range of
values for pthr leads to similar results. Notice that the scale for the TPR starts at 0.8 and
the scale for the FPR ends at 0.25. This means that the average TPR is around 0.8 for
pthr = 1 and the average FPR is around 0.14 (n = 200) and 0.27 (n = 100) for pthr = 0.1.
Boxplots of figure 2 show the distribution of the probabilities for each covariate to be in
the model for 50 independent simulations. The difference of the distribution between the
relevant covariates (from 1 to 4) and the other ones is very clear. The first three covariates
are almost always detected for pthr = 1. The fourth one (corresponding to a lower regres-
sion coefficient) is detected with a rate of 75 % if pthr = 0.75 if n = 200 (resp. pthr = 0.55
if n = 100).

The different simulations we have performed showed that the efficiency of these meth-
ods does not depend on the distribution of the predictors (see Appendix A.2 for more
results).

4.2 Revisited knockoffs

Settings. We calculate the statistics Ti, i = 1, . . . , p, p+1, . . . , 2p (p = 50) as Ti := min
(

inf{τ ∈ T , β̂i(τ) 6=
0} ∪ {1000}

)
where T := {0.1, 0.3, 0.5, . . . , 10.1}. We choose 1000 as an arbitrary value

which means that if Ti = 1000, Xi (or X̃i−50 if i > 50) did not enter the model before
τ = 10.1. In the same way as for stability selection, the tuning of T does not matter a lot
since the covariates are centered and reduced.

We represent the results by boxplots (figure 4) and detection rates (figure 5). Both
are obtained on 100 repetitions of n = 100 and 200 samples of p = 50 variables. The
boxplots display ’appearance’ ranks of each variable which is a kind of relevance rank for
each variable. This rank is calculated using the statistics Wi. These statistics sort in fact
the covariates: covariates with the smallest positive value of W get the first rank, those
with the smallest negative value get the last rank. So, the variable with the rank 1 is
the most relevant for the model and so on. Note that covariates can have the same rank,
thus the last rank does not have to be p = 50. These ranks provide in fact a sorting of
covariates. The figure of covariates detection rate (figure 5) present the detection rates of
each covariate after thresholding the statistics Wi, i = 1, . . . , 50. The threshold is the min
threshold introduced in subsection 3.2.2.

Results and comments. Again Figure 4 show the good efficiency of the procedure. As
expected, the boxplots indicate that X1, X2, X3 and X4 enter the model in this order. The
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Figure 2: Boxplots of estimated probabilities max
τ∈T

p̂i(τ) for each covariate. Regression

coefficients β = (8, 6, 4, 2, 0, . . . , 0). Boxplots are obtained on 50 repetitions constituted
by n = 100 and 200 samples of p = 50 variables with stability selection method.
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Figure 4: Boxplots of ’appearance’/relevance ranks for each variable. Regression coeffi-
cients β = (8, 6, 4, 2, 0, . . . , 0). Boxplots are obtained on 100 repetitions constituted by
n = 100 and 200 samples of p = 50 variables with revisited knockoffs method.
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Figure 5: Detection rates on 100 repetitions after applying revisited knockoffs method with
the min threshold (see subsection 3.2.2). Regression coefficients β = (8, 6, 4, 2, 0, . . . , 0).

difference between the relevant covariates and the others is clear. The detection rates after
thresholding given in Figure 5 illustrate also this phenomenon; the third first variable are
almost always detected, the second is detected in about 60 % of the simulations what-
ever n = 100 or 200. The rate of detection of the irrelevant covariates is very low. For
both stability selection and revisited knockoffs, we observe that some covariates, namely
X21, X32, X41 and X44, are more often detected than others. It is probably due to the
dependance structure of X. In particular, these covariates are dependent to X1, X2, X3

and X4 conditionally on the others.

We also performed simulations with independent covariates and show results in the
Appendix A.1.

5 Application to zero-inflated networks inference

Many authors used regressions to address dependency graphs inference issues. In Gaussian
graphical models (GGM), the nullity of a coefficient of the regression is equivalent to the
nullity of the corresponding partial correlation and thus to the corresponding conditional
independence. Meinshausen and Bühlmann [14] used linear regressions in this gaussian
framework. Even if the equivalence is not clear in another context, the Ising model provides
similar properties in that the nullity of a coefficient of the logistic regression is equivalent of
the conditional independence of the corresponding variables. [10] and [19] inferred binary
graphs with logistic regressions using the Ising model. That is why, we would like to apply
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our model of regression to networks inference. Unfortunately, the partial distribution
(1) is not consistent with any joint distribution [21]. Out of curiosity, we tried to apply
this regression in a network framework though. Besides, simulating different kind of data
is also interesting with respect to robustness. In this section, we focus on networks of
zero-inflated variables.

5.1 Data simulation

We aim at simulating data sets being like abundance data (naturally zero-inflated). For
that, we first simulate a gaussian p-vector X whose graph structure is a chain, that is Xj

and Xk are dependent conditionally to the rest of the variables iff |j − k| ≤ 1. As pre-
viously, we use the R function huge.generator for a band graph structure. By default,
E(Xi) = 0 and var(Xi) = 1 for all i ∈ {1, . . . , p}.

After that, we change the means and variances so that P(Xi ≥ 0) is close to 1
for i = 1, . . . , p. Means µi, i = 1, . . . , p are chosen between 1 and 100: 50% are
chosen uniformly between 1 and 5, 25% between 6 and 10, 15% between 11 and 50
and 10% between 51 and 100. Variances σ2i depend on the means in this manner:

σi = 1.1
µi
2
1µi≤5 + 0.9

µi
2
15<µi≤10 + 0.5

µi
2
110<µi≤50 + 0.3

µi
2
150<µi .

At last, we add a zero-inflation by multiplying X by a p-vector Ber of Bernoullis, de-
pending on vectorX. We simulateBer as following: for all i ∈ {1, . . . , p}, Beri ∼ B(π(Xi))

where π : R+ → [0, 1], x 7→ exp(a+ bx)

1 + exp(a+ bx)
where a = log(10−2) and b = 3. Thus, the

closer to 0 x is, the closer to 0 π(x) is and then, the associated Bernoulli is more likely to
be 0. The observations are then Z = Ber · X. This way, Zi is more likely to be 0 if Xi

is small. Note that we work with n observations of the variable Z to infer the network of
the latent variable X.

5.2 Application of polytomous regression to the simulated data

The goal now is to retrieve the links between the variables Xi, i = 1, ..., p, given theoreti-
cally by the precision matrix Σ−1, with the observed variables Zi, i = 1, ..., p. In this case,
the underlying graph structure is a chain, noted by X1 − X2 − . . . − Xp where Xi − Xj

represents an edge between Xi and Xj .

Our approach is quite conventional and involves performing penalized polytomous
regression (see (1)) of each variable (converted to classes) on the remaining unaltered vari-
ables, and then using the sparsity pattern of the regression vector to infer the underlying
neighborhood structure. This procedure leads to two graphs: the graph ’or’ and the graph
’and’. Let us denote β̂ji , i 6= j the estimated coefficients of the regression of Xj (considered
as the response variable) on the covariate Xi. The graph ’and’ contains an edge between
Xj and Xk if β̂jk 6= 0 and β̂kj 6= 0 whereas the graph ’or’ contains an edge between these
two variables only if one of the estimated coefficients is non-null. We only build the graph
’and’ since it contains less false positive edges, making specificity higher.

But before performing regressions, we need to transform the response variable relative
to each regression so that it is ordinal. For convenience, let us denote R the response. R

14



comprises some zeros and the rest is continuous. Consequently, we break down the non-
null values of R into classes determined by quantiles of R, so that classes are balanced.
The number of modalities that we choose depends on the number of non-null values of R.

We choose the number of modalities K as: K =

[
#{i ∈ {1, . . . , n} / Ri 6= 0}

20

]
+ 1, where

[.] denotes the floor function. In our simulations, K goes from 2 to 11 depending on the
zero-inflation. When K = 2, Y only discriminates if the original variables equals 0 or not.

Finally, we perform regressions with revisited knockoffs methods for variable selection.

5.3 Results

We choose p = 50 and n = 200. Correlations between linked variables are set about −0.45
and partial correlations about −0.38. The zero-inflation represents about 12%, varying
from 0 to 75% according to the variables.
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Figure 6: Edges detection rates on 50 repetitions after applying revisited knockoffs method
with the min threshold (see subsection 3.2.2). Circles and stars represent respectively false
and true edges.

Figure 6 shows edges detection rates with revisited knockoffs and the min threshold.
True edges are the most detected. Almost all of them are detected more than 90% whereas
almost false edges are detected less than 10% of the simulations. Moreover, there is a
distinct gap between true and false edges.
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6 Real data

We conclude numerical experiments by applying our revisited knockoffs method on real
data. The data set has been produced by a team of researchers from INRA (Institut Na-
tional de la Recherche en Agronomie) and Frankurt University and consists of the bacterial
communities of 82 samples of truffles analyzed by high throughput sequencing (unpub-
lished data Splivallo, Vahdatzadeh & Deveau). A total of 242 operational taxonomic units
(OTUs) with varying relative abundance were obtained across the different samples. Each
OTU is made of groups of microorganisms that have very high DNA sequence similarities
- i.e. genetically closely related microorganisms.

The goal is to detect potential interactions between these OTUs in order to identify
potential networks of interactions occurring in situ between microorganisms among the
thousands of potential interactions that could exist but that cannot be experimentally
measured. Functional interactions can then be experimentally analyzed on small sets of
microorganisms [7]. This data set is particular in that it contains a lot of zeros: many
OTUs are indeed present only in a few samples and the data set requires a prior sorting.

For that, we eliminated OTUs present in less than
82

3
≈ 27 samples. The final data set

contains 82 samples of 62 OTUs. However, it remains a lot of zeros so that GGM are
not appropriate to analyze the link between the variables. We then apply our penalyzed
regression and revisited knockoffs method.

Notice that our knockoffs procedure is random since the matrix of knockoffs is ob-
tained by swapping randomly the rows of the design matrix X. This randomness allows
us to weight edges and to sort them. In this work, we choose to repeat 80 times the
revisited knockoffs procedure as we did in the previous section on simulated network data
and select edges which are detected more than 57 times. We then weight each of these
edges according to the number of times it has been detected.

Results and comments. Our knockoffs procedure produced a network containing a
total of 50 edges between 44 OTUs, whose the main cluster contains 33 OTUs and 42
edges. Figure 7 displays this main cluster. The network is organized in two clusters linked
together by 3 OTUs. Cluster A is made of OTUs that tend to co-variate and regroups
OTUs corresponding to closely related bacteria in terms of functional abilities, thus being
very likely to naturally co-occur and interact within truffles. OTUs from cluster B tend
also to co-occur while OTU 1 and OTU 2 that connect the two clusters show a tendency
for exclusion patterns. A similar negative link between OTU1 and 2 is also observed in
other data sets (Splivallo et al. in prep), supporting the validity of the predictions made
by the knockoffs procedure. Interestingly, a third of the OTUs highlighted in the network
are available for culture in the laboratory at INRA and experimental tests could be done
in the future to validate the predictions of the model.

7 Discussion

In this paper, we proposed new methods to infer the logistic regression with cumulative
logits, a regression for ordinal response variable. We gave an algorithm to select covariates
and estimate the regression coefficients by maximizing a penalized version of the likeli-
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Figure 7: Main cluster of truffle OTUs network obtained after applying 80 times the
knockoffs method. Edges are represented if they are detected more than 57 times and
they are weighted according to their number of detection.
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hood which did not already exist to our knowledge. For this, we also developed a new
method based on the knockoffs idea from [5] to perform variable selection, that is really
intuitive in the manner to build the knockoffs and to select the covariates. Moreover this
method of selection is not specific to the polytomic regression and is also suitable for other
kind of regressions and can be used in other contexts. We have seen that these penalized
regression and knockoffs procedure turn out to be very pertinent and efficient as the many
and diverse simulations above and in the appendix exemplify. We choose not to try to
establish theoretical guarantees because of the cumulative logit regression model strong
complexity. However, we are aware of the importance to do it and this could be subject
to a future substantial theoretical work.

The developed regression method and knockoffs procedure allow us to use penalized
polytomic regression to infer network in a context where Gaussian graphical models are
not adapted because of the presence of zeros. We used it to infer a network of zeros-inflated
covariates first in a simulation case and next on a set of abundance variables in an ecological
context of interactions between microorganisms (truffles in our case). Practitioners were
very satisfied with the results. Here again, even if our method works well to infer networks,
the theoretical questions remain important because the cumulative logit regression model
is not consistent with any joint distribution. That opens up prospects for graph inference
when data are zero-inflated.
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A Experiments

In section 4, we described experimental results for dependent gaussian covariates. Let us
now present additional experimental results relative to independent gaussian covariates
and other distributions. In the same way as for section 4, we maintain some simulations
settings: p = 50 covariates, K = 3, n = 100 samples, and vector of regression coefficients
is β = (8, 6, 4, 2, 0, . . . , 0).

A.1 Independent (gaussian) covariates

In this case, covariates X are simulated as X ∼ Np(0, Ip).

A.2 Other distributions

In this case, covariates Xi are independent and distributions are the following:

• if i ≡ 1 (mod 3), Xi ∼ N (0, 1)

• if i ≡ 2 (mod 3), Xi =
Zi − µ
µ

where Zi ∼ P(µ) and µ is chosen uniformly on

{1, . . . , 40}.

• if i ≡ 0 (mod 3), Xi ∼ U [−
√

3,
√

3].

Parameters of these distributions are chosen so that each covariate is centered and reduced.
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Figure 8: Boxplots of estimated probabilities max
τ∈T

p̂i(τ) for each covariate. Covariates

are independent and gaussian and regression coefficients β = (8, 6, 4, 2, 0, . . . , 0). Boxplots
are obtained on 50 repetitions constituted by n = 100 samples of p = 50 variables with
stability selection method.
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Figure 9: Boxplots of ’appearance’/relevance ranks for each variable. Covariates are
independent and gaussian and regression coefficients β = (8, 6, 4, 2, 0, . . . , 0). Boxplots
are obtained on 100 repetitions constituted by n = 100 samples of p = 50 variables with
revisited knockoffs method.
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Figure 10: Boxplots of estimated probabilities max
τ∈T

p̂i(τ) for each covariate. Covariates

are independent and distributions are described in appendix A.2. Regression coefficients
β = (8, 6, 4, 2, 0, . . . , 0). Boxplots are obtained on 50 repetitions constituted by n = 100
samples of p = 50 variables with stability selection method.
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Figure 11: Boxplots of ’appearance’/relevance ranks for each variable. Covariates
are independent and distributed as in appendix A.2. Regression coefficients β =
(8, 6, 4, 2, 0, . . . , 0). Boxplots are obtained on 100 repetitions constituted by n = 100
samples of p = 50 variables with revisited knockoffs method.
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