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Abstract—Protein is biology workhorse. Since the recent break-
through of novel folding methods, the amount of available
structural data is increasing, closing the gap between data-driven
sequence-based and structure-based methods. In this work, we
focus on the inverse folding problem that consists in predicting
an amino-acid primary sequence from protein 3D structure. For
this purpose, we introduce a simple Transformer model from
Natural Language Processing augmented 3D-structural data.
We call the resulting model PeTriBERT: Proteins embedded in
tridimensional representation in a BERT model. We train this
small 40-million parameters model on more than 350 000 pro-
teins sequences retrieved from the newly available AlphaFoldDB
database. Using PetriBert, we are able to in silico generate totally
new proteins with a GFP-like structure. These 9 of 10 of these
GFP structural homologues have no ressemblance when blasted
on the whole entry proteome database. This shows that PetriBert
indeed capture protein folding rules and become a valuable tool
for de novo protein design.

Index Terms—inverse folding, AlphaFold, proteins, protein
generation, transformers, NLP

I. INTRODUCTION

Proteins are at the heart of cellular life and therefore are the
center of numerous medical and chemical applications. They
are macro molecules that are built as various length chains
composed as combinations of the 20 amino acids (also called
residues) found in nature. Proteins fold into 3D conformations
depending on their primary sequence and post translational
modifications, which define most of their chemical and me-
chanical properties [1]. Decoding the relationship between the
primary sequence of proteins and their structural functions is
an important topic of computational biology and has been
a long standing problem that was traditionally approached
via physical modeling [2]. However, thanks to the recent
advent of deep learning and to the growth of both labeled
and unlabeled protein databanks, a new range of algorithms
arose that operated a paradigm shift in computational biology,
leading to unprecedented results [3].

During the last decade, protein structure-related deep learn-
ing methods were investigated, both in supervised and un-
supervised settings, to predict and understand the folding
of proteins and its subsequent tasks. Notably, the ability of
deep neural network to capture complex spatial patterns was

considered regarding the proteome for which structural data is
available to solve various related biological questions: protein
design [4]–[6], [5], protein function prediction [7] or model as-
sessment [8]. However, the scope of these methods was limited
because of the intrinsic difficulty and cost to experimentally
unravel the full structure of the known proteins sequences.
This left most of the known proteome unused. To fill this gap,
semi-supervised learning have also been investigated, that take
benefit of the large amount of available data provided by the
abundant use of inexpensive sequencing technologies. Mostly
leveraging natural language processing methods [9]–[12], this
setting was able to provide task-agnostic representations that
can capture important inherent properties to be further fine-
tuned to a wide variety of tasks.

As a matter of fact, it appears that solving the protein
folding problem was the missing link between the structure-
based and sequence-based paradigms and was hence consid-
ered as one key problem to be solved in computational biology.
To a large extent, this long-expected question can now be
considered solved, since the groundbreaking introduction of
AlphaFold 2 [13] and RoseTTAFold [14]. They both use a
dual path transformer architecture that combines evolutionary
clustered data (embodied as Multiple Segment Alignment) and
graph embedding of the residues interactions constrained by
geometrical properties to iteratively solve this complex task.
AlphaFold in particular exhibited unrivaled performances on
this task at the 14th Critical Assessment of protein Structure
Prediction (CASP14) challenge, outperforming its competitors
by a large margin. AlphaFold is an adhoc model that was
crafted specifically for this task and its very specific architec-
ture allows it to achieve much better performance than other
out-of-the-box architectures.

Since this achievement, Deepmind has publicly released
the AlphaFold database [15], which freely offers AlphaFold
estimates for the structures of a daily-increasing number of
proteins (350,000 at the time we started our experiments). This
highly remarkable contribution opens new perspectives in the
computational protein field.
In particular, we are interested here in leveraging this very
valuable data to investigate a problem that appears as very
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important in practice in biology, which is inverse folding. It
consists in the prediction of amino-acid identity of a given
unknown residue when the remaining residues and surrounding
structure are known. To achieve this, we identify the core
difficulty as designing a model that can generate purely
synthetic proteins with a given 3D structure.

To achieve inverse folding, we study the use of a slightly
tuned version of a light BERT encoder [16] model that uses
only 40 million parameters and that we call PeTriBERT for
Protein Embedded in a Tridimensional representation in a
BERT model. Compared to BERT, our model uses structure
data as an additional input which is encoded using learnable
fourier features inspired by [17] in order to distillate the newly
available data provided by AlphaFold 2.

Our contributions are twofold:
• We show that, despite being a small model, the proposed

PeTriBERT inverse folding model is able to capture
AlphaFold data well enough so that it can be used
for protein design when coupled with Gibbs sampling
without additional learning, in a way inspired by [18],
[19].

• We benchmark PeTriBERT results by generating proteins
sequences having a very close structure to the avGFP [20]
and discuss in silico evolution of synthetic proteins.

II. RELATED WORK

Recent work in machine learning applied to proteins data
aims to solve different tasks such as protein design [4], [5],
[21], model assessment [8], [22], protein to protein interaction
[12], [23] and predicting protein chemical and mechanical
functions [7]. Regardless of the task to solve, different ap-
proaches were investigated regarding what input data neural
networks model should learn from.

A. Sequence-based methods

As primary sequences of amino acids are believed to fully
encode the information of proteins, sequenced-based machine
learning methods arose naturally, relying notably on Natural
Language Processing (NLP) frameworks and self-supervision
techniques. Self-supervision has recently become a main topic
in artificial intelligence research, allowing to benefit from huge
amounts of unlabeled data. In NLP, models are trained on
proxy tasks such as predicting missing words in a sentence or
predicting the next sentence when input some text. They are
then finetuned on smaller datasets for specialization on the
target task [24].

This particular type of transfer learning was transposed
in biology where early works on this topic [25]–[28] were
inspired by the well-known word2vec model [24] and where
primary sequences of proteins are simply viewed as sentences.
As new and more expressive deep neural architectures arose
in the general AI community [16], [29]–[33] and with the
exponential growth of protein sequence databases, computa-
tional biology has recently strongly benefited from this new
paradigm.

Recurrent neural networks for proteins modeling were in-
vestigated by works such as Heinzinger et al. [34] who
adapted the ELMo model [35] derived from an LSTM net-
work and showed that NLP is a viable setting for capturing
biological properties. Rives et al. [9] explored the use of a
high capacity transformer network on 250 M of proteins that
is the whole known proteome and outperformed models such
as LSTM. While learned purely from sequences, they have
shown that their model can generalize and actually captures
some of the biochemical properties, biological variations,
homology et alignment with protein family. Nambiar et al. [12]
have adapted the RoBERTa transformer [29] and used BPE
tokenization to learn task-agnostic representation obtaining
comparable results while lowering training time by a huge
factor. Brandes et al. [36] proposed ProteinBERT using an
additional and novel pretraining stage focused on predicting
protein functions. Their approach sets a new state-of-the-art
performance on a diverse set of benchmarks while using a
smaller and faster model. To understand and interpret the atten-
tion effect occuring using such architectures, complementary
studies were conducted such as the one from Vig et al. [37] to
specifically interpret the attention maps learned by transformer
during the pretraining phase. They have shown that attention
captures high-level structural properties of proteins connecting
amino acids that are spatially close in three-dimensional
structure.

While the transformer model appears to be the most suited
architecture, its limitations were exposed by other works such
as Rao et al. [38] who proposed a benchmark to evaluate NLP-
based semi-supervised learning on 5 tasks, using 3 different
networks (reccurent, convolutionnal, attention based). They
have shown that while self-supervised pretraining improves
performance for almost all models on all downstream tasks,
performance also varies significantly depending on the chosen
architecture across tasks. Other limitations were demonstrated
by works such as Rao et al. [39], who proposed a transformer
architecture that also incorporates evolutionary data encoded
as Multiple Sequence Alignement (MSA), which consists in
clusters of proteins that share parts of their primary sequences
and are believed to testify on the evolutionary history of
a protein structure and chemical properties [40]–[42]. They
have shown that using MSA allows transformer to outperform
single sequence methods and demonstrated the limitations
of the latter to accurately encode evolutionary data. Other
MSA-based works have also been proposed [43], [44]. The
advantage of exploiting MSA features was also illustrated
by AlphaFold [13] and RoseTTAFold [14] that achieved un-
precedented results using dual-path transformer-based neural
networks architecture where one of the paths uses MSA inputs.
However, while MSA-based model have shown superiority
to single-sequence based models, some other works such as
Elnaggar et al. [11] showed that MSA features may very well
be dropped in some near feature. They compared several state-
of-the-art auto-encoders and auto-regressive models and were
able to obtain comparable performance to MSA-based model
for the first time. Nevertheless, MSA-based methods are still
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genererally considered to have an edge over single-sequence
methods today and the question of capturing the evolutionnary
data with sequence-only models remains open.

B. Structure-based methods

In parallel to sequence-based methods, a more conventional
and slightly older research direction has focused on learning
representations directly from the available structural data as a
way to bypass the complexity of the protein folding problem.
Most of the recent methods on that topic either involves
convolutional networks [22], [45]–[47] or graph neural net-
works [4], [5], [7], [8] thanks to their ability to capture tri-
dimensional patterns or instrincic hierarchy between proteins
compounds, respectively. Convolutional neural network have
notably been extensively used to predict an affinity score
beetween compounds based on binding site [48]–[50]), to
assess model quality [22] or protein-protein interaction [51].
Graph neural Networks have also been used as an alternative
for similar tasks and brought a different approach on model
assessment [8], function prediction [7] and binding affinity
[52].

More directly related to our present work, another part
of structure based methods have focused on inferring spatial
predictive distribution of amino-acid given the structure. This
is known as the inverse folding problem (IFP) which is often
related to protein design as amino acid sequences can then
be reversed-engineered from structural constraints [53]. For
example, Zhang et al. [46] proposed ProDCoNN to predict
residue type given the 3D structural environment around the
Cα atom of a residue, which is repeated for each residue of
a protein, using 3D meshing around proteins and convolution.
Boomsma et al. [54] proposed a specific kind of spherical
convolution to predict secondary structures of proteins and to
solve the inverse folding problem. Anand et al. [55] proposed
a convolutional network to predict sequences from structure,
and performed generation using Conditional Markov Random
Field. Chen et al. [56] proposed an hybrid method, using both
BLSTM and CNN to process 1D structural properties and 2D
distance maps, repsectively, and predict binding-site, protein
function prediction and residues propensities. Hermosilla et
al. [45] have used a variant of a Resnet network [57] to
model intrinsic/extrinsic distance (distance along amino acid
edge and euclidian distance) applied on several tasks, using
both primary sequence and protein structure. Strokach et al.
[4] have used a deep graph neural network to solve the
protein design problem as a constraint satisfaction problem
applied on the distance matrix of proteins. Jing et al. [6] used
geometric vector perceptrons, replacing the use of graph or
convolutionnal neural networks by a variant of the standard
perceptron that have the desired properties of being invariant
through rotations and therefore can encode graph features
directly without overfitting.

Regarding novel protein generation however, the inverse
folding problem is an intermediary step that is discarded in
some other works. In particular, encoder-decoder transformer
architecture [5], [21], network hallucination [58], [59], gener-

ative adversarial networks [60] and variational auto-encoders
[61] were also investigated as end-to-end methods on this task.

C. New hybrid methods

Until recently structured-based models were limited by the
low amount of structural data available whereas the sequenced-
based problem complexity was such that numerous efforts
were necessary to untangle the language of life [62]. However,
the recent breakthrough in protein folding is progressively
closing the gap and structural data is slowly becoming avail-
able for a bigger part of the Proteome. It is a strong trend
in very recent works to exploit the newly available data.
Concurrently to our present work, Zhang et al. [47] have
just published a graph-neural network-based method trained
on structural data as a general purpose model that can serve
for further finetuning on a variety of tasks. Another concurrent
work was proposed by [63] who used a geometrically variant
of the perceptron trained on the largest amount of structural
data to date and that leads to unprecedented results.

On the other hand, our method is based on a standard BERT
architecture on which additionnal embedding modules are
added to encode the structural data. This approach appeared
to us simpler and more natural when we started to design
our algorithm : it rely on the solid foundation provided by
the research conducted on the NLP framework and our IPF
solver elegantly degenerates to the classic BERT model when
the additionnal embeddings modules are cut out. As such, it
can directly be compared to standard NLP architecture and
be easily implemented within any standard NLP-transformer
based framework. Finally, our approach allows to design more
proficient models using more recent transformer architecture
(elektra [30], performer [32], etc.)

III. MODEL

In this work, we share the same interest brought by the
protein folding breakthrough and contribute by proposing
a simple model that joins NLP-inspired sequenced-based
model and structure encoding models to solve the inverse
folding problem. This problem can be formulated as
inferring the probability p(tn|c, t1, ...tn−1, tn+1, ..., tN )
where c = [cn,i] are the 3D coordinates of every
atom i of the n-th residue of the protein structure and
t = [t1, t2, ..., tN ] is the primary sequence of the
protein and where every tn takes its value in Σ =
{A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }
the dictionary of amino acids.

The main idea behind PeTriBERT is to consider that the
inverse folding problem and the BERT-based NLP solution
are strongly related: the Mask-language modeling task can
be considered as a particular case of the inverse protein
folding problem where the structure is unknown i.e inferring
the marginal distribution p(tn|t1, ...tn−1, tn+1, ..., tN ). Con-
versely, the classical BERT setting on the masked-language
proxy task intuitively calls for structure-related feature aug-
mentation.
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To achieve this, we treat proteins as sentences and residues
as words/tokens from an NLP framework point of view as
in former contributions [9], [10], [12] and encode protein data
using a light BERT model [16]. The main difference with pure
NLP models is the use of additionnal embeddings to feed the
model with tridimensional information in a way inspired by
[17] and illustrated by figure 1. Indeed, besides the classic
token embedding and positional embedding described in the
original transformer article [64], we incorporate two additional
embedding modules followed by dense layers.

[START, A,G,G, MASK ,K, MASK ... , Q, PAD, … PAD, END]     +    positional data 

tokenizer

[START, A,G,G, E ,K, S, ... , Q,  PAD,...,PAD, END]

BERT encoder 
5 x (self-attention+feed 

forward)

token 
embedding

sequence 
position 

embedding

3D position 
embedding

rotation 
embedding

MLP

MLP

Loss

(A,G,G,E, K, S, …. , Q) (1,2,3,4, 5, 6, …. , N) ( [3 x float], [3 x float], …,  [3 x float]) ( [6 x float], [6 x float], …,  [6 x float])

raw
 sequence

raw
sequence
position

3D position
of

residues

rotation parameters
of 

residues

+

Dataset

Neural Network

From raw protein sequence Processed from Biological PDB structural data

Fig. 1: Model architecture. The architecture of PeTriBERT
is based on the standard BERT with additional embedding
modules: 3D position embedding and rotation embedding
whose role is to capture structural elements, as provided
by AlphaFold for the training data. The models is trained
to predict the amino-acid sequence, in a classical masked
language modeling setup.

A. Tokenization of the primary sequence
Every protein is first tokenized and then truncated or padded

to a fixed length M . The resulting sequences include additional
start, end and padding tokens, that are appended to form a new
sequence u = ⟨u1, u2, ..., uM ⟩ defined by:

u1 = [START]
un = tn−1 if (2 ≤ n ≤ N + 1)

un = [PAD] if (N + 2 ≤ n ≤ M − 1)

uM = [END].

The obtained sequences u are used as training labels
while training input sequences are obtained using random
replacement or masking with the a special token [MASK]
following the exact same rule as BERT [16], i.e by randomly
replacing/masking 15 % of the tokens of the sequence1.

In the following we remove the index n denoting the
position of the residue when unnecessary.

1Or more exactly, we randomly select 15% of the tokens of the sequences.
Among the selection, 80% are replaced with the [MASK] token, 10% are
randomly replaced, and 10% are left unchanged.

B. Pre-processing of the protein structure data

Along with the protein primary sequences, a summary of the
protein structure data is used as additional positional inputs by
the model. In AlphafoldDB, the structural data is given as 3D
coordinates for every atom comprising each residue. Before
training, we preprocess this large amount of data to extract
structural information for each residue from each protein in
the data, composed of a single set of parameters per residue:
centroid and rotation, instead of the original information at the
atomic level.

1) We compute the 3D coordinates of each residue as the
mean along the 3 dimensions of every of its atom:

c =
1

size (I)

∑
i∈I

(ci), (1)

where c is the 3D vector of coordinates of the residue,
ci is the 3D vector of the i-th atom of the residue and
I is the subset of atoms contained in the residue.

2) We extract rotation parameters for each residue. These
parameters are obtained from the matrix O made of the
orthogonal and normal eigenvectors of the spatial covari-
ance matrix of each residue atomic data and verifies:

Cov(i∈I)(ci) = OTDO (2)

where D is the diagonal matrix of eigenvalues of
Cov(i∈I)(ci)
To further compress the rotation data, we use a
parametrization of the matrix O by solving:

min
a

∥R(a)−O∥2

s.t a21 + a22 = 1

a23 + a24 = 1

a25 + a26 = 1

 (3)

Where a =
[
a1, a2, a3, a4, a5, a6

]T
is the vector of

parameters of the rotations of the residue and R(a) is a
rotation matrix parametrized over a. The rotation matrix
R(a) is parametrized as a product of 3 rotation matrices,
each being a rotation around a different axis:

R(a)
def
=

1 0 0
0 a1 −a2
0 a2 a1

×

a3 0 −a4
0 1 0
a4 0 a3


×

a5 −a6 0
a6 a5 0
0 0 1


=

 a3a5 −a3a6 −a4
a1a6 − a2a4a5 a1a5 + a2a4a6 −a2a3
a2a6 + a1a4a5 a2a5 − a1a4a6 a1a3

 .

The constraints of the optimization problem force the
parameters a1, a2, a3, a4, a5 and a6 to be homogeneous
to cosine and sine of the angle of each of the rotations.
Also note that the solution of the O matrix derived
from the diagonalization procedure is not unique but any
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direct orthonormal2 solution is considered acceptable in
our model and we think the lack of unicity of the solu-
tion is even beneficial as a form of data augmentation.

C. Embedding Modules

The pre-processed structure data is passed to the embedding
modules along with the classic uni-dimensional position and
tokens. In order to make this article self-contained and help the
reader comprehension, we describe in the following both the
uni-dimensional positional encoding formulation as described
in the original transformer [64] and the generalisation pro-
posed for multi-dimensional positional encoding described by
[17] we use to encode the structure data.

1) Uni-dimensional positional encoding of the absolute
position: Uni-dimensional embedding is performed by using
a fixed fourier Basis functions to encode the positions in a
D-dimensional vector. This is achieved first by computing the
product

M = pw⊤ (4)

where p = [1, 2, ..., N ] is the N × 1 vector of absolute
positions of the sequence and w is the D

2 × 1 vector with

wn =
1

10000n/D
, ∀n ∈

{
1, ...,

D

2

}
, (5)

and then, by taking the cosine and sine of the matrix and
concatenating:

P = concat (cos(M), sin(M)) (6)

where concat designate the concatenation operation along the
second dimension of the matrices. The obtained encoding N×
D matrix P is equivalent to the original formulation in [64].

2) Learnable multi-dimensional positional encoding of the
3D coordinates and rotations: To encode the 3D coordinates
and the rotation parameters obtained in section III-B of every
residues of the sequence we use fourier Basis functions.
For the multi-dimensional case though, we encode a L-
dimensional position matrix Pmult of size N ×L, by defining
a D

2 × L matrix Wmult that is randomly initialized and then
learned during the training of the network. Then, we compute
the product of the matrices like in the uni-dimensional case:

M = PmultW
⊤
mult (7)

and we build a multi-dimensionnal embedding using Eq. (6).
This achieves learnable random fourier features that have been
shown to approximate a kernel on the euclidian distance [17].
In addition, we add a multi-layer perceptron after the encoding
to improve the expressiveness of the encoding.

D. Data Augmentation

Another contribution in this article, is the use of data
augmentation to prevent over-fitting. Two types of data aug-
mentation are performed on the structural data:

2After the diagonalization procedure, if the obtained set of vectors form an
non-direct orthonormal basis, we invert one of the obtained vector.

1) Rigid transformation augmentation: The representation
of the structural data requires to be invariant to rigid transfor-
mation of the proteins coordinates i.e be invariant to rotations
and translation of the complete protein structure. For that
reason and during training, we augment the coordinates on
per protein basis by randomly drawing a translation vector
and a rotation matrix applied globally to the coordinates of
the residues.

2) Non-rigid transformation augmentation: To prevent our
model to capture the inherent modeling errors of the struc-
ture data estimated by AlphaFold results or to simply just
memorize the training data, we add a random Gaussian noise
both on the coordinates and rotation features of the inputs.
The standard deviation of that random augmentation noise
is typically chosen to be of the same order of magnitude
of the smallest distance observed between residues for the
corresponding feature for location parameters, and chosen to
achieve a deviation of about 30 degree for rotation features.

IV. TRAINING

A. Setting

1) Hardware: Training was performed on one computing
node with 2 Intel Cascade Lake 6226 processors (2 x 12 cores
at 2.7 GHz) and 8 GPU Nvidia Tesla V100 SXM2 32Go
during 70 hours for every variant of the model with a batch
size of 128 sequences (sub-batch of 16 sequences per GPU).

2) Dataset: We trained our model using the AlphaFold
Dataset who was made of about 360 000 proteins at the time
of our experiment. We used 80% for training (about 290 000
proteins), 10 % for validation (about 36 500 proteins) and 10 %
for test (about 36 500 proteins). The AlphaFoldDB dataset was
pre-processed according to section III-B. Within the model,
input sequences are truncated or padded to a length of 1024
and tokenized according to section III-A.

3) Model setting and Hyper-parameters: We use a small
BERT configuration of 5 layers, 12 attention heads and query
dimensions of 64. The feedforward part of each transformer
block use a hidden size of 3072. The total amount of trainable
parameter reach no more than 40 millions.

4) Optimization and hyper-parameter search: The training
of the model was performed using the AdamW optimizer [65]
with gradient clipping and using a linear decay scheduling
with linear warmup. We used the following hyper-parameters
for training:

• Maximal learning rate: 1e-3
• Ending learning rate: 1e-7
• Number of warmup batches: 30 000
• Number of batches before ending rate: 250 000
• β1 =0.9, β2 =0.99,
• weight decay = 0.01.

The learning rate, number of warm-up steps and scheduler de-
cay slope were selected using parameter sweeping. Validation
loss and accuracy were logged every 100 batches.
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5) Data augmentation hyper-parameters: Data augmenta-
tion was performed according to section III-D. The applied
rigid translation was drawn to follow an uniform distribution
of 20 angström along the x, y and z axis and the applied rigid
transformation was drawn to to follow an uniform distribution
on the unity circle. The standard deviation of translation noise
was chosen to be of 1 angström magnitude and the rotation
noise to perform a random rotation of 10 degree on average.

B. Comparing positional embedding types

In order to determine the efficiency of incorporating struc-
tural data with multi-dimensional embedding, we tried 9 dif-
ferent variants of our model consisting in keeping or removing
embedding modules. This can be though as an ablation study
as we tried to determine how each modality (position in
sequence, position of residues, rotations of residues) were
impacting the results. In the following, we use the following
naming convention:

• uni in the variant name: variants where the uni-
dimensional positional embedding of the position of the
sequence is used. These variants contains the classic NLP
embedding of the absolute position of residues of the
sequence as described in the original transformer [64].

• tri in the variant name: variants where the tri-dimensional
positional embedding of the coordinates of the residues
(mean of the coordinates of the atoms of residues, see
section III-B) is used.

• rot in the variant name: variants where the 6-dimensional
positional embedding of the rotations of the residues
(eigen vectors cosine and sin angles of the coordinates
of the atoms of residues, see section III-B) is used.

• MLP in the variant name: an small multi-layer percep-
tron is added behind the residues coordinates embedding
module or residues rotation embedding module if present
in the variant.

We tried the 9 following variants: (1) uni, (2) tri + rot +
MLP, (3) tri + rot, (4) tri + MLP, (5) tri, (6) uni + tri +
rot + MLP, (7) uni + tri + rot, (8) uni + tri + MLP, (9)
uni + tri.

Figures 2, 3 and 4 respectively show the train loss, the
validation loss and the validation accuracy observed during
training. Table I provides the loss and accuracy of the test
dataset for the 9 variants.

From the results, it appears that the base BERT model
performs worse than the other variants which highlights the
difficulties of single-sequence model to capture the structural
information from the primary sequence alone. This was ver-
ified both during training (Figures 2, 3) but also at test time
I. Amongst the 8 remaining variants, it appears that residue
rotation fed methods have a clear edge over the methods that
don’t use this type of embedding. At test time, accuracy for
these methods is on average about 0.25 points higher than the
rest of the methods. More surprisingly, methods that include
the classic BERT unidirectional encoder tends to perform
worse than their non-unidirectional counterpart: for instance
the ’uni + tri + rot’ variant showed an accuracy of 0.71

type loss accuracy top-3 accuracy
uni (BERT) 2.35 0.30 0.48
tri + rot + MLP 0.57 0.80 0.95
tri + rot 0.72 0.75 0.93
tri + MLP 1.68 0.47 0.73
tri 1.73 0.45 0.72
uni + tri + rot + MLP 0.75 0.74 0.92
uni + tri + rot 0.87 0.71 0.90
uni + tri + MLP 1.95 0.40 0.65
uni + tri 1.75 0.45 0.71

TABLE I: Comparison between different types of positional
embedding. Loss, accuracy and top3 accuracy on the test
dataset for the 9 variant of the PeTriBERT model. The overall
best variant is ’tri + rot + MLP’ where the model encodes the
protein structures followed by small multilayer perceptrons.

residue precision recall residue precision recall
A 0.49 0.49 M 0.60 0.24
C 0.66 0.40 N 0.43 0.35
D 0.46 0.46 P 0.52 0.75
E 0.41 0.53 Q 0.44 0.25
F 0.55 0.36 R 0.70 0.55
G 0.67 0.67 S 0.36 0.52
H 0.53 0.24 T 0.42 0.28
I 0.44 0.29 V 0.40 0.38
K 0.43 0.53 W 0.73 0.34
L 0.41 0.61 Y 0.63 0.39

TABLE II: Precision and recall per residue of tri + MLP

against 0.75 for the ’tri + rot variant’. Although one may
think there is arguably no good reason for a deep learning
model to perform worse when fed with more information, one
possible explanatory reason relies in the huge informative gap
between the primary sequence data and the structural data:
considering our model is very small compared to modern
architectures featuring only 40M parameters, we believe that
the uni-dimensional embedding are regarded as noise by the
model and therefore worsen the ability of our model to ac-
curately predict missing residues. Finally, the MLP enhanced
embedding variants display some improvement over the non-
MLP enhanced one, highlighting the complexity of encoding
the protein structure and capture the geometrical patterns.

residue precision recall residue precision recall
A 0.95 0.96 M 0.74 0.60
C 0.80 0.70 N 0.69 0.65
D 0.74 0.73 P 0.97 0.98
E 0.71 0.78 Q 0.64 0.50
F 0.73 0.76 R 0.81 0.72
G 0.99 0.99 S 0.85 0.88
H 0.69 0.65 T 0.75 0.72
I 0.79 0.79 V 0.75 0.80
K 0.71 0.81 W 0.90 0.80
L 0.82 0.87 Y 0.71 0.65

TABLE III: Precision and recall per residue of tri + rot +
MLP
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A C D E F G H I K L M N P Q R S T V W Y
A 0.49 0.01 0.02 0.01 0.00 0.07 0.00 0.01 0.01 0.06 0.00 0.01 0.07 0.00 0.00 0.16 0.02 0.06 0.00 0.00
C 0.10 0.40 0.02 0.01 0.01 0.03 0.00 0.02 0.01 0.11 0.00 0.02 0.03 0.00 0.00 0.12 0.02 0.09 0.00 0.00
D 0.03 0.00 0.46 0.14 0.00 0.03 0.01 0.00 0.03 0.03 0.00 0.06 0.05 0.01 0.00 0.12 0.02 0.01 0.00 0.00
E 0.01 0.00 0.08 0.53 0.00 0.01 0.01 0.01 0.08 0.05 0.00 0.03 0.04 0.03 0.02 0.05 0.02 0.02 0.00 0.00
F 0.01 0.00 0.01 0.04 0.36 0.00 0.01 0.04 0.03 0.27 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.04 0.01 0.06
G 0.10 0.00 0.01 0.00 0.00 0.67 0.00 0.00 0.00 0.01 0.00 0.01 0.04 0.00 0.00 0.12 0.01 0.01 0.00 0.00
H 0.02 0.01 0.05 0.10 0.02 0.01 0.24 0.01 0.10 0.09 0.00 0.06 0.04 0.04 0.04 0.08 0.02 0.03 0.00 0.03
I 0.02 0.01 0.01 0.03 0.01 0.01 0.00 0.29 0.03 0.31 0.01 0.02 0.03 0.01 0.00 0.05 0.03 0.13 0.00 0.00
K 0.01 0.00 0.02 0.13 0.01 0.01 0.01 0.01 0.53 0.05 0.00 0.04 0.03 0.03 0.07 0.03 0.02 0.01 0.00 0.00
L 0.02 0.00 0.01 0.04 0.02 0.01 0.00 0.05 0.03 0.61 0.01 0.01 0.03 0.01 0.01 0.05 0.02 0.06 0.00 0.00
M 0.03 0.01 0.02 0.06 0.02 0.01 0.01 0.04 0.04 0.31 0.24 0.02 0.03 0.02 0.01 0.05 0.02 0.06 0.00 0.00
N 0.02 0.00 0.11 0.06 0.00 0.04 0.01 0.01 0.06 0.05 0.00 0.35 0.04 0.02 0.01 0.15 0.04 0.02 0.00 0.00
P 0.03 0.00 0.02 0.01 0.00 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.75 0.00 0.00 0.08 0.01 0.02 0.00 0.00
Q 0.02 0.00 0.04 0.18 0.01 0.01 0.01 0.01 0.14 0.09 0.00 0.04 0.04 0.25 0.04 0.07 0.03 0.02 0.00 0.00
R 0.00 0.00 0.01 0.08 0.01 0.00 0.01 0.01 0.18 0.04 0.00 0.02 0.02 0.02 0.55 0.01 0.01 0.01 0.00 0.01
S 0.10 0.01 0.04 0.02 0.00 0.06 0.00 0.01 0.01 0.04 0.00 0.03 0.06 0.01 0.00 0.52 0.05 0.03 0.00 0.00
T 0.08 0.01 0.04 0.04 0.00 0.03 0.00 0.02 0.03 0.08 0.00 0.03 0.05 0.01 0.00 0.23 0.28 0.07 0.00 0.00
V 0.07 0.01 0.02 0.03 0.01 0.02 0.00 0.06 0.02 0.20 0.01 0.01 0.04 0.01 0.00 0.09 0.04 0.38 0.00 0.00
W 0.00 0.00 0.01 0.05 0.14 0.00 0.01 0.02 0.03 0.16 0.00 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.34 0.10
Y 0.01 0.00 0.02 0.06 0.13 0.00 0.02 0.02 0.06 0.13 0.01 0.02 0.02 0.01 0.05 0.02 0.01 0.02 0.01 0.39

TABLE IV: Confusion matrix of tri + MLP variant for each residue. Rows represent groundtruth and columns represent
predictions. Values are given normalized over rows so that every cell represent the prediction rate knowing the ground-truth
and therefore blue cells gives recall. For instance, when a residue of type C should be given, 10 % of the time a residue of
type A is predicted.
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Fig. 4: valid accuracy across time for all 9 tested variants

V. PROTEIN GENERATION

A. Generative method

PeTriBERT is aimed at solving the inverse folding problem
and as such can be used for protein generation. We achieve this
by using Gibbs sampling, inspired by [18], [19]. The goal is
to generate a novel protein sharing the same protein structure
than a given target. To perform generation, we initialize the
algorithm by retrieving the target protein, its primary sequence
and structure data (known or estimated with Alphafold). Then,
we perform a loop over each residue (denoted n in the
following) of the sequence where:

1) we mask the current amino acid n data in the primary
sequence,

2) we feed the primary sequence and structure data
to PeTriBERT that returns a predictive distribution
p(tn|t1, ...tn−1, tn+1, ...tN , c) given the other amino
acids p(tn|t1, ...tn−1, tn+1, ...tN ) and structure data c.

3) We sample from this distribution and replace ti with the
results in the sequence
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This loop is repeated many times, each one of them being
initialized with the output of the previous one. Also, at the
end of every loop, we store the obtained candidate sequence.

When the generation is over, we send all the generated
sequences to AlphaFold and select the one achieving the top
lDDT score [66].

B. In silico generation of avGFP protein variants

To assess our method, we tested it using the green fluores-
cent protein from Aequorea victoria (avGFP) [20] as target
structure, as it is likely one of the best studied protein so far
with a very recognizable barrel structure . We performed 2
different experiments using Gibbs sampling:

• Generation of 200 hundred proteins using avGFP se-
quences as target structure exactly as described in section
V-A.

• Generation of 200 hundred proteins using avGFP se-
quences where the amino acid of position 65, 66 and
67 are forced to have the original sequence residues,
respectively S (Serine), Y (Tyrosine) and G (Glycine).
This was enforced as these residues are known to be
essential to the fluorescence properties of the protein.

When the algorithm terminates is over, the 400 generated
protein sequences are processed through AlphaFold, and we
compute the lDDT score between each candidate against the
avGFP protein of reference.

Despite using a very simple Gibbs sampling scheme, the
algorithm often outputs sequence featuring qualitatively simi-
lar protein structure apart for a few iteration where the folding
process seems incomplete as only chunks of the structure folds
accordingly to the query as depicted on figure. 5.

However, if we keep the five best scoring proteins of each
group, we obtain proteins displaying a score ranging from 0.70
to 0.79 and a similarity in sequence of about 20% for each
as shown in Table V. When blasted on the whole proteome 9
of 10 synthetic GFP returns no homologues. This shows that
PetriBert is able to design purely synthetic proteins with a
given 3D structure as validated by IDDT score. Biosynthesis
of these synthetic GFP variants is a work in progress. Figure
6 gives a comparison between the best scoring protein and the
target.

VI. DISCUSSION

In this article, we proposed PeTriBERT, a simple trans-
former architecture that aims to solve the inverse folding
protein problem and used it as basis to perform de novo
protein generation from a structure constraint. To achieve
this, PeTriBERT replaces the usual positional encoding of
the BERT model by a multi-dimensional spatial encoding of
the protein structure and benefits from the recent advances
in protein folding. We found out that PeTriBERT is able to
generate good quality novel protein despite being considerably
smaller than modern neural networks, using only 40 M param-
eters, highlighting the capacity of out-of-the-box architecture
to distillate the byproducts of protein folding.

generated sequence lDDT score homology rate
gen0 0.74 50 (21%)
gen1 0.70 44 (18%)
gen4 0.77 43 (18%)
gen55 0.72 43 (18%)
gen90 0.75 46 (19%)
genSYG69 0.76 42 (17%)
genSYG117 0.79 45 (18%)
genSYG126 0.75 44 (18%)
genSYG141 0.72 49 (20%)
genSYG174 0.76 44 (18%)

TABLE V: lDDT Score and rate of similary of generated
proteins against avGFP gen0, gen1, gen4, gen55 and gen90
are respectively the protein generated at iteration 0, 1, 4, 55
and 90 of the first generation group. genSYG69, genSYG117,
genSYG126, genSYG141 and genSYG174 are respectively the
protein generated at iteration 69, 117, 126, 141 and 174 of the
second group, where the 3 residues at position 65, 66, and 67
are enforced to be S, Y and G.

Recently, a similar work taking benefits from the structural
output of AlphaFold 2 has been published [63]. Compared
to our work, this model is auto-regressive (our is an auto-
encoder), is based on a complex adhoc architecture [6], uses
more parameters (142 M for the largest version against 40 for
our) and learned on much more Data (12M proteins agains
around 350 000 for our).

At the opposite, our model is more simple, relates to the
well-know NLP framework and easy to implement as it relies
on a simple trick that consists in i) using a tridimensional
positionnal encoding of a transformer encoder ii) data aug-
mentation to train the network to be rotation and translation
invariant. As such, we hope our model can give some insights
on a pratical way to incorporate the structural data of recent
forlding technics to transformers-based network.

Nevertheless, it appears that such models could highly
benefit from using more parameters and larger datasets, which
will be feasible as the part of the proteome that provide
structure data will very likely grow over the few next years.
Together with ongoing experimental validations, we are now
implementing such PetriBert extentions for following transfer
learning studies.
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[7] V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Berenberg,
T. Vatanen, C. Chandler, B. C. Taylor, I. M. Fisk, H. Vlamakis et al.,
“Structure-based protein function prediction using graph convolutional
networks,” Nature communications, vol. 12, no. 1, pp. 1–14, 2021.

[8] F. Baldassarre, D. Menéndez Hurtado, A. Elofsson, and H. Azizpour,
“Graphqa: protein model quality assessment using graph convolutional
networks,” Bioinformatics, vol. 37, no. 3, pp. 360–366, 2021.

[9] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo,
M. Ott, C. L. Zitnick, J. Ma, and R. Fergus, “Biological structure
and function emerge from scaling unsupervised learning to 250
million protein sequences,” Proceedings of the National Academy
of Sciences, vol. 118, no. 15, Apr. 2021, publisher: National
Academy of Sciences Section: Biological Sciences. [Online]. Available:
https://www.pnas.org/content/118/15/e2016239118

[10] R. Rao, J. Meier, T. Sercu, S. Ovchinnikov, and A. Rives, “Transformer
protein language models are unsupervised structure learners,” p. 24.

[11] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rihawi, Y. Wang, L. Jones,
T. Gibbs, T. Feher, C. Angerer, M. Steinegger, D. Bhowmik, and B. Rost,
“ProtTrans: Towards Cracking the Language of Life’s Code Through
Self-Supervised Deep Learning and High Performance Computing,”
arXiv:2007.06225 [cs, stat], May 2021, arXiv: 2007.06225. [Online].
Available: http://arxiv.org/abs/2007.06225

[12] A. Nambiar, S. Liu, M. Hopkins, M. Heflin, S. Maslov, and
A. Ritz, “Transforming the Language of Life: Transformer
Neural Networks for Protein Prediction Tasks,” bioRxiv,
p. 2020.06.15.153643, Jun. 2020, publisher: Cold Spring
Harbor Laboratory Section: New Results. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2020.06.15.153643v1

[13] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, A. Bridgland,
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