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Abstract12

The present work considers the model of two chemostats in series when a13

biomass mortality is considered in each vessel. We study the performance14

of the serial configuration for two different criteria which are the output15

substrate concentration and the biogas flow rate production, at steady16

state. A comparison is made with a single chemostat with the same total17

volume. Our techniques apply for a large class of growth functions and18

allow us to retrieve known results obtained when the mortality is not19

included in the model and the results obtained for specific growth func-20

tions in both the mathematical literature and the biological literature.21

In particular, we provide a complete characterization of operating condi-22

tions under which the serial configuration is more efficient than the single23

chemostat, i.e. the output substrate concentration of the serial configu-24

ration is smaller than that of the single chemostat or, equivalently, the25

biogas flow rate of the serial configuration is larger than that of the single26

chemostat. The study shows that the maximum biogas flow rate, relative27

to the dilution rate, of the series device is higher than that of the single28

chemostat provided that the volume of the first tank is large enough. This29

non-intuitive property does not occur for the model without mortality.30

Keywords: chemostat, gradostat, mortality, bifurcations, global stability,31

operating diagram, biogas production32
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1 Introduction34

The mathematical model of the chemostat has received a great attention in the35

literature for many years (see for instance [16] and literature cited inside). This36

is probably due to its relative simplicity that can explain and predict quite37

faithfully the dynamics of real bioprocesses exploiting microbial ecosystems. It38

is today an important tool for decision making in industrial world, such as for39

dimensioning bioreactors or designing efficient operating conditions [13, 20].40

Several extensions of the original model of the chemostat, considering spa-41

tial heterogeneity, have been proposed to better cope reality (see for instance42

[19]). Lovitt and Wimpenny has proposed the ”gradostat” experimental device43

as a collection of chemostats of same volume interconnected in series [22, 23],44

which has led to the so-called ”gradostat model” representing in a more gen-45

eral framework a gradient of concentrations [37, 40]. The gradostat model has46

been further generalized as the ”general gradostat model” representing more47

general interconnection graphs with tanks of different volumes [38, 39].48

Efficient use of a chemostat in practice relies on the analysis of its per-49

formance. The performance is considered for different criteria studied in the50

literature [31], among which the most common are: the output substrate51

concentration, the residence time, the biogas flow rate and the biomass pro-52

ductivity. Particular interconnection structures have been investigated and53

compared for the properties in terms of input-output performances (see for54

instance [5, 7, 15, 28]). It has been notably shown that a series of reactors55

instead of a single perfectly mixed one can significantly improve the perfor-56

mances of the bioprocess (in terms of matter conversion) while preserving57

the same residence time, or equivalently that the same performance can be58

obtained with a smaller residence time considering several tanks in series59

instead of a single one [14, 17, 24, 25, 47].60

On another hand, it is known that in real processes, various growth con-61

ditions can be met and that it could be difficult to setup exactly the same62

perfect conditions in different reactors. These conditions include toxicity lev-63

els of culture media, which means more concretely that the consideration of64

a bacterial mortality, although often neglected compared to the removal rate,65

might be non avoidable and could also be variable. To the best of our knowl-66

edge, the possible impacts of mortality in the design of series of chemostats67

has not been yet studied in the literature, which is the purpose of the present68

work. Its contributions also cover interests in theoretical ecology for a better69

grasp of the interplay between spatial heterogeneity and mortality in resource-70

consumers models. Indeed, considering different removal rates in the classical71

chemostat model or more general ones allows to consider additional mortal-72

ity terms [21, 29, 34, 44]. However, these mathematical studies have mainly73
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concern analyses of equilibria and stability and not the performances of the74

system in presence of mortality.75

In view of providing clear messages to the practitioners, we investigate76

how the operating diagram of a series of two interconnected chemostats in77

series is modified when considering different or identical mortality rates in78

both tanks. Operating diagrams have proven to be a good synthetic tool to79

summarize the possible operating modes, emphasized in [26] for its importance80

for bioreactors. Indeed, such diagrams are more and more often constructed81

both in the biological literature [26, 36, 41, 45] and the mathematical literature82

[1, 2, 4, 9–12, 18, 31–33, 35, 42, 43].83

Then, we study the performances in terms of conversion ratio and byprod-84

uct production (such as biogas). As we shall see, several aspects are not85

intuitive, which show that the consideration of mortality can significantly86

modify the favorable operating conditions.87

Along the paper, we use the abbreviations LES for locally exponentially88

stable and GAS for globally asymptotically stable in the positive orthant.89

The paper is organized as follows. Section 2 includes the introduction90

of the mathematical model corresponding to the serial configuration of two91

chemostats with mortality rate. Afterwards, Section 3 focuses on the study of92

performances of the serial configuration with respect of the output substrate93

concentration. Then, Section 4 considers the performances of the serial con-94

figuration with respect of the biogas production. Next, Section 5 is devoted to95

illustrations and numerical simulations and a conclusion is given in Section 6.96

Moreover, we set up the single chemostat with mortality in Appendix A, while97

Appendix B is devoted to the existence and stability analysis of the steady98

states of the serial chemostat and Appendix C to its operating diagram. These99

results are extension of former results, in the case without mortality [7], but100

that have required to revisit significantly the mathematical proofs. Finally,101

Appendix D contains technical proofs.102

2 Presentation of the model103

We consider two serial interconnected chemostats where the total volume V is104

divided into V1 = rV and V2 = (1 − r)V , with r ∈ (0, 1), as shown in Fig. 1.105

The substrate and the biomass concentrations in the tank i are respectively106

denoted Si and xi, i = 1, 2. The input substrate concentration in the first107

chemostat is designated Sin, the flow rate is constant and is designated by Q.108

The output substrate concentration is the concentration of substrate in the109

second tank Sout = S2.110

The mathematical model is given by the following equations:111
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Sin

Q

QQ
Sout = S2

S1
x1

S2
x2

rV (1− r)V

Fig. 1 The serial configuration of two chemostats respectively of volumes rV and (1−r)V .

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −Dr x1 + f(S1)x1 − ax1

Ṡ2 = D
1−r (S1 − S2)− f(S2)x2

ẋ2 = D
1−r (x1 − x2) + f(S2)x2 − ax2,

(1)

where Ṡi = dSi

dt , ẋi = dxi

dt , i = 1, 2, f is the growth function such that f(Si)112

is the growth function of the substrate in the tank i = 1, 2, a is the mortality113

rate of the biomass and D = Q/V is the dilution rate of the whole structure.114

The dilution rate of the first tank is Q/V1 = D/r. The dilution rate of the115

second tank is Q/V2 = D/(1− r).116

Note that these equations are not valid for r = 0 and r = 1, which corre-117

spond to a single chemostat. For sake of completeness, the useful results on118

the single chemostat are given in Appendix A. The considered growth function119

satisfies the following properties.120

Assumption 1 The function f is C1, with f(0) = 0 and f ′(S) > 0 for all S > 0.121

We define
m := sup

S>0
f(S), (m may be +∞). (2)

As f is increasing then the break-even concentration is defined by122

λ(D) := f−1(D) when 0 ≤ D < m. (3)

The particular case without mortality of the biomass (a = 0) is studied in123

[7]. The results on the existence and stability of steady states of system (1) are124

very similar to the case without mortality. The details are given in Appendix125

B. The system can have up to three steady states:126

� The washout steady state E0 = (Sin, 0, Sin, 0).127

� The steady state E1 = (Sin, 0, S2, x2) of washout in the first chemostat but128

not in the second one.129

� The steady state E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2) of persistence of the species in both130

chemostats.131
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As in the case without mortality, see Table C2 in the Appendix, for any132

operating condition (Sin, D), one and only one of the steady-states E0, E1 and133

E2, is stable. It is then globally asymptotically stable (GAS).134

The operating diagram of the system is described in Appendix C. The135

operating diagram has as coordinates the input substrate concentration Sin136

and the dilution rate D, and shows how the solutions of the system behave for137

different values of these two parameters. The regions constituting the oper-138

ating diagram correspond to different qualitative asymptotic behaviors. The139

operating diagram of system (1) is depicted in Fig. 2.140

The aim of this work is to establish a comparison of the performance of141

the serial configuration with ones of the single chemostat. In the following,142

we compare both structures according to two different criteria; the output143

substrate concentration and the biogas flow rate.144

3 Output substrate concentration145

The output substrate concentration measures the biodegradation of the input146

substrate by the overall device. The reduction of the output substrate concen-147

tration is one of the main objectives of the biological wastewater treatment,148

and its minimization is often addressed in the literature, see for example [46].149

We assume that the serial configuration is functioning at a stable steady state.150

The output substrate concentration at steady state depends on the parameters151

D, Sin and r, and will be denoted Soutr (Sin, D).152

Proposition 1 Assume that Assumption 1 is satisfied. The output substrate con-153

centration at steady state of system (1) is given by154

Soutr (Sin, D) =


Sin if Sin ≤ min

(
λ
(
D

1−r + a
)
, λ
(
D
r + a

))
S2 if λ

(
D

1−r + a
)
≤ Sin ≤ λ

(
D
r + a

)
S∗2 if Sin > λ

(
D
r + a

) (4)

where S2 = λ
(
D

1−r + a
)

and S∗2 is the unique solution of equation h(S2) = f(S2).155

In this equation, the function h is defined by:156

h(S2) =
D+(1−r)a

1−r
S∗1−S2

b−S2
, (5)

where S∗1 = λ
(
D
r + a

)
and b =

D(Sin−S∗1 )
D+ra + S∗1 .157

Proof The output substrate concentration at steady state of system (1) is equal to158

Sin, if E0 is the GAS steady state. It is equal to S2 if E1 is the GAS steady state159

and to S∗2 if E2 is GAS. According to Theorem 3 in the Appendix, E0 is GAS if and160

only if161

D ≥ max(r, 1− r)(f(Sin)− a),
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which is equivalent to162

Sin ≤ min
(
λ
(
D

1−r + a
)
, λ
(
D
r + a

))
.

On the other hand, using Theorem 3, S2 depends on D and r and we have163

S2 = λ
(
D

1−r + a
)

. E1 is GAS if and only if164

r(f(Sin)− a) ≤ D ≤ (1− r)(f(Sin)− a),

which is equivalent to165

λ
(
D

1−r + a
)
≤ Sin ≤ λ

(
D
r + a

)
.

Finally, using Theorem 3, we know that S∗2 depends on parameters Sin, D, r. It166

is the unique solution of equation h(S2) = f(S2), where h is defined by (5). On the167

other hand E2 is GAS if and only if the condition D < r(f(Sin) − a) is satisfied,168

which is equivalent to the condition Sin > λ
(
D
r + a

)
. �169

Although Soutr (Sin, D) is defined only for 0 < r < 1, we can extend it, by170

continuity, for r = 0 and r = 1 by171

Sout0 (Sin, D) = Sout1 (Sin, D) = Sout(Sin, D). (6)

where Sout(Sin, D), which is the output substrate concentration of the single172

chemostat, is given by173

Sout(Sin, D) =

{
Sin if Sin ≤ λ(D + a),
λ (D + a) if Sin > λ(D + a).

(7)

For more information on Sout(Sin, D), see Appendix A.174

The proof of (6), comes from the following remarks. First, we have175

S2(D, 0) = λ(D + a) and second, according to Lemma 9 in the Appendix, we176

can extend S∗2 (Sin, D, r), by continuity, to r = 1, by177

S∗2 (Sin, D, 1) = λ(D + a).

Our aim in this section is to compare Soutr defined by (4) and (6) and Sout178

defined by (7).179

3.1 The serial configuration can be more efficient than180

the single chemostat181

We fix r and we describe the set of operating conditions (Sin, D) for which182

Soutr (Sin, D) < Sout(Sin, D), (8)

that is to say, the serial configuration with volumes rV and (1− r)V , is more183

efficient than the single chemostat of volume V . For r ∈ (0, 1), let gr : [0, r(m−184

a)) 7→ R defined by185

gr(D) := λ
(
D
r + a

)
+ r(D+ar)

(1−r)(D+a)

(
λ
(
D
r + a

)
− λ(D + a)

)
. (9)
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Lemma 1 For r ∈ (0, 1) we have gr(D) > λ
(
D
r + a

)
.186

Proof As 0 < r < 1 and λ is an increasing function then, we have λ(D/r + a) >187

λ(D + a). Using (9), we have gr(D) > λ(D/r + a). �188

Sin

D

0 λ(a)

I0(r)

I1(r)

I2(r)

Γr

Φr

Φ1−r

(a) 0 < r < 1/2

Sin

D

0 λ(a)

I0(r)

I3(r)

I2(r)

Γr

Φr

Φ1−r

(b) 1/2 < r < 1

Fig. 2 The operating diagram of of system (1) and the curve Γr defined by (14) under
which the serial configuration is more efficient than the single chemostat.

Theorem 1 Assume that Assumption 1 is satisfied. For any r ∈ (0, 1), we have189

Soutr (Sin, D) = Sout(Sin, D)⇐⇒ Sin = gr(D).

Moreover,190

Soutr (Sin, D) < Sout(Sin, D)⇐⇒ Sin > gr(D).

Proof Recall that S∗2 (Sin, D, r) is the unique solution of equation f(S2) = h(S2)191

with h defined by (5). Let us first prove that192

S∗2 (Sin, D, r) < λ(D + a)⇐⇒ Sin > gr(D). (10)

Since f is increasing, see Assumption 1, and h is decreasing, see Lemma 8 in the193

Appendix, then the condition S∗2 (Sin, D, r) < λ(D+a) is equivalent to the condition194

h(λ(D+a)) < f(λ(D+a)) = D+a. Using (5), a straightforward computation shows195

that the condition h(λ(D + a)) < D + a is equivalent to Sin > gr(D), where gr is196

defined by (9). This proves (10).197

Let us go now to the proof of the theorem. Assume that Sin > gr(D). Using Lemma198

1, we have199

Sin > λ(D/r + a) > λ(D + a).

Using (4) and (7), we have200
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Soutr (Sin, D) = S∗2 (Sin, D, r),

Sout(Sin, D) = λ(D + a).
(11)

From (10), we have Soutr (Sin, D) < Sout(Sin, D). Hence, we proved the following201

implication202

Sin > gr(D) =⇒ Soutr (Sin, D) < Sout(Sin, D). (12)

Assume now that Sin ≤ gr(D). When r < 1/2, three cases must be distinguished.203

First, if204

λ(D + a) < λ
(
D
r + a

)
< Sin ≤ gr(D),

then, by (4) and (7), we obtain (11). Hence, using (10), we have Soutr (Sin, D) ≥205

Sout(Sin, D). Secondly, if206

λ(D + a) < λ
(
D

1−r + a
)
≤ Sin ≤ λ

(
D
r + a

)
,

then, by (4) and (7), we have207

Soutr (Sin, D) = λ
(
D

1−r + a
)
,

Sout(Sin, D) = λ(D + a).

Therefore, we have Soutr (Sin, D) > Sout(Sin, D). Finally, if Sin ≤ λ(D + a), then208

Soutr (Sin, D) = Sout(Sin, D) = Sin.

When r ≥ 1/2, the proof is similar, excepted that we must distinguish only two209

cases, λ(D + a) < Sin ≤ λ(D/r + a) and Sin ≤ λ(D + a). Hence, we have proved210

the reciprocal implication of (12). This completes the proof of second equivalence in211

the theorem.212

The same calculations show the equivalence if inequalities are replaced by equal-213

ities. �214

Theorem 1 asserts that the serial configuration is more efficient than the215

single chemostat if and only if Sin > gr(D). Let us illustrate this result in the216

operating diagram of system (1). Consider the curve of equation217

Φr =
{

(Sin, D) : Sin = λ(D/r + a)
}
. (13)

According to the results given in Appendix C, the curves Φr and Φ1−r218

defined by (13) separate the operating plane (Sin, D) in four regions in which219

the system has different asymptotic behaviour, see Table C2. To put it simply,220

in the I0(r) region, E0 is GAS, in I1(r), E1 is GAS, and in I2(r)∩ I3(r), E3 is221

GAS, see Fig. 2. This figure also shows the plot of the curve Γr, defined by222

Γr :=
{

(Sin, D) : Sin = gr(D)
}
. (14)

Using Lemma 1, we see that for all r ∈ (0, 1), the curve Γr is always at right223

of the curve Φr. According to Theorem 1, the output substrate concentration224

of the serial configuration is smaller than the one of the single chemostat, if225

and only if (Sin, D) is at right of the curve Γr depicted in Fig. 2.226
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3.2 The output substrate concentration as a function of227

the volume fraction r228

In this section we assume that (Sin, D) is fixed and we look at the values of r
for which (8) holds. More precisely we are going to describe the function

r 7→ Soutr (Sin, D). (15)

Proposition 2 Assume that Assumption 1 is satisfied. Let D > 0, Sin > λ(a). We229

denote r0 = D/(f(Sin)− a).230

1. If Sin ≤ λ(D + a), then for any r ∈ [0, 1], one has Soutr (Sin, D) =231

Sout(Sin, D) = Sin.232

2. If λ(D + a) < Sin < λ(2D + a), then 1/2 < r0 < 1 and one has

Soutr (Sin, D) =

 S2 if 0 ≤ r ≤ 1− r0

Sin if 1− r0 ≤ r ≤ r0

S∗2 if r0 ≤ r ≤ 1.
(16)

3. If λ(2D + a) ≤ Sin, then 0 < r0 ≤ 1/2 and one has233

Soutr (Sin, D) =

{
S2 if 0 ≤ r ≤ r0

S∗2 if r0 ≤ r ≤ 1.
(17)

Here S2 = λ
(
D

1−r + a
)

and S∗2 = S∗2 (Sin, D, r) is the unique solution of equation234

f(S2) = h(S2), where h is defined by (5).235

Proof If Sin ≤ λ(D + a), then, for all r ∈ (0, 1), one has236

Sin ≤ λ(D + a) ≤ min
{
λ
(
D

1−r + a
)
, λ
(
D
r + a

)}
.

Then, according to (4), one has Soutr (Sin, D) = Sin. This proves item 1 of the237

proposition.238

Let r0 = D/(f(Sin)− a), i.e. Sin = λ(D/r0 + a).239

If λ(D + a) < Sin < λ(2D + a), then r0 ∈ (1/2, 1), so that 1 − r0 < r0. The240

interval [0, 1] is subdivided into three sub-intervals. Firstly, if 0 ≤ r ≤ 1 − r0 < r0,241

then r < r0 ≤ 1− r, so that242

λ
(
D

1−r + a
)
≤ Sin = λ

(
D
r0

+ a
)
< λ

(
D
r + a

)
.

Hence, according to (4), one has243

Soutr (Sin, D) = λ
(
D

1−r + a
)
.

Secondly, if 1− r0 ≤ r ≤ r0, then r0 ≥ max{r, 1− r}, so that244

Sin = λ
(
D
r0

+ a
)
≤ min

{
λ
(
D

1−r + a
)
, λ
(
D
r + a

)}
.
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Hence, according to (4), one has Soutr (Sin, D) = Sin. Finally, if r0 < r ≤ 1, then one245

has246

Sin = λ
(
D
r0

+ a
)
> λ

(
D
r + a

)
.

Hence, according to (4), one has247

Soutr (Sin, D) = S∗2 (Sin, D, r).

This proves item 2 of the proposition.248

If λ(2D+a) ≤ Sin, then r0 ∈ (0, 1/2]. Therefore, r0 ≤ 1−r0. The proof of item 3249

of the proposition is the same as the proof of item 2 excepted that now, the interval250

[0, 1] is subdivided now into two sub-intervals [0, r0] and [r0, 1], so that the interval251

for which Soutr (Sin, D) = Sin is empty. �252

Sin

D

0 λ(a)

J0

J1

J3

J2

J4

Φ1

Φ1/2

Γ

Fig. 3 In each region Ji, i = 0, . . . , 4, the map r 7→ Sout
r (Sin, D) for fixed (Sin, D) has a

different behavior.

We want to determine the values r ∈ (0, 1) for which the condition (8) is253

satisfied. We need the following Assumption that is satisfied by any concave254

growth function but also by non concave growth functions, satisfying additional255

conditions, see Section 3.4.256

Assumption 2 For every D ∈ [0,m−a), the function r ∈ (D/(m−a), 1) 7→ gr(D) ∈257

R is decreasing.258

Let D < m− a. Using gr(D) > λ(D/r + a), we have259

lim
r→D/(m−a)

gr(D) > lim
r→D/(m−a)

λ (D/r + a) = +∞.

On the other hand, using L’Hôpital’s rule, we have260
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lim
r→1

gr(D) = g(D). (18)

where g : [0,m− a)→ R+ is defined by261

g(D) = λ(D + a) +Dλ′(D + a). (19)

Therefore, from Assumption 2, the function r 7→ gr(D) is decreasing from262

(D/(m− a), 1) to (g(D),+∞). Hence, it admits an inverse function263

Sin ∈ (g(D),+∞) 7→ r1(Sin, D) ∈ (D/(m− a), 1).

We use the notation r1(·, D) to recall the dependence of the inverse function264

in D. For all D ∈ (0,m− a), r ∈ (D/(m− a), 1) and Sin > g(D), we have265

r = r1(Sin, D)⇐⇒ Sin = gr(D), (20)

r > r1(Sin, D)⇐⇒ Sin > gr(D). (21)

Theorem 2 Assume that Assumptions 1 and 2 are satisfied. Let g defined by (19).266

� If Sin ≤ g(D) then for any r ∈ (0, 1), we have Soutr (Sin, D) > Sout(Sin, D).267

In addition, for r = 0 and r = 1 we have Soutr (Sin, D) = Sout(Sin, D).268

� If Sin > g(D) then Soutr (Sin, D) < Sout(Sin, D) if and only if r1(Sin, D) <269

r < 1, with r1(Sin, D), defined by (20). In addition, for r = 0, r =270

r1(Sin, D) and r = 1, we have Soutr (Sin, D) = Sout(Sin, D).271

Proof The function r 7→ gr(D) is decreasing and tends to g(D) as r tends to 1, as272

shown by (18). Thus, for all r ∈ (0, 1), we have g(D) < gr(D). If Sin ≤ g(D), then273

Sin < gr(D). According to Theorem 1, for all r ∈ (0, 1), we have Soutr (Sin, D) >274

Sout(Sin, D).275

Let Sin > g(D). Let r1 = r1(Sin, D). According to (21), for all r > r1, we have276

Sin > gr(D). Thus, according to Theorem 1, we have Soutr (Sin, D) < Sout(Sin, D).277

The equality Soutr (Sin, D) = Sout(Sin, D) is verified for the r = 0 and r = 1, see278

(6). In addition, we have Sin = gr1(D), see (20). Hence, according to Theorem 1, we279

have Soutr1 (Sin, D) = Sout(Sin, D). �280

Let us now describe the subsets of the operational space (Sin, D) for which281

the behaviour described in the three cases of Proposition 2 occurs. For a com-282

plete description we will also distinguish the sub-cases for which there exists283

r1 = r1(Sin, D) such that, for r1 < r < 1, (8) is satisfied, as shown in Theorem284

2. Consider the curves Φ1 and Φ1/2, defined by (13), and the curve Γ defined285

by286

Γ := {(Sin, D) : Sin = g(D)}, (22)

These three curves intersect at (λ(a), 0) and, using the inequality g(D) >287

λ(D + a), which is satisfeied for all D > 0, one deduces that Γ is at the right288



Springer Nature 2021 LATEX template

12 Performance study of two serial interconnected chemostats

r

y

y = Sout
r (Sin, D)

0 1−r0 r0

Sin

λ(D + a)

1

(a) (Sin, D) ∈ J1

r

y

y = Sout
r (Sin, D)

0 1−r0 r0 r1

Sin

λ(D + a)

1

(b) (Sin, D) ∈ J2

r

y

y = Sout
r (Sin, D)

0 r0 r1

λ(D + a)

1

(c) (Sin, D) ∈ J3

r

y

y = Sout
r (Sin, D)

0 r0

λ(D + a)

Sin

1

(d) (Sin, D) ∈ J4

Fig. 4 For Sin and D fixed, the output substrate concentration of the serial configuration,
in red, compared to that of the single chemostat, in blue; r1(Sin, D) is defined by (20),
r0 = D/(f(Sin)− a) and J1, J2, J3, J4 are depicted in Fig. 3.

of Φ1. Therefore, the curves Φ1, Φ1/2 and Γ separate the set of operating289

parameters (Sin, D) into the following four subsets, see Fig. 3.290

J0 =
{

(Sin, D) : Sin ≤ λ(D + a)
}
,

J1 =
{

(Sin, D) : λ(D + a) < Sin ≤ min{g(D), λ(2D + a)}
}
,

J2 =
{

(Sin, D) : g(D) < Sin < λ(2D + a)
}
,

J3 =
{

(Sin, D) : max{g(D), λ(2D + a)} ≤ Sin
}
,

J4 =
{

(Sin, D) : λ(2D + a) < Sin < g(D)
}
.

(23)

Combining the results of Proposition 2 and Theorem 2, we find that the291

function r 7→ Soutr (Sin, D) is as in Fig. 4. In the following we will comment on292

this figure.293

� If (Sin, D) ∈ J1, then when Sin < λ(2D + a), Soutr (Sin, D) is given by (16)294

and when Sin = λ(2D + a), Soutr (Sin, D) is given by (17). In addition, for295

all r ∈ (0, 1), Soutr (Sin, D) > Sout(Sin, D). The equality is fulfilled for r = 0296

and r = 1, see Fig. 4(a).297

� If (Sin, D) ∈ J2, then Soutr (Sin, D) is given by (16) and Soutr (Sin, D) <298

Sout(Sin, D) if and only if r ∈ (r1(Sin, D), 1), where r1(Sin, D) is defined299
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by (20). The equality is fulfilled for r = 0, r = r1(Sin, D) and r = 1, see300

Fig. 4(b).301

� If (Sin, D) ∈ J3 then Soutr (Sin, D) is given by (17) and Soutr (Sin, D) <302

Sout(Sin, D) if and only if Sin > g(D) and r ∈ (r1(Sin, D), 1) where303

r = r1(Sin, D) is defined by (20). The equality is fulfilled for r = 0,304

r = r1(Sin, D) and r = 1, see Fig. 4(c).305

� If (Sin, D) ∈ J4 then Soutr (Sin, D) is given by (17) and for all r ∈ (0, 1),306

Soutr (Sin, D) > Sout(Sin, D). The equality is fulfilled for r = 0 and r = 1,307

see Fig. 4(d).308

Note that if (Sin, D) ∈ J0, then case 1 of Proposition 2 occurs. One remarks309

that the lowest value of the red curve, corresponding to the lowest output310

substrate concentration of the serial configuration, is obtained for (Sin, D) ∈311

J2 ∩ J3 and r > r1(Sin, D). This lowest concentration is obtained with the312

best possible serial configuration.313

Figures 2, 3 and 4 are made without graduations on the axes because they314

represent general situations where the growth function is only assumed to315

verify our hypotheses. It should be noticed that regions J0, J1 and J3 always316

exist and are connected. However, regions the J2 and J4 do not always exist or317

are necessarily connected. This depends on the number of points of intersection318

between curves Φ1/2 and Γ. For a linear growth rate, Φ1/2 = Γ and hence,319

regions J2 and J4 do not exist, see Fig. 7(a). For a Monod growth function,320

curves Φ1/2 and Γ intersect only at point (λ(a), 0) and hence, region J3 always321

exist and is connected but region J3 does not exist, see Fig. 8(a). For a Hill322

growth function, curves Φ1/2 and Γ always intersect at (λ(a), 0) and also at a323

unique positive point, Lemma 6. Hence, regions J2 and J4 both exist and are324

connected, see Fig. 9(a,b,c).325

3.3 The output substrate concentration as a function of326

the dilution rate327

In this section we assume that Sin and r are fixed and we look at the values328

of the dilution rate D for which (8) holds, i.e. the serial configuration, is more329

efficient than the single chemostat. More precisely we are going to describe the330

function331

D 7→ Soutr (Sin, D). (24)

We want to determine the subset of values of D for which the condition332

(8) is satisfied. We need the following Assumption that is satisfied by any333

concave growth function, but also by non concave growth functions, satisfying334

additional conditions, see Section 3.4.335

Assumption 3 For every r ∈ (0, 1), the function D ∈ [0, r(m− a)) 7→ gr(D) ∈ R is336

increasing.337
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Using gr(D) > λ(D/r + a), we have

lim
D→r(m−a)

gr(D) > lim
D→r(m−a)

λ(D/r + a) = +∞.

From Assumption 3, the function D 7→ gr(D) is increasing from [0, r(m− a))
to [gr(0) = λ(a),+∞). Hence, its admits an inverse function

Sin ∈ (λ(a),+∞) 7→ Dr(S
in) ∈ [0, r(m− a)).

For all r ∈ (0, 1), Sin ≥ λ(a) and D ∈ [0, r(m− a)), we have

D = Dr(S
in)⇐⇒ Sin = gr(D), (25)

D < Dr(S
in)⇐⇒ Sin > gr(D). (26)

Proposition 3 Assume that Assumptions 1 and 3 are satisfied. We have

Soutr (Sin, D) < Sout(Sin, D)⇐⇒ 0 < D < Dr(S
in),

where Dr(S
in) is defined by (25).338

Proof Let r ∈ (0, 1). According to (26), if D < Dr(S
in), then Sin > gr(D). Conse-339

quently, according to Theorem 1, we have Soutr (Sin, D) < Sout(Sin, D). �340

3.4 How to check Assumptions 2 and 3341

In this section we give sufficient conditions for Assumption 2 and 3 to be342

satisfied. These conditions will be useful for the applications given in Section343

5. For this purpose we consider the function γ defined by344

γ(r,D) = gr(D), (27)

defined on

dom(γ) = {(r,D) : 0 < r < 1, 0 < D/r + a < m},

which consists simply in considering gr(D), given by (9), as a function of both345

variables r and D. If346

∂γ
∂r (r,D) < 0 for all (r,D) ∈ dom(γ),

then Assumption 2 is satisfied. Similarly, if347

∂γ
∂D (r,D) > 0 for all (r,D) ∈ dom(γ),

then Assumption 3 is satisfied. The following Lemmas give sufficient condi-348

tions, for partial derivatives of γ to have their signs as indicated above.349
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Lemma 2 For D ∈ (0,m − a), let lD be defined on dom(lD) = (D/(m − a), 1] by350

lD(r) = λ(D/r + a).351

a) Assume that for D ∈ (0,m− a) and r ∈ dom(lD) we have

lD(1) > lD(r) + (1− r)l′D(r) (28)

then, for all (r,D) ∈ dom(γ), we have ∂γ
∂r (r,D) < 0.352

b) If, for D ∈ (0,m− a), lD is strictly convex on dom(lD), then the condition (28)353

is satisfied.354

c) If f is twice derivable, then lD is twice derivable and the following conditions are355

equivalent356

1. For D ∈ (0,m− a) and r ∈ dom(lD), l′′D(r) > 0.357

2. For S > λ(a), (f(S)− a)f ′′(S) < 2
(
f ′(S)

)2
.358

Proof Notice first that γ(r,D) can be written as follows

γ(r,D) = gr(D) = λ (D + a) +(
1

1−r −
ra
D+a

)(
λ
(
D
r + a

)
− λ(D + a)

)
.

(29)

Using the definition of lD, γ(r,D) is given then by

γ(r,D) = lD(1) +
(

1
1−r −

ra
D+a

)
(lD(r)− lD(1)) .

The partial derivative, with respect to r of γ is given then by359

∂γ
∂r (r,D) =

a(1−2r)
D+a l′D(r)+(

1
(1−r)2 −

a
D+a

) (
lD(r)− lD(1) + (1− r)l′D(r)

)
.

(30)

Notice that 1
(1−r)2 −

a
D+a > 0 for all r ∈ (0, 1). From l′D(r) = −D

r2
λ′
(
D
r + a

)
, it is

deduced that l′D(r) < 0. Therefore, if the condition (28) is satisfied, and, in addition

0 < r ≤ 1/2, then, from (30), it is deduced that ∂γ
∂r (r,D) < 0.

In the case r ∈ (1/2, 1), we use the following expression of γ(r,D) which is deduced
from (29):

γ(r,D) = lD(1) +B(r)
lD(r)−lD(1)

1−r ,

where B(r) =
D+a−ar(1−r)

D+a . Straightforward computation show that

∂γ
∂r (r,D) =
D+ar(2−r)

(D+a)(1−r)2
(
lD(r)− lD(1) + (1− r)C(r)l′D(r)

)
,

(31)

where C(r) =
D+a−ar(1−r)
D+ar(2−r) . We have

C′(r) = a
(D+ar(2−r))2

(
ar2 + 2(a+ 2D)r − 3D − 2a

)
.

Thus C′(r) = 0 for360

r = r∗ :=
1

a

(√
3a2 + 7aD + 4D2 − a− 2D

)
∈ (1/2, 1)
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and (r − r∗)C′(r) > 0 for r ∈ (1/2, 1), r 6= r∗. Hence, from C(1/2) = C(1) = 1, we
have 0 < C(r) < 1 for all r ∈ (1/2, 1). Now, if we assume that (28) is satisfied, for
1/2 < r < 1 we have

lD(1) > lD(r) + (1− r)l′D(r) > lD(r) + (1− r)C(r)l′D(r).

Hence, from (31), it is deduced that ∂γ
∂r (r,D) < 0. This proves part a of the lemma.361

Moreover, if lD is strictly convex on dom(lD) then for all s and r in (D/(m−a), 1],
if s 6= r, then

lD(s) > lD(r) + (s− r)l′D(r).

Taking s = 1 and r ∈ dom(lD) one obtains the condition (28). This proves part b of
the lemma. Assume now that f , and hence lD, are twice derivable. Using

λ′(D) = 1
f ′(λ(D))

, λ′′(D) = − f ′′(λ(D))

(f ′(λ(D)))3
, (32)

we can write

l′′D(r) = 2D
r3
λ′
(
D
r + a

)
+ D2

r4
λ′′
(
D
r + a

)
=

D
(

2(f ′(λ(D
r +a)))2−D

r f
′′(λ(D

r +a))
)

r3(f ′(λ(D
r +a)))3

.

Therefore, the condition 1 in item c in the lemma is equivalent to the following362

condition: For all D ∈ (0,m− a) and r ∈ (D/(m− a), 1], we have363

D
r f
′′
(
λ
(
D
r + a

))
< 2f ′

(
λ
(
D
r + a

))2
. (33)

Using the notation S = λ
(
D
r + a

)
, which is the same as D/r = f(S) − a, the364

condition (33) is equivalent to : For all S > 0, (f(S)− a)f ′′(S) < 2
(
f ′(S)

)2
, which365

is the condition 2 in c in the lemma. �366

Lemma 3 Assume that367

f ′
(
λ
(
D
r + a

))
≤ 1

r f
′ (λ (D + a)) . (34)

Then, ∂γ
∂D (r,D) > 0. Hence Assumption 3 is satisfied. If f ′ is decreasing, then the368

condition (34) is satisfied.369

Proof From (29) we deduce that370

∂γ
∂D (r,D) = λ′(D + a) + ra

(D+a)2

(
λ
(
D
r + a

)
− λ(D + a)

)
+
(

1
1−r −

ra
D+a

)(
1
rλ
′
(
D
r + a

)
− λ′(D + a)

)
.

Notice that 1
1−r −

ra
D+a > 0, λ′(D + a) > 0 and λ

(
D
r + a

)
> λ(D + a). Therefore371

the condition372

1
rλ
′
(
D
r + a

)
− λ′(D + a) ≥ 0

is sufficient to have ∂γ
∂D (r,D) > 0. Using (32), this condition is equivalent to (34).373

Note that if f ′ is decreasing, then this condition is satisfied. Indeed, we have374

f ′
(
λ
(
D
r + a

))
≤ f ′ (λ (D + a)) ≤ 1

r f
′ (λ (D + a)) ,

which is the condition (34). �375
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Remark 1 Notice that:376

i) The condition 2 in part c of Lemma 2 is equivalent to the condition377

For all S > λ(a), d
2

dS2

(
1

f(S)−a

)
> 0. (35)

Therefore, if f satisfies the condition (35), then it verifies Assumption 2.378

ii) If the increasing growth function f is twice derivable and satisfies f ′′(S) ≤ 0 for379

all S > 0, then the condition b in Lemma 2 and the condition (34) in Lemma 3380

are satisfied. Thus, Assumptions 2 and 3 are satisfied and our results apply for any381

concave growth function.382

iii) Assume that the increasing growth function f is twice derivable and there exists383

Ŝ ∈ (0,+∞) such that f ′′ is nonnegative on (0, Ŝ) and nonpositive on (Ŝ,+∞).384

If moreover the condition 2 in part c of Lemma 2 is verified for a = 0, then this385

condition is also verified for any a > 0 and S ∈ (λ(a), Ŝ). Therefore, if (1/f)′′ > 0386

on (0, Ŝ) then Assumption 2 is satisfied.387

We will see in Section 5, how to use Remark 1 and Lemmas 2 and 3 to show388

that a linear growth function, a Monod function and a Hill function satisfy389

Assumptions 2 and 3.390

4 Biogas flow rate391

Microbial activity often produces by-products such as biogas, which can be392

a valuable source of energy in certain contexts. For instance, the anaerobic393

digestion of organic matter by microbial species produces methane and carbon394

dioxide. Valorizing biogas production while treating wastewater has received395

recently great attention, as a way of producing valuable energy and limiting396

the carbon footprint of the process [30].397

We recall that the biogas flow rate is proportional to the microbial activity,398

as defined for instance in [3, 27]. We consider here the biogas flow rate as a399

function of the input substrate concentration Sin, the dilution rate D and the400

parameter r.401

For r(f(Sin) − a) ≤ D < (1 − r)(f(Sin) − a), the biogas flow rate402

corresponding to the steady state E1 is given by the expression403

G1(Sin, D, r) = V2x2f(S2), (36)

with V2 = (1− r)V , x2 and S2 defined in (B15).404

For D < r(f(Sin)− a), the biogas flow rate corresponding to the positive405

steady state E2 is given by the expression406

G2(Sin, D, r) = V1x
∗
1f(S∗1 ) + V2x

∗
2f(S∗2 ), (37)

with V1 = rV , V2 = (1− r)V , x∗1 and S∗1 defined in (B17), x∗2 defined by (B18)407

and S∗2 the unique solution of h(S2) = f(S2).408
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Proposition 4 1. When r(f(Sin)− a) ≤ D and D < (1− r)(f(Sin)− a) then

G1(Sin, D, r) = V D(Sin − S2). (38)

2. When D < r(f(Sin)− a) then

G2(Sin, D, r) = V D(Sin − S∗2 ). (39)

Proof From system (B10), considering equation Ṡ2 = 0, one obtains x2f(S2) =
D(Sin − S2)/(1− r). Thus,

G1(Sin, D, r) = V1
D
r (Sin − S2) = V D(Sin − S2).

From system (B10), considering Ṡ1 = 0 and Ṡ2 = 0 gives respectively x∗1f(S∗1 ) =
D(Sin − S∗1 )/r and x∗2f(S∗2 ) = D(S∗1 − S∗2 )/(1− r). Thus, one has

G2(Sin, D, r) = V1
D
r (Sin − S∗1 ) + V2

D
1−r (S∗1 − S∗2 )

= V D(Sin − S∗2 ).

This ends the proof of the proposition. �409

Although G1(Sin, D, r) and G2(Sin, D, r), given by (36) and (37), respec-410

tively, are not defined for r = 0 or r = 1, the formulas (38) and (39) allow them411

to be extended to r = 0 and r = 1, as was done for Soutr in (6). We can write412

G1(Sin, D, 0) = G2(Sin, D, 1) = Gchem(Sin, D),

where
Gchem(Sin, D) = V D(Sin − λ(D + a), (40)

represents the biogas flow rate of the single chemostat when 0 < D < f(Sin)−413

a. For more information on Gchem(Sin, D), see (A7) in Appendix A.414

D

Biogas

0
Dr(Sin)

(a) 0 < r < 1/2

D

Biogas

0
Dr(Sin)

(b) r = 1/2

D

Biogas

0
Dr(Sin)

(c) 1/2 < r < 1

Fig. 5 For r and Sin fixed, the curves of the maps D 7→ G1(Sin, D, r), in green, D 7→
G2(Sin, D, r), in orange, and D 7→ Gchem(Sin, D), in black, where G1, G2 and Gchem are
given by (38), (39) and (40) respectively.
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r

y

y = G(r)

G(1)

(a)

r

y

y = G(r)

(b)

G(1)

r

y

y = G(r)

(c)

G(1)

Fig. 6 The map r 7→ G(r) with G defined by (42). (a) f(S) = 4S, a = 0.6 and Sin = 1.5.
(b) f(S) = 4S/(5 + S), a = 0.3 and Sin = 1.5. (c) f(S) = 4S2/(25 + S2), a = 0.3 and
Sin = 10.

4.1 The serial configuration can be more efficient than415

the single chemostat416

In this section, we prove that the biogas flow rate G1 corresponding to the417

steady state E1 is always smaller than the biogas flow rate of the single chemo-418

stat. However, the biogas flow rate G2 corresponding to the steady state E2419

can be larger than the biogas flow rate of the single chemostat. More precisely,420

we have the following result.421

Proposition 5 Assume that Assumption 1 is satisfied. Let r ∈ (0, 1), 0 ≤ D <422

f(Sin)− a and Gchem defined by (40).423

1. If r(f(Sin) − a) ≤ D and D < (1 − r)(f(Sin) − a), then G1(Sin, D, r) <424

Gchem(Sin, D), where G1 is given by (38).425

2. If D < r(f(Sin)− a), then

G2(Sin, D, r) > Gchem(Sin, D)⇐⇒ Sin > gr(D),

where G2 is given by (39) and gr is defined by (9).426

� If, in addition, Assumption 2 is satisfied, and Sin > g(D), then427

G2(Sin, D, r) > Gchem(Sin, D), if and only if r > r1(Sin, D), where428

r1(Sin, D) is defined by (20).429

� If, in addition, Assumption 3 is satisfied, then G2(Sin, D, r) >430

Gchem(Sin, D), if and only if D < Dr(S
in), where Dr(S

in) is defined by431

(25).432

Proof 1. Since D/(1− r) > D and λ is increasing, we have λ(D/(1− r) +a) >433

λ(D+a). Then, using the formula for G1 given in Proposition 4, this induces434

the inequality G1(Sin, D, r) < Gchem(Sin, D).435
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2. According to Theorem 1, for any r ∈ (0, 1) and D < r(f(Sin) − a) one436

has S∗2 (Sin, D, r) < λ(D + a) if and only if Sin > gr(D). Consequently,437

using the formula for G2 given in Proposition 4, one has G2(Sin, D, r) >438

Gchem(Sin, D) if and only if Sin > gr(D). If Assumption 2 is satisfied,439

then, using (21), we see that G2(Sin, D, r) > Gchem(Sin, D) if and only if440

r > r1(Sin, D). If Assumption 3 is satisfied, then, using (26), we see that441

G2(Sin, D, r) > Gchem(Sin, D) if and only if D < Dr(S
in).442

This ends the proof of the proposition. �443

Let Sin and D be fixed. The graphs of the biogas flow rates functions444

r 7→ G1(Sin, D, r), and r 7→ G2(Sin, D, r),

are easily obtained from the graph of the output substrate concentration, r 7→445

Soutr (Sin, D), see Fig. 4. Indeed, the formulas given in Proposition 4 show that,446

whenever these functions are defined, we have447

G1(Sin, D, r) = V D
(
Sin − Soutr (Sin, D)

)
,

G2(Sin, D, r) = V D
(
Sin − Soutr (Sin, D)

)
.

We will see in Section 5, some illustrative plots of the biogas flow rates G1448

and G2 as functions of the parameter r ∈ [0, 1], for linear growth, see Fig. 7,449

Monod growth, see Fig. 8 and Hill growth, see Fig. 9.450

Let us illustrate the result of Proposition 5 by plotting the graphs of the451

biogas flow rates452

D 7→ G1(Sin, D, r) and D 7→ G2(Sin, D, r),

when r and Sin are fixed, see Fig. 5. This figure is made without graduations on453

the axes because its represents a general situation where the growth function is454

only assumed to verify our hypotheses. Indeed the behaviors of the functions,455

depicted in this figure, follow from our results and are not simply numerical456

illustrations.457

Notice that for any r ∈ (0, 1), the graph of G1 (plotted in green in the458

figure) is always below the graph Gchem (plotted in black). This illustrates459

item 1 of Proposition 5. Assuming that Assumption 3 is satisfied, then for all460

0 < D < Dr(S
in), the graph of G2 (plotted in orange) is above the graph of461

Gchem (plotted in black). This illustrates item 2 of Proposition 5.462

4.2 The maximal biogas of the serial configuration can463

exceed that of the single chemostat464

In Figure 5(c) the plot shows that the maximum of G2 (the red curve) is larger
than the maximum of Gchem, as we want to emphasize that the following
inequality is possible

max
D

G2(Sin, D, r) > max
D

Gchem(Sin, D). (41)
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Indeed we will show that there is a value r∗ ∈ (0, 1) such that this inequality
is true for all r ∈ (r∗, 1). The threshold r∗ obviously depends on Sin and the
rate of mortality a. It will be noted r∗(Sin, a) when we want to highlight this
dependence. This phenomenon never occurs in the case of no mortality, since
we have r∗(Sin, 0) = 1. Indeed, in the case without mortality, we proved, see
Proposition 6 of [7], that for all Sin > 0, and all r ∈ (0, 1) we have

max
D

G2(Sin, D, r) < max
D

Gchem(Sin, D),

that is to say, the maximal biogas flow rate of the serial configuration never465

exceed the maximal biogas flow rate of the single chemostat.466

Let us prove that, when a > 0, the inequality (41) is always true for r467

sufficiently close to 1. Observe that for any fixed Sin > λ(a) and r ∈ (0, 1],468

the continuous function D 7→ G2(Sin, D, r) is defined on the closed interval469 [
0, r

(
f(Sin)− a

)]
. It is null at the extremities of this interval and positive on470

the open interval
(
0, r

(
f(Sin)− a

))
. Therefore, it reaches it maximum. For a471

given Sin > λ(a), we then consider the function472

G(r) := max
D∈[0,r(f(Sin)−a)]

G2(Sin, D, r). (42)

We want to ensure that this maximum is reached at a single value, denoted473

D(r). Note that D(1) represents the value, which we will assume to be unique,474

at which the function D 7→ Gchem(Sin, D) reaches its maximum. We need the475

following assumption.476

Assumption 4 The function f is C2 and increasing and, for Sin > λ(a), there477

exists D(1) ∈ (0, f(Sin)− a) such that D 7→ Gchem(Sin, D) is478

� strictly concave at D(1),479

� increasing on (0, D(1)),480

� decreasing on (D(1), f(Sin)− a),481

These conditions are related to the single chemostat model. They are ver-482

ified for linear, Monod, or Hill growth functions, see Remark 3 in Appendix483

A.484

If Assumption 4 is satisfied, then the maximum of the function D 7→485

Gchem(Sin, D) is unique. The following lemma shows that the function D 7→486

G2(Sin, D, r) satisfies the same property for r sufficiently close to 1.487

Lemma 4 Assume that Assumption 4 is satisfied, then for any Sin > λ(a), there488

exists a neighborhood V1 of 1, such that for any r ∈ V1 ∩ {r ≤ 1}, the maximum of489

the function D 7→ G2(Sin, D, r) is unique. We denote it by D(r). Moreover, D is490

differentiable on V1 ∩ {r < 1} with bounded derivative.491
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Proof The proof is given in in Appendix D.2. �492

Proposition 6 Under Assumption 4, the function G admits left limits of its first
and second derivatives at r = 1, which are

G
′
(1−) = 0, G

′′
(1−) =

2aD(1)

D(1) + a

(
Sin − λ(D(1) + a)

)
. (43)

Proof The proof is given in Appendix D.3. �493

Proposition 7 Under Assumption 4, there exists r∗ in (0, 1) such that (41) is true
for any r ∈ (r∗, 1) and

max
D

G2(Sin, D, r∗) = max
D

Gchem(Sin, D).

Proof From Proposition 6, there exist ε > 0 such that for all r ∈ (1− ε, 1), we have
G(r) > G(1). Therefore, the subset I of (0, 1) defined by

I = {ρ ∈ (0, 1) : ∀r ∈ (ρ, 1), G(r) > G(1)},

is non empty. Let r∗ be the lower bound of I. We have G(r∗) = G(1) and G(r) > G(1)494

for r ∈ (r∗, 1). Using (42), we deduce that the equality in the proposition is true and495

(41) is true for any r ∈ (r∗, 1). �496

The function r 7→ G(r) reaches its maximum at some rmax ∈ (r∗, 1). Let
Dmax = D(rmax) be the maximum of the function D 7→ G2(Sin, D, rmax).
Therefore the maximal biogas flow rate of the serial chemostat is given by
G2(Sin, Dmax, rmax). It satisfies

G2(Sin, Dmax, rmax) > Gchem
(
Sin, D(1)

)
.

We have plotted the function r 7→ G(r) for the linear, Monod, and Hill497

growth functions considered in Fig. 6. It is seen in this figure that the tangent498

at r = 1 is horizontal which corresponds to G
′
(1) = 0. In addition, one remarks499

that G(r) > G(1) for r in some interval (r∗, 1) and G(r∗) = G(1). Thus,500

with presence of mortality rate, if practitioners are able to choose the dilution501

rate D, the good strategy consists in working with a serial configuration and502

choose r in the interval (r∗, 1). The serial configuration should be operated at503

D = D(r), where D(r) is defined in Lemma 4.504

Remark 2 � If one is interested in increasing the flow of biogas, the best choice505

is r = rmax, D = Dmax.506

� If one is interested in reducing the dilution rate, the best choice is r = r∗507

and D = D∗, where D∗ = D(r∗).508
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Indeed, for the choice r = r∗ and D = D∗, we have

G2(Sin, D∗, r∗) = Gchem
(
Sin, D(1)

)
,

but D∗ is expected to be significantly smaller than D(1), the dilution rate that509

maximises biogas for the simple chemostat. In fact, reducing D means that the510

flow rate Q has been reduced, and therefore energy has been saved to obtain511

the same result as with a simple chemostat512

This result has an important message for practitioners: the serial config-513

uration is worth considering when mortality is not negligible. To the best of514

our knowledge, this result is new in the literature. On the other hand, it is not515

intuitive. For more information on this issue, see Section 5.4. For biological516

comments on the heuristic underlying this non-intuitive behaviour, the reader517

is refered to [6].518

5 Illustrations and numerical simulations519

This section illustrates of results using three different growth functions. As con-520

cave functions, we choose the linear growth function and the Monod function.521

As a non concave function, we choose the Hill function.522

Sin

D

J0 J1

η1

J3

η3

Φ1 Γ=Φ1/2

(a)
r

Biogas

r01−r0

0

21

(b) (Sin, D) = η1

r

Biogas

2

1

r1r0

0

(c) (Sin, D) = η3

Fig. 7 (a) The regions J0, J1 and J3 of the operating plane with f(S) = 4S and a = 0.3.
The biogas flow rates corresponding to points η1 = (0.27, 0.6) ∈ J1 and η3 = (0.5, 0.6) ∈ J3
are depicted in panels (b) and (c) respectively. In these panels, the numbered curves 0O
(in black), and 1O, 2O (in orange) are respectively defined by y = Gchem(Sin, D), y =
G1(Sin, D, r) and y = G2(Sin, D, r); r0(Sin, D) = D/(f(Sin)−a) and r1(Sin, D) is defined
by (20). (b) r0 ≈ 0.77. (c) r0 ≈ 0.35 and r1 = 0.5.

5.1 Linear growth function523

Let consider a linear function f(S) = αS, α > 0. As it is concave, according524

to item ii in Remark 1, the linear function verifies Assumptions 2 and 3.525

Therefore, our results apply for a linear function.526

One has λ(2D+a) = g(D) = (2D+a)/α then, the curves Φ1/2, defined by527

(13), and Γ, defined by (22), are identical. Consequently, the operating plane528
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Sin

D

J0
J1

J3

J2

η3
η1

η2

Φ1

Φ1/2

Γ

(a)
r

Biogas

r01 − r0

0

21

(b) (Sin, D) = η1

r

Biogas

r01 − r0 r1

0

21

(c) (Sin, D) = η2

r

Biogas

2

1

r1r0

0

(d) (Sin, D) = η3

Fig. 8 (a) The regions J0, J1 J2 and J3 in the operating plane with f(S) = 4S/(5+S) and
a = 0.3. The biogas flow rates corresponding to points η1 = (3, 0.7) ∈ J1, η2 = (3.45, 0.7) ∈
J2 and η3 = (5, 0.7) ∈ J3 are depicted in panels (b), (c) and (d) respectively. In these
panels the curves are coloured and numbered as in Fig. 7, r0(Sin, D) = D/(f(Sin)−a), and
r1(Sin, D) is defined by (20) (b) r0 ≈ 0.58. (c) r0 ≈ 0.53 and r1 ≈ 0.87. (d) r0 ≈ 0.41 and
r1 ≈ 0.54.

(Sin, D) is divided in three regions Ji, i = 0, 1, 3 defined in (23) that describe529

the behavior of the output substrate concentration and the biogas flow rate,530

see Figure 7(a).531

Consider the operating points η1 and η3, fixed respectively in regions J1532

and J3, as shown in Figure 7(a). The behavior of the biogas flow rate for533

these operating points is depicted in Figure 7(b,c). It should be noticed that534

for any other point (Sin, D) ∈ J1, the curve representing the biogas flow rate535

with respect to r should be similar to the curve shown in Figure 7(a), and536

corresponding to (Sin, D) = η1. Similarly, for any other point (Sin, D) ∈ J3,537

it should be similar to the curve shown in Figure 7(b), and corresponding to538

(Sin, D) = η3.539

In the linear case, the equation Sin = gr(D) is a second degree algebraic540

equation in r that gives two solutions, one corresponds to r1(Sin, D) defined541

by (20) and the other one is not considered as it does not belong to (0, 1).542

Since the point η3 = (0.5, 0.6) satisfies the condition Sin > g(D), as stated543

in item 2 of Proposition 5, the serial configuration has a higher biogas flow544

rate production than a single chemostat if and only if r ∈ (r1, 1), where545

r1(0.5, 0.6) ≈ 0.5, see Figure 7 (b).546

5.2 Monod function547

The Monod function is f(S) = mS/(K+S). As it is concave, according to item548

ii in Remark 1, the Monod function verifies Assumptions 2 and 3. Therefore,549

our results apply for Monod function.550

Lemma 5 For any D > 0, the curve Γ, defined by (22), is at left of the curve Φ1/2,551

defined by (13).552

Proof The curves Φ1/2 and Γ are respectively defined by equations Sin = λ(2D+a)553

and Sin = g(D). Let the function H : [0, (m− a)/2) 7→ R be defined by554
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H(D) = λ(2D + a)− g(D) = KmD2

(m−D−a)2(m−a−2D)
.

Note that H(0) = 0 and, for any D ∈ (0, (m− a)/2), one has H(D) > 0 i.e. λ(2D +555

a) > g(D).556

Hence, the curve Γ is at left of the curve Φ1/2. �557

As a consequence of Lemma 5, the operating plane (Sin, D) is divided in558

four regions Ji, i = 0, 1, 2, 3 defined in (23) that describe the behavior of the559

output substrate concentration and the biogas flow rate, see Fig. 8(a).560

Consider the operating points η1, η2 and η3, fixed respectively in regions J1,561

J2 and J3, as shown in Fig. 8(a). The behavior of the biogas flow rate for these562

points is depicted in Fig. 8(b,c,d). It should be noticed that for any other point563

(Sin, D) ∈ J1 (resp. (Sin, D) ∈ J2 and (Sin, D) ∈ J3), the curve representing564

the biogas flow rate with respect to r should be similar to the curve shown565

in Fig. 8(b) (resp. 8(c) and 8(d)), and corresponding to (Sin, D) = η1 (resp.566

(Sin, D) = η2 and (Sin, D) = η3).567

In the Monod case, the equation Sin = gr(D) is a second degree algebraic568

equation in r that gives two solutions, one corresponds to r1(Sin, D) defined569

by (20) and the other one is not considered as it does not belong to (0, 1).570

Since the point η2 (resp. η3) satisfies the condition Sin > g(D), as stated571

in item 2 of Proposition 5, the serial configuration has a higher biogas flow572

rate production than a single chemostat if and only if r ∈ (r1, 1), with573

r1(3.45, 0.7) ≈ 0.87 in Fig.8(c) and r1(5, 0.7) ≈ 0.54 in Fig. 8(c).574

5.3 Hill function575

The Hill function is f(S) = mSp/(Kp + Sp). Note that if p = 1 this function576

reduces to the Monod function. For p > 1 it is non-concave. We have577

λ(a) =
(

a
m−a

)1/p

K.

Proposition 8 The Hill function satisfies the conditions (34) and (35). Therefore,578

according to item iii in Remark 1, it verifies Assumption 2 and according to Lemma579

3, it satisfies Assumption 3.580

Proof Let us first prove that the Hill function satisfies the condition (35). Straight-581

forward computation give582

d2

dS2

(
1

f(S)−a

)
= mpKp (p+1)(m−a)S2p−2+(p−1)aKpSp−2

((m−a)Sp−aKp)3
.

Therefore, d2

dS2

(
1

f(S)−a

)
> 0 for all S > λ(a), that is to say, (35) is satisfied. This583

result can also be obtained without laborious calculations by using item iii of Remark584

1. Let Ŝ ∈ (0,+∞) be the inflexion point of the Hill function f . It is sufficient to585

show that (1/f)′′ > 0 for all S ∈ (0, Ŝ). One easily see that586
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Γ
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Fig. 9 (a) The regions J0, J1 J2, J3 and J4 in the operating plane with f(S) = 4S2/(25 +
S2) and a = 0.1. The curves Γ and Φ1/2 intersects for D1 = 0.69 (see Lemma 6). (b,c) Zooms
of (a) showing the region J4. The biogas flow rates corresponding to points η1 = (7, 1.6) ∈ J1,
η2 = (9, 1.6) ∈ J2, η3 = (12, 1.6) ∈ J3 and η4 = (2.33, 0.3) ∈ J4 are depicted in panels
(d) to (g), respectively. In these panels curves are coloured and numbered as in Fig. 7,
r0(Sin, D) = D/(f(Sin)−a), and r1(Sin, D) is defined by (20). (d) r0 ≈ 0.63. (e) r0 ≈ 0.54
and r1 ≈ 0.81. (f) r0 ≈ 0.48 and r1 ≈ 0.61. (g) r0 ≈ 0.49.

(
1
f

)′′
(S) =

p(p+1)Kp

mSp+2 > 0,

for any S > 0. Consequently, for all p > 1, the Hill function verifies Assumption 2.587

Let us now prove that the Hill function verifies the condition (34). Straightforward588

computations give589

f ′ (λ(D + a)) = p
Km (D + a)

p−1
p (m− a−D)

p+1
p . (44)

Therefore,590
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f ′
(
λ
(
D
r + a

))
= p

Km

(
D
r + a

) p−1
p
(
m− a− D

r

) p+1
p
.

Since p > 1, D + ra < D + a and591

0 < rm− ra−D < m− a−D,
one has592

(D + ra)
p−1
p < (D + a)

p−1
p (45)

(rm− ra−D)
1
p < (m− a−D)

1
p . (46)

From (45) one has593 (
D
r + a

) p−1
p

=
(

1
r

) p−1
p (D + ra)

p−1
p <

(
1
r

) p−1
p (D + a)

p−1
p . (47)

On the other hand, we have594 (
m− a− D

r

) p+1
p

=
(

1
r

) 1
p

(
m− a− D

r

)
A,

where A = (rm− ra−D)
1
p . From (46), and using595

0 < m− a−D/r < m− a−D,
we then deduce596 (

m− a− D
r

) p+1
p

<
(

1
r

) 1
p (m− a−D)

p+1
p . (48)

Therefore, using (44), (47) and (48) one obtains597

f ′
(
λ
(
D
r + a

))
= p

Km

(
D
r + a

) p−1
p
(
m− a− D

r

) p+1
p

< p
Km

1
r (D + a)

p−1
p (m− a−D)

p+1
p = 1

r f
′(λ(D + a)).

This ends the proof of (34). Consequently, according to Lemma 3, any Hill function598

satisfies Assumption 3. �599

Let now consider the case p = 2 of the Hill function: f(S) = mS2/(K2+S2).600

Lemma 6 Let D1 = (3m − 4a −
√
m(5m− 4a))/4. If 0 < D < D1 then the curve601

Φ1/2, defined by (13), at left of the curve Γ, defined by (22). In contrast, if D1 <602

D < (m− a)/2 then the curve Φ1/2 is at right of the curve Γ.603

Proof Let the function H : [0, (m− a)/2) 7→ R be defined by H(D) := λ(2D + a)−604

g(D). We have605

H(D) = K
(√

2D+a
m−a−D −

(2D+a)(m−a−D)+(D+a)(m−a)

2(m−a−D)3/2
√
D+a

)
.

Straightforward computation shows that this function is positive if and only if the606

polynomial607
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r

rmaxr∗

Gmax y = G(r)

G∗=Gmax
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(a)

D

Dmax Dmax
chemD∗

Gmax

G∗=Gmax
chem

(b)

D

a=0

a=0.1

a=0.2

a=0.3

Biogas

(c)

Fig. 10 (a) The map r 7→ G(r) defined by (42), with f(S) = 4S/(5+S), a = 0.1 and Sin =
1.5, showing the values r∗ and rmax. (b) The corresponding maps D 7→ Gchem(Sin, D),
in black, D 7→ G2(Sin, D, r∗), in blue and D 7→ G2(Sin, D, rmax), in red, show the values
D∗ < Dmax < Dmax

chem. (c) The biogas flow rates for a = 0, 0.1, 0.2, 0.3 showing the effects
of mortality.

Q(D) := 4D2 − 2(3m− 4a)D + 4a2 − 5am+m2

is negative. The solution of equation Q(D) = 0 are608

D1 = 3m−4a−
√

∆
4 and D2 = 3m−4a+

√
∆

4 ,

where ∆ = 4m(5m − 4a) > 0, as a < m. Notice that we have 0 < D1 < (m − a)/2609

and (m − a)/2 < D2. Thus, for any D ∈ (D1, (m − a)/2), we have H(D) > 0 and610

then the curve Φ1/2 at right of the curve Γ. �611

As a consequence of Lemma 6, the operating plane is divided in five regions612

Ji i = 0, 1, 2, 3, 4 defined in (23), see Figure 9(a,b,c).613

Consider the operating points η1, η2, η3 and η4 fixed respectively in regions614

J1, J2, J3 and J4, as shown in Figure 9(a,b,c). It should be noticed that615

for any other point (Sin, D) ∈ J1 (resp. (Sin, D) ∈ J2, (Sin, D) ∈ J3 and616

(Sin, D) ∈ J4), the curve representing the biogas flow rate with respect to617

r should be similar to the curve shown in Fig. 9(a) (resp. (b), (c) and (d)),618

and corresponding to (Sin, D) = η1 (resp. (Sin, D) = η2, (Sin, D) = η3 and619

(Sin, D) = η4).620

Recall that r1(Sin, D) is defined by (20). It is obtained by solving numer-621

ically the equation Sin = gr(D). Since the point η2 (resp. η3) satisfies the622

condition Sin > g(D), as stated in item 2 of Proposition 5, the serial configu-623

ration has a higher biogas flow rate production than a single chemostat if and624

only if r ∈ (r1, 1), with r1(9, 1.6) ≈ 0.81 in Fig. 9(e) and r1(12, 1.6) ≈ 0.61, in625

Fig. 9(f).626

5.4 The serial configuration is worth considering when627

mortality is not negligible628

In this section we numerically illustrate Remark 2. We fix Sin and we adopt629

the following notations.630

Dmax
chem = D(1), Gmaxchem = G(1) = Gchem

(
Sin, Dmax

chem

)
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where G(r) is defined by (42) and D(r) is as in Lemma 4. Recall that r∗ ∈ (0, 1)631

satisfies632

G(r∗) = G(1) = Gmaxchem, (49)

and G(r) > G(1) for r ∈ (r∗, 1), so that G(r) attains its maximum for r =633

rmax ∈ (r∗, 1), see Fig. 10(a), obtained with a Monod function and Sin = 1.5.634

We adopt the following notations.635

Dmax = D(rmax), Gmax = G2

(
Sin, Dmax, rmax

)
D∗ = D(r∗), G∗ = G2

(
Sin, D∗, r∗

)
= Gmaxchem

Table 1 Numerical values

a = 0 a = 0.1 a = 0.2 a = 0.3
Dmax

chem 0.4918 0.4359 0.3806 0.3259

G∗ = Gmax
chem 0.3930 0.3167 0.2478 0.1866

r∗ 1 0.839 0.717 0.631

D∗ 0.4918 0.3758 0.2969 0.2369

rmax 1 0.889 0.808 0.751

Dmax 0.4918 0.3925 0.3190 0.2591

Gmax 0.3930 0.3169 0.2490 0.1890

Gmax−Gmax
chem

Gmax
chem

0 0.06% 0.5% 1.3%

Dmax
chem−Dmax

Dmax
chem

0 10% 16.2% 20.5%

Dmax
chem−D∗

Dmax
chem

0 13.6% 22% 27.3%

These notations are illustrated in Figs. 10(a,b). The zoom in Fig. 10(b)636

shows that Gmax exceeds G∗ = Gmaxchem only slightly, but D∗ is significantly637

smaller than Dmax, which is itself smaller than Dmax
chem. We give in Table 1 the638

numerical values of r∗, rmax, D∗, Dmax, Gmax and G∗ = Gmaxchem, for various639

values of the mortality rate a. The table also gives the relative gains640

Gmax−Gmax
chem

Gmax
chem

,
Dmax

chem−D
max

Dmax
chem

,
Dmax

chem−D
∗

Dmax
chem

,

when replacing the single chemostat with the serial device using the ratios r∗641

and rmax. The gain in biogas production is almost negligible, but the gain in642

bioreactor flow rate is significant.643

The biogas flow rates Gchem(Sin, D), G2(Sin, D, r∗) and G2(Sin, D, rmax),644

for the various considered values of the mortality rate a, are depicted in Fig.645

10(c), in black, blue and red, respectively. This figure shows that mortality is646

a real problem as it considerably reduces biogas production. Where mortality647

cannot be avoided or reduced, instead of using the single chemostat, by using648

a serial device, biogas production can be slightly improved while significantly649

reducing the bioreactor flow rate.650
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6 Conclusion651

In this work, an in-depth study is carried out on the mathematical model of652

two interconnected chemostats in serial with mortality. Equations contain a653

term representing the mortality rate of the species. Due to this added term654

characterizing the mathematical model, this paper is considered as an exten-655

sion of the work done in [7], where the model does not consider the mortality656

rate. However, the mathematical analysis revealed that the proofs have had to657

be significantly revisited and reveal several new non intuitive differences com-658

pared to the case without mortality. Let us recall that without mortality, the659

dynamics admits a forward attractive invariant hyperplane related to the total660

mass conservation, which is no longer verified under mortality consideration.661

This at the core of the differences in the mathematical analysis. The study662

of the model is based on the analysis of the asymptotic behavior of its solu-663

tions, and is supported by an operating diagram which describes the number664

and stability of steady states. In a first step, we considered different mortality665

rates a1, a2 in each tank. Then, in view of comparing with the single config-666

uration, we considered identical mortality rate a = a1 = a2. We analyzed the667

performances of the model at steady state for two different criteria: the out-668

put substrate concentration and the biogas flow rate (and compared them for669

the single chemostat with the same mortality rate a). Explicit expressions of670

criteria, depending on the dilution rate D and the input substrate concentra-671

tion Sin, are provided. These new results provide conditions that insure the672

existence of a serial configuration more efficient than a single chemostat, in673

the sense of minimizing the output substrate concentration or maximizing the674

biogas flow rate.675

Along the paper, the similarities, specificities and differences of our model676

compared to the model without mortality (i.e. for a = 0) studied in [7] are677

highlighted. Among the differences that attract attention, on the one hand,678

we have the operating diagram with different mortality which presents many679

more cases than the diagram without mortality where it is reduced to only two680

cases. Thus, the presence of the four regions of stability on the same diagram681

is now possible. On the other hand, we have the biogas production of the682

serial device in its maximum state which can be significantly larger than the683

largest biogas production of the single chemostat. This never happens in the684

case without mortality. Finally, unlike the case without mortality, the biomass685

productivity and the biogas flow rate at steady state are not given by the686

same formulas. Therefore, if biomass productivity is taken into account as a687

performance criterion, the comparison between the serial chemostat and the688

single chemostat does not lead to the same conclusions. For more details on689

this issue the reader can refer to [8].690

Appendix A The single chemostat691

In this section, we give a brief presentation of the mathematical model of the692

single chemostat with mortality rate. The mathematical equations are given by693
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D

y

y = Sout(Sin, D)

λ(a)

Sin

δ0
(a)

D

y

y = xout(Sin, D)

δ
(b)

D

Sin0 λ(a)

I0

I1

Γ

Φ

(c)
Fig. A1 (a) The map D 7→ Sout(Sin, D) is increasing on [0, δ], where δ = f(Sin)− a. (b)
The map D 7→ xout(Sin, D) with f(S) = 4S/(5 + S), Sin = 10 and a = 0.6. (c) The curve
Γ in the operating plane (Sin, D) of the single chemostat.

Ṡ = D(Sin − S)− f(S)x,
ẋ = −Dx+ f(S)x− ax, (A1)

where S and x denote respectively the substrate and the biomass concentra-694

tion, Sin the input substrate concentration, a the mortality rate and D = Q/V695

the dilution rate, with Q the input flow rate and V the volume of the tank.696

The specific growth rate f of the microorganisms satisfies Assumption 1. It is697

well known (see [16, 39]) that, besides the washout F0 = (Sin, 0), this system698

can have a positive steady state699

F1 = (S∗(D), x∗(Sin, D)),

where700

S∗ = λ(D + a) and x∗ = D
D+a (Sin − λ(D + a)).

See Fig. A1(a) for the plot of the function D 7→ S∗(D) and Fig. A1(b) for the701

plot of the function D 7→ x∗(Sin, D) for 0 ≤ D ≤ δ, where δ = f(Sin)− a.702

The washout steady state F0 always exists. It is GAS if and only if D ≥ δ.703

It is LES if and only if D > δ. The positive steady state F1 exists if and only if704

D < δ. It is GAS and LES whenever it exists. Therefore, the curve Φ defined705

by706

Φ := {(Sin, D) : D = f(Sin)− a} (A2)

splits the set of operating parameters (Sin, D) into two regions, denoted I0707

and I1, as depicted in A1(c). These regions are defined by708

I0 := {(Sin, D) : D ≥ f(Sin)− a},
I1 := {(Sin, D) : D < f(Sin)− a}. (A3)

The behavior of the system in each region is given in Table A1. Figure A1(c),709

together with A1 is called the operating diagram of the single chemostat.710

The particularity of this operating diagram is that the curve limiting both711

regions I0 and I1 is translated from zero, unlike the case with mortality, as712

shown in Figure 2.5 of [16]. Thus, with presence of mortality rate, the region713

where the washout is GAS, is larger.714
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Table A1 Stability of steady states in the various regions of the operating diagram.

I0 I1
F0 GAS U
F1 GAS

The output substrate concentration of the single chemostat, at its stable715

steady state is given by716

Sout(Sin, D) =

{
Sin if D ≥ δ
λ (D + a) if D < δ.

(A4)

Its output biomass concentration at steady state is then given by717

xout(Sin, D) = D
D+a (Sin − Sout(D, a)) (A5)

For all Sin > λ(a), one has718

∂Sout

∂D (Sin, D) =

{
0 if D > δ
λ′(D + a) if D < δ,

Thus, for any growth function satisfying Assumption 1 the function D 7→719

Sout(Sin, D) is increasing on [0, δ], as shown in Figure A1(a). The function720

D 7→ xout(Sin, D) is illustrated in Figure A1(b) for a Monod function.721

The biogas flow rate of the single chemostat is defined, up to a multiplica-722

tive yield coefficient, by723

Gchem(Sin, D) := V xoutf(Sout). (A6)

Using the expressions (A4) and (A5) respectively of Sout and xout, the biogas724

flow rate of the single chemostat is given by:725

Gchem(Sin, D) =

{
0 if D ≥ δ
V D(Sin − λ(D + a)) if D < δ.

(A7)

For a given Sin > λ(a), the function D 7→ Gchem(Sin, D) is null for D = 0 or726

D ≥ δ, and is positive for D ∈ (0, δ). Therefore it admits a maximum in (0, δ),727

which is assumed to be unique. A characterization of the growth functions for728

which this uniqueness is satisfied can be found in [31].729

Proposition 9 Assume that for any Sin > λ(a), the maximum of D 7→730

Gchem(Sin, D) is unique, and define D(Sin) ∈ (0, δ), such that731

Gchem

(
Sin, D

(
Sin
))

= max
D≥0

Gchem

(
Sin, D

)
.

Then, the dilution rate D = D
(
Sin
)

is the solution of the equation Sin = g(D),732

where the function g : [0,m− a) 7→ R is given by733

g(D) := λ(D + a) +Dλ′(D + a)). (A8)

734
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Proof For any Sin > λ(a) and D ∈ (0, δ), we have735

∂Gchem
∂D (Sin, D) = V

(
Sin − λ(D + a)−Dλ′(D + a)

)
(A9)

Therefore, ∂Gchem
∂D (Sin, D) = 0 if and only if Sin = g(D), where g is defined by736

(A8). �737

Notice that the function g defined by (A8) is the same as the function738

g, defined by (19), which was obtained as the limit, when r tends to 1, to739

the function gr, defined by (9). Recall that Γ is the curve of equation Sin =740

g(D), see (22). This curve is depicted in Fig. A1(c). It is the set of operating741

conditions given the higher biogas of the single chemostat. More precisely, for742

any Sin > λ(a), the maximum D = D(Sin) of the biogas satisfies the condition743

(Sin, D) ∈ Γ. Therefore, a sufficient condition for the uniqueness of D(Sin) is744

that the mapping g is increasing. If, in addition, f is C2, then, deriving (A9)745

with respect of D, we have746

∂2Gchem

∂D2 (Sin, D) = −V g′(D).

Hence, a sufficient condition for Assumption 4 to be satisfied is that g′(D) >747

0 for D ∈ [0,m − a). This last condition if satisfied whenever f ′′ ≤ 0 on748

(λ(a),+∞), or
(

1
f−a

)′′
> 0 on (λ(a),+∞), see Lemma 1 in [31]. Therefore we749

can make the following remark.750

Remark 3 Linear and Monod growth functions satisfy Assumption 4, since they751

satisfy f ′′ ≤ 0 on (0,+∞). On the other hand the Hill function satisfy Assumption752

4, since it satisfies
(

1
f−a

)′′
> 0 on (λ(a),+∞), as shown in Proposition 8.753

Appendix B The serial configuration754

We consider a slight extension of system (1) with different mortality rates in755

the two tanks. Indeed, we assume that the growth environment differs from756

one tank to another one. This can lead to two different mortality rates in the757

tanks. We denote by a1 and a2 the mortality rates. The mathematical model758

is given by the following equations.759

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −Dr x1 + f(S1)x1 − a1x1

Ṡ2 = D
1−r (S1 − S2)− f(S2)x2

ẋ2 = D
1−r (x1 − x2) + f(S2)x2 − a2x2.

(B10)

The following result is classical in the mathematical theory of the chemo-760

stat.761
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Lemma 7 For any nonnegative initial condition, the solution of system (B10)762

(S1(t), x1(t), S2(t), x2(t)) is nonnegative for any t > 0 and positively bounded.763

Proof Since the vector field defined by (B10) is C1, the uniqueness of the solution764

to an initial value problem holds. From (B10) and using f(0) = 0, we have:765

for i = 1, 2, Si = 0 =⇒ Ṡi > 0,
x1 = 0 =⇒ ẋ1 = 0

x1 ≥ 0 and x2 = 0 =⇒ ẋ2 ≥ 0

Therefore, for i = 1, 2, Si(t) ≥ 0 and xi(t) ≥ 0, for all t ≥ 0, for which they are766

defined, provided Si(0) ≥ 0 and xi(0) ≥ 0, for i = 1, 2, see Prop. B.7 in [39]. This767

proves that the solutions of nonnegative initial conditions are always nonnegative.768

Let zi = Si + xi, i = 1, 2. From system (B10), we have769

ż1 = D
r (Sin − z1)− a1x1, ż2 = D

1−r (z1 − z2)− a2x2.

Consequently, we have the differential inequality770

ż1 ≤ D
r (Sin − z1),

It follows by comparison of solutions of ordinary differential equations (see for771

instance [48]) that one has772

z1(t) ≤ Sin + (z1(0)− Sin)e−
D
r t

Therefore, z1(t) ≤ Z1, where Z1 = max(Sin, z1(0)). Then, we also have the773

differential inequality774

ż2 ≤ D
1−r (Z1 − z2).

It follows again by comparison of solutions of ordinary differential equations that one775

has also776

z2(t) ≤ Z1 + (z2(0)− Z1)e−
D

1−r t

Therefore, z2(t) ≤ Z2, where Z2 = max(Z1, z2(0)). Hence, the solutions of (B10) are777

positively bounded. Therefore, they are defined for all t ≥ 0. �778

For the description of the steady states, we shall consider the following779

function h that will play a key role780

h (S2) = D+(1−r)a2
1−r

S∗1−S2

b−S2
, S2 ∈ (0, b)

where S∗1 = λ
(
D
r + a1

)
, b =

D(Sin−S∗1 )
D+ra1

+ S∗1 .
(B11)

This function satisfies the following property.781

Lemma 8 Assume that D/r + a1 < f(Sin). The function h is decreasing from782

h(0) > 0 to h(S∗1 ) = 0, where h(0) is given by783

h (0) =
D+(1−r)a2

1−r
(D+ra1)S∗1
DSin+ra1S∗1

. (B12)
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Proof From the condition D/r+a1 < f(Sin) it is deduced that S∗1 < Sin. Note that784

b =
DSin+ra1S

∗
1

D+ra1
.

Hence, b is a convex combination of Sin and S∗1 , and we have S∗1 < b < Sin.785

Therefore, the vertical asymptote S2 = b of h is at right of S∗1 . The derivative of h is786

h′(S2) =
D+(1−r)a2

1−r
S∗1−b

(b−S2)2
.

Hence, we have h′(S2) < 0 for all S2 < b. Therefore, h is defined on the interval787

(0, S∗1 ) and is decreasing from h(0), given by (B12) to h(S∗1 ) = 0. �788

Therefore, if D/r + a1 < f(Sin), equation f(S2) = h (S2) admits a unique789

solution, denoted by S∗2 (Sin, D, r), as shown in Fig. B2(a). This solution satisfy790

the following property.791

Lemma 9 Considering a1 = a2 = a, for all 0 ≤ D < f(Sin)− a, one has792

lim
r→1

S∗2 (Sin, D, r) = λ(D + a).

793

Proof Let 0 ≤ D < f(Sin)− a. Using (5), the condition h(S2) = f(S2) is equivalent794

to795

(D + (1− r)a)(S∗1 − S∗2 ) =

(1− r)
(

D
D+ra (Sin − S∗1 ) + S∗1 − S∗2

)
f(S∗2 ).

(B13)

For r = 1, we have S∗1 = λ(D + a). As limr→1 f(S∗2 ) < +∞ then, (B13) gives796

D(λ(D + a)− lim
r→1

S∗2 (Sin, D, r)) = 0.

Consequently, one has limr→1 S
∗
2 (Sin, D, r)) = λ(D + a). �797

S2

D

0 SinS∗
1S∗

2

y = f(S2)

y = h(S2)

(a)

S2

D

0

h1(0)
h2(0)

S∗
1S∗2

2S∗1
2

y = f(S2)

y = h2(S2)

y = h1(S2)

(b)
Fig. B2 (a) Existence and uniqueness of the solution S∗

2 of equation f(S2) = h(S2). (b)
Graphical illustration of Proposition 10: S∗

2 decreases when Sin increases.

The existence and stability of steady states of (B10) are given by the798

following result.799
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Theorem 3 Assume that Assumption 1 is satisfied. The steady states of (B10) are:800

� The washout steady state E0 = (Sin, 0, Sin, 0) which always exists. It is GAS
if and only if

D ≥ max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}. (B14)

It is LES if and only if

D > max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}.

� The steady state E1 = (Sin, 0, S2, x2) of washout in the first chemostat but
not in the second one with

S2 = λ
(

D
1−r + a2

)
, x2 = D

D+(1−r)a2

(
Sin − S2

)
. (B15)

It exists if and only if D < (1− r)(f(Sin)− a2). It is GAS if and only if

r(f(Sin)− a1) ≤ D and D < (1− r)(f(Sin)− a2). (B16)

It is LES if and only if

r(f(Sin)− a1) < D < (1− r)(f(Sin)− a2).

� The steady state E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2) of persistence of the species in both

chemostats with

S∗1 = λ
(
D
r + a1

)
, x∗1 = D

D+ra1
(Sin − S∗1 ), (B17)

x∗2 = D
D+(1−r)a2

(
D

D+ra1
(Sin − S∗1 ) + S∗1 − S∗2

)
(B18)

and S∗2 = S∗2 (Sin, D, r) is the unique solution of the equation h(S2) = f(S2)801

with h defined by (B11). This steady state exists and is positive if and only802

if D < r(f(Sin)−a1). It is GAS and LES whenever it exists and is positive.803

Proof The 4-dimensional system of ODEs (B10) has a cascade structure of two pla-804

nar systems of ODEs, whose mathematical analysis is easy and well known in the805

mathematical theory of the chemostat [16, 39]. Using this cascade structure, the806

global behavior of the system is deduced from the global behaviour of planar systems807

and Thieme’s theory of asymptotically autonomous systems.808

For the convenience of the reader the details of the proof are given in Appendix809

D.1. �810

Proposition 10 The function Sin 7→ S∗2 (Sin, D, r) is decreasing.811
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Proof D and r are fixed. Let Sin,1 > Sin,2 and hi defined by (B11), with Sin = Sin,i,812

i = 1, 2. Let S∗i2 , the solution of equation f(S2) = hi(S2), i = 1, 2. Using Lemma813

8, hi is a decreasing hyperbola from hi(0) defined by (B12), with Sin = Sin,i, to814

hi(S
∗
1 ) = 0. Since h1(0) < h2(0), we have h1(S2) < h2(S2) for all S2 ∈ (0, S∗1 ).815

Therefore, S∗12 < S∗22 , see Fig. B2(b). �816

This result means that the effluent steady state concentration of substrate817

decreases when the influent concentration of substrate increases. This behavior818

is very different from the single chemostat, where the effluent steady state819

substrate concentration is independent of the influent substrate concentration.820

Appendix C Operating diagram821

For the chemostat model, the operating diagram has as coordinates the input822

substrate concentration Sin and the dilution rate D, and shows how the solu-823

tions of the system behave for different values of these two parameters. The824

regions constituting the operating diagram correspond to different qualitative825

asymptotic behaviors. Indeed, the main interest of an operating diagram is826

to highlight the number and stability of the steady states for a given pair of827

parameters (Sin, D). The input substrate concentration Sin and the dilution828

rate D are the usual parameters manipulated by the experimenter of a chemo-829

stat. Apart from these parameters, and the parameter r that can be also chosen830

by the experimenter but not easily changed as Sin and D, all other parame-831

ters have biological meaning and are fitted using experimental data from real832

measurements of concentrations of micro-organisms and substrates. Therefore833

the operating diagram is a bifurcation diagram, quite useful to understand the834

possible behaviors of the solutions of the system from both the mathematical835

and biological points of view.836

Here, we fix r ∈ (0, 1) and we depict in the plane (Sin, D) the regions837

in which the solution of system (B10) globally converges towards one of the838

steady state E0, E1 or E2. From the results given in Theorem 3, it is seen that839

these regions are delimited by the curves Φ1
r and Φ2

1−r defined by:840

Φ1
r :=

{
(Sin, D) ∈ R2

+ : D = r(f(Sin)− a1)
}
, (C19)

Φ2
1−r :=

{
(Sin, D) ∈ R2

+ : D = (1− r)(f(Sin)− a2)
}
. (C20)

When a1 = a2 = 0, as we have shown in [7], these curves meet only at one841

point (the origin) and merge when r = 1/2. Therefore, in this case the curves842

Φ1
r and Φ2

1−r separate the operating plane (Sin, D), in only three regions, see843

[7, Figure 5]. This property continue to hold when a1 = a2, that is to say,844

the curves intersect only at (λ(a1), 0) and merge when r = 1/2. In this case845

the curves Φ1
r and Φ2

1−r separate the operating plane (Sin, D), in only three846

regions, see Figure B3 (c) and (d). The novelty when a1 and a2 are different847

and non null, is that the intersection of the curves Φ1
r and Φ2

1−r can lie outside848

the Sin axis. Therefore there can be four regions in the operating plane, as849

depicted in Figure B3 (a) and (f). For the description of the intersection of850
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(a) 0 < r < r, a1 < a2

Sin

D

0λ(a1)λ(a2)

I0(r)

I1(r)

I3(r)

I2(r)

Φ1
r

Φ2
1−r

(b) r < r < 1, a1 < a2

Sin

D

0λ(a1)λ(a2)

I0(r)

I3(r)

I2(r)

Φ2
1−r

Φ1
r

(c) 0 < r < 1
2 , a1 = a2

Sin

D

0 λ(a1)

I0(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

(d) 1
2 < r < 1, a1 = a2

Sin

D

0 λ(a1)

I0(r)

I3(r)

I2(r)

Φ2
1−r

Φ1
r

(e) 0 < r < r, a1 > a2

Sin

D

0λ(a2)λ(a1)

I0(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

(f) r < r < 1, a1 > a2

Sin

D

0λ(a2)λ(a1)

I0(r)

I3(r)

I1(r)

I2(r)

Φ1
r

Φ2
1−r

Fig. B3 The operating diagram of (B10). The asymptotic behaviour in each region is
depicted in Table C2.

the curves Φ1
r and Φ2

1−r, we need some definitions and notations. Let r ∈ (0, 1)851

be defined by852

r := m−a2
2m−a1−a2 . (C21)

Note that if a1 < a2 then r < 1/2, and if a1 > a2 then r > 1/2. For a1 < a2853

and 0 < r < r (or a1 > a2 and r < r < 1), we define the point P =
(
SinP , DP

)
854

of the operating plane by:855
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Table C2 The regions Ik(r), k = 0, 1, 2, 3 of the operating diagram of (B10) and
asymptotic behaviour in these various regions.

Regions

I0(r) =
{

(Sin, D) : max{r(f(Sin)− a1), (1− r)(f(Sin)− a2)} ≤ D
}

I1(r) =
{

(Sin, D) : r(f(Sin)− a1) ≤ D and D < (1− r)(f(Sin)− a2)
}

,

I2(r) =
{

(Sin, D) : 0 < D < min{r(f(Sin)− a1), (1− r)(f(Sin)− a2)}
}

,

I3(r) =
{

(Sin, D) : (1− r)(f(Sin)− a2) ≤ D and D < r(f(Sin)− a1)
}

.

I0(r) I1(r) I2(r) I3(r)
E0 GAS U U U
E1 GAS U
E2 GAS GAS

SinP := λ
(
ra1−(1−r)a2

2r−1

)
, DP := r(1−r)(a2−a1)

1−2r . (C22)

Note that SinP > 0 and DP > 0. With these notations we can state the following856

result:857

Proposition 11 1. If a1 < a2 then for all r ∈ (0, r), the curves Φ1
r and Φ2

1−r858

intersect at the point P and Φ1
r is strictly below [resp. above] Φ2

1−r for859

Sin > SinP [resp. Sin < SinP ], see Figure B3 (a). For all r ∈ (r, 1), Φ1
r is860

strictly above Φ2
1−r, see Figure B3 (b).861

2. If a1 > a2 then for all r ∈ (r, 1), the curves Φ1
r and Φ2

1−r intersect at the862

point P and Φ1
r is strictly above [resp. below] Φ2

1−r for Sin > SinP [resp.863

Sin < SinP ], see Figure B3 (f). For all r ∈ (0, r), Φ1
r is below Φ2

1−r, see864

Figure B3 (e).865

3. If a1 = a2 then, for r = 1/2, Φ1
r = Φ2

1−r. Moreover, if r < 1/2 then Φ1
r is866

strictly below Φ2
1−r, see Figure B3 (c) and, if r > 1/2 then Φ1

r is strictly867

above Φ2
1−r, see Figure B3 (d).868

Proof For 0 < r < 1 and Sin > λ(ai) we define the function ϕi, i = 1, 2, by869

ϕ1(Sin, r) = r(f(Sin)− a1),

ϕ2(Sin, r) = (1− r)(f(Sin)− a2).
(C23)

The curves Φ1
r and Φ2

1−r, defined respectively by (C19) and (C20), intersect if and870

only if there exists r ∈ (0, 1) and Sin > max (λ(a1), λ(a2)) such that ϕ1(Sin, r) =871

ϕ2(Sin, r), that is to say872

f(Sin) = A(r), with A(r) :=
ra1−(1−r)a2

2r−1 . (C24)

This equation has a solution Sin > max (λ(a1), λ(a2)) if and only if873

max (a1, a2) < A(r) < m, (C25)
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where m = sup(f), as in (2). When these conditions are satisfied, the solution of874

(C24) is given by Sin = λ(A(r)), where λ is the inverse function pf f , i.e. the875

break-even concentration defined by (3). Hence, Sin = SinP , given in (C22). The876

corresponding intersection point of Φ1
r and Φ2

1−r is given by DP = r
(
f(SinP )− a1

)
,877

which is the value given in (C22).878

Let us determine now for which value of r, the conditions (C25) are satisfied. The879

function A is a homographic function. Its graphical representation is a hyperbola,880

whose vertical asymptote is r = 1/2. Its derivative is given by881

A′(r) =
a2 − a1

(2r − 1)2
. (C26)

Note that A(r) = m if and only if r = r, where r is defined by (C21). Therefore882

if a1 < a2 then, according to (C26), A is increasing. Since A(0) = a2, A(r) = m,883

and r < 1/2, the condition (C25) is satisfied if and only if 0 < r < r. Similarly, if884

a1 > a2, then, according to (C26), A is decreasing. Since A(1) = a1, A(r) = m and885

r > 1/2, the condition (C25) is satisfied if and only if r < r < 1. Finally, if a1 = a2886

then A(r) = a1 and the condition (C25) cannot be satisfied.887

Suppose that a1 < a2. Note that for 0 < r < 1/2, the condition f(Sin) > A(r)888

[resp. f(Sin) < A(r)] is equivalent to ϕ1(Sin, r) < ϕ2(Sin, r) [resp. ϕ1(Sin, r) >889

ϕ2(Sin, r)]. Thus:890

� If r ∈ (0, r), then f(Sin) < A(r) if and only if Sin < SinP , where SinP is defined891

by (C22). Hence, the curves Φ1
r and Φ2

1−r intersect at P = (SinP , DP ) and892

the curve Φ1
r is strictly below [resp. above] the curve Φ2

1−r, for all Sin > SinP893

[resp. Sin < SinP ].894

� If r ∈ [r, 1/2) then f(Sin) < A(r) for all Sin > 0, so that the curve Φ1
r is895

strictly above the curve Φ2
1−r.896

� If r ∈ [1/2, 1), then, using r ≥ 1 − r and a1 < a2, one has ϕ1(Sin, r) >897

ϕ2(Sin, r). Therefore, the curve Φ1
r is strictly above the curve Φ2

1−r.898

If a1 > a2, the proof is similar to the case a1 < a2.899

If a1 = a2 then ϕ1(Sin, r) = ϕ2(Sin, r) is equivalent to r(f(Sin) − a1) = (1 −900

r)(f(Sin)− a1). Therefore, r = 1− r, that is r = 1/2. In this case the curves Φ1
r and901

Φ2
1−r merge. In addition, if r < 1/2 [resp. r > 1/2] then r < 1 − r [resp. r > 1 − r]902

and the curve Φ1
r is strictly below [resp. above] the curve Φ2

1−r. This ends the proof903

of the proposition. �904

For any r ∈ (0, 1), the curves Φ1
r and Φ2

1−r, defined by (C19) and (C20),905

respectively split the plane (Sin, D) in the regions denoted I0(r), I1(r), I2(r)906

and I3(r) and defined in Table C2. These regions are depicted in Fig. B3 in907

the cases a1 < a2, a1 = a2 and a1 > a2.908

The behavior of the system in each region, when it is not empty, is given in909

Table C2. Notice that E1 exists in both regions I1(r) and I2(r), but is stable910

only when (Sin, D) is fixed in I1(r).911

When a1 = a2 = 0 then λ(a1) = λ(a2) = 0 and the curves Φ1
r and Φ2

1−r of912

the operating diagram start from the origin of the plane (Sin, D) and merge913

for r = 1/2. Therefore, the diagrams shown in panels (a), (b), (c), (d), (e)914

and (f) of Fig. B3 are reduced to only two different cases characterized by915

0 < r < 1/2 and 1/2 < r < 1, as shown in Figure 5 of [7]. There is no changes916
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in the stability of the steady states and in the number of the regions depicted917

in the operating diagram.918

This result reveals an interplay between spatial heterogeneity (the ratio r of919

volume distribution between tanks) and the mortality heterogeneity (difference920

between a1 and a2). Indeed, panels (a) and (f) of Fig. B3 bring a particular921

feature when mortality rates are different: domains I1(r) and I3(r) can appear922

or disappear playing only with the spatial distribution r, a phenomenon which923

does not happens when mortality is identical in each tank. This shows that924

the existence of domains I1(r) and I3(r) is controlled by a relative toxicity in925

the tanks, and not only the spatial distribution as it is the case for identical926

mortality. This feature can have interest when practitioners can adjust pH or927

other abiotic parameters having impacts on the mortality rate, independently928

in each tank. Given operating parameters Sin, D and r, panels (a) and (f) of929

Fig. B3 show that it is theoretically possible to pass from domain I3(r) to I2(r)930

when mortality parameter is diminished only in the second tank. In practice,931

being in domain I2(r) might be more desirable than I3(r) with respect to some932

dysfunctioning of the first tank that can drop suddenly its biomass to zero.933

Indeed, in I2(r), the second tank is no conducted to the wash-out differently934

to the I3(r) case.935

When a1 = a2 = a, which is the case corresponding to the system (1)936

considered in Section 2, only panels (c,d) of Fig. B3 are encountered, as shown937

in Fig. 2. We describe hereafter the bifurcations that occur in this particular938

case. The general case i.e. when a1 6= a2 is similar.939

Remark 4 Transcritical bifurcations occur in the limit cases D = r(f(Sin)− a) and940

D = (1− r)(f(Sin)− a), for system (1). If 0 < r < 1/2 then, we have a transcritical941

bifurcation of E0 and E1 when D = (1−r)(f(Sin)−a) and a transcritical bifurcation942

of E1 and E2 when D = r(f(Sin)− a). If 1/2 < r < 1 then, we have a transcritical943

bifurcation of E0 and E1 when D = (1−r)(f(Sin)−a) and a transcritical bifurcation944

of E0 and E2 when D = r(f(Sin)− a). If r = 1/2 and D = (f(Sin)− a)/2 then, we945

have transcritical bifurcations of E0 and E1, and E0 and E2, simultaneously.946

Appendix D Proofs947

D.1 Proof of Theorem 3948

We begin by the existence of steady states. The steady states are the solutions949

of the set of equations Ṡ1 = 0, ẋ1 = 0, Ṡ2 = 0, ẋ2 = 0. From equation ẋ1 = 0,950

it is deduced that x1 = 0 or f(S1) = D/r + a1. Suppose first that x1 = 0.951

Then, from equation Ṡ1 = 0 it is deduced that S1 = Sin and from equation952

ẋ2 = 0 it is deduced that x2 = 0 or f(S2) = D/(1 − r) + a2. If x2 = 0,953

then from equation S2 = 0 it is deduced that S2 = Sin. Hence we obtain the954

steady state E0 = (Sin, 0, Sin, 0), which always exist. On the other hand, if955

f(S2) = D/(1−r)+a2, then S2 = S2, defined in (B15). From equation Ṡ2 = 0,956

it is deduced that x2 = x2,defined in (B15). Hence we obtain the steady state957
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E1 = (Sin, 0, S2, x2). This steady state exists if and only if Sin > S2, that is958

D < (1− r)(f(Sin)− a2).959

Suppose now that f(S1) = D/r+a1. Then S1 = S∗1 , defined in (B17). From960

equation Ṡ1 = 0, it is deduced that x1 = x∗1, defined in (B17). From equation961

Ṡ2 + ẋ2 = 0, it is deduced that962

x2 =
D

D + (1− r)a2
(S∗1 + x∗1 − S2). (D27)

Replacing x2 by this expression in the equation Ṡ2 = 0, it is deduced that963

f(S2) = h(S2), where h is defined by (B11). Hence S2 = S∗2 , which is the964

unique solution of the equation f(S2) = h(S2), as shown in Figure B2 (a).965

Replacing S2 by S∗2 in (D27) gives x2 = x∗2, defined by (B18). Consequently,966

we obtain the steady state E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2). This steady state is positive967

if and only if Sin > S∗1 , which is equivalent to D < r(f(Sin)− a1).968

Let us now study the local stability. Since the system has a cascade struc-969

ture, the stability analysis reduces to the study of square 2×2 matrices. Indeed,970

the Jacobian matrix associated to system (B10) is the lower triangular matrix971

by blocs, J =

(
A 0
B C

)
where B is the diagonal matrix whose diagonal elements972

are D/(1− r), and A and C are given by:973

A =

(
−Dr − f ′(S1)x1 −f(S1)

f ′(S1)x1 −Dr + f(S1)− a1

)
,

C =

(− D
1−r − f ′(S2)x2 −f(S2)

f ′(S2)x2 − D
1−r + f(S2)− a2

)
,

Hence, the eigenvalues of J are the ones of A and C.974

For E0, the eigenvalues are −D/r, −D/r + f(Sin) − a1, −D/(1 − r) and975

−D/(1− r) + f(Sin)−a2. They are negative if and only if D > r(f(Sin)−a1)976

and D > (1−r)(f(Sin)−a2). Therefore, E0 is LES if and only if the condition977

in the theorem is satisfied.978

For E1, the eigenvalues of A are −D/r+ f(Sin)− a1 and −D/r. The first979

eigenvalue is negative if and only if D > r(f(Sin) − a1). On the other hand,980

since the determinant of C is positive, and its trace is negative, the eigenvalues981

of C are of negative real parts. Therefore, E1 is LES if and only if the condition982

in the theorem is satisfied.983

For E2, the determinant of A is positive and its trace is negative. On the984

other hand, using the notation CE2
for the matrix C evaluated at E2, we have985

det(CE2
) =

(
− D

1−r − f ′(S∗2 )x∗2

)(
− D

1−r − a2 + f(S∗2 )
)

+ f(S∗2 )f ′(S∗2 )x∗2,

tr(CE2) = −2 D
1−r − a2 − f ′(S∗2 )x∗2 + f(S∗2 ).

Note that h(S2) < D/(1− r) + a2 for all S2 ∈ (0, S∗1 ). Therefore, from (B11),986

we have f(S∗2 ) = h(S∗2 ) < D/(1− r)+a2. Consequently, det(CE2
) and tr(CE2

)987
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are respectively positive and negative. Therefore, E2 is LES whenever it exists,988

that is D < r(f(Sin)− a1).989

For the study of the global stability we use the cascade structure of the990

system (B10) and Thieme’s Theorem (see Theorem A1.9 of [16]). In the rest of991

the proof, we denote by (S1(t), x1(t), S2(t), x2(t)) the solution of (B10) with the992

initial condition (S0
1 , x

0
1, S

0
2 , x

0
2). Then, (S1(t), x1(t)) is the solution of system993

Ṡ1 = D
r (Sin − S1)− f(S1)x1

ẋ1 = −Dr x1 + f (S1)x1 − a1x1
(D28)

with initial condition (S0
1 , x

0
1) and (S2(t), x2(t)) is the solution of the non-994

autonomous system of differential equations995

Ṡ2 = D
1−r (S1(t)− S2)− f (S2)x2

ẋ2 = D
1−r (x1(t)− x2) + f (S2)x2 − a2x2

(D29)

with the initial condition (S0
2 , x

0
2). The system (D28) is the classical model of996

a single chemostat. Its asymptotic behaviour is well known (see, for instance,997

Proposition 2.2 of [16]). This system admits the steady states:998

e1
0 =

(
Sin, 0

)
and e1

1 = (S∗1 , x
∗
1) (D30)

where S∗1 and x∗1 are defined by (B17). Two cases must be distinguished.999

Firstly, if λ (D/r + a1) ≥ Sin, that is D ≥ r(f(Sin)− a1) then, e1
0, defined1000

in (D30), is GAS for (D28) in the nonnegative quadrant. Hence, for any non-1001

negative initial condition (S0
1 , x

0
1),1002

lim
t→+∞

(S1(t), x1(t)) = (Sin, 0). (D31)

Therefore, the system (D29) is asymptotically autonomous with the limiting1003

system1004

Ṡ2 = D
1−r (Sin − S2)− f (S2)x2

ẋ2 = − D
1−rx2 + f (S2)x2 − a2x2.

(D32)

Recall that the solutions of (D29) are positively bounded. Therefore, we shall1005

use Thieme’s results which apply for bounded solutions.1006

The system (D32) represents the classical model of a single chemostat. It1007

admits the two steady states e2
0 = (Sin, 0) and e2

1 = (S2, x2), with (S2, x2)1008

defined by (B15). Two subcases must be distinguished.1009

� If λ (D/(1− r) + a2) ≥ Sin, that is D ≥ (1 − r)(f(Sin) − a2) then,1010

e2
0 is GAS in the nonnegative quadrant. Using Thieme’s Theorem, we1011

deduce that for any nonnegative (S0
2 , x

0
2), the solution (S2(t), x2(t)) of1012

(D29) converges towards e2
0 = (Sin, 0). Using (D31) we deduce that,1013

when D ≥ max(r(f(Sin) − a1), (1 − r)(f(Sin) − a2)), the solution1014

(S1(t), x1(t), S2(t), x2(t)) of (B10) converges towards E0 = (Sin, 0, Sin, 0),1015

which proves (B14).1016
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� In contrast, if λ(D/(1 − r) + a2) < Sin, that is D < (1 − r)(f(Sin) − a2)1017

then, both steady states e2
0 and e2

1 exist and e2
1 is GAS in the positive quad-1018

rant. Although system (D29) has the saddle point e2
0, no polycyle can exist.1019

Using Thieme’s Theorem, for any positive (S0
2 , x

0
2), the solution (S2(t), x2(t))1020

of (D29) converges towards e2
1 = (S2, x2). Using (D31) we deduce that,1021

if r(f(Sin) − a1) ≤ D and D < (1 − r)(f(Sin) − a2), then the solution1022

(S1(t), x1(t), S2(t), x2(t)) of (B10) converges towards E1 =
(
Sin, 0, S2, x2

)
,1023

which proves (B16).1024

Secondly, if λ (D/r + a1) < Sin, that is D < r(f(Sin)−a1) then, e1
1, defined1025

in (D30), is GAS for (D28) in the positive quadrant. Hence, for any positive1026

initial condition (S0
1 , x

0
1)1027

lim
t→+∞

(S1(t), x1(t)) = (S∗1 , x
∗
1) . (D33)

Therefore, the system (D29) is asymptotically autonomous with the limiting1028

system1029

Ṡ2 = D
1−r (S∗1 − S2)− f (S2)x2

ẋ2 = D
1−r (x∗1 − x2) + f (S2)x2 − a2x2.

(D34)

The system (D34) represents the classical model of a single chemostat with an1030

input biomass. In this case, there is no washout and the system (D34) always1031

admits one LES steady state e2 = (S∗2 , x
∗
2) with positive biomass defined by1032

(B18) and S∗2 the unique solution of h(S2) = f(S2).1033

Let us show that this steady state is GAS for (D34). Assume that x2 > 0.1034

Consider the change of variable ξ = ln(x2). The system (D34) becomes as1035

Ṡ2 = D
1−r (S∗1 − S2)− f (S2) eξ

ξ̇ = D
1−r (x∗1e

−ξ − 1) + f (S2)− a2.
(D35)

The divergence of the vector field

ψ(S2, ξ) =

[ D
1−r (S∗1 − S2)− f (S2) eξ

D
1−r (x∗1e

−ξ − 1) + f (S2)− a2

]
associated to (D35) is divψ(S2, ξ) = − D

1−r (1 +x∗1e
ξ)− f ′(S2)eξ. It is negative.1036

Thus, using Bendixon-Dulac criterion, system (D35) cannot have a periodic1037

solution. Hence, system (D34) has no cycle in the positive quadrant. For any1038

non negative initial condition (S0
2 , x

0
2), the solution of (D34) is bounded. Hence,1039

the ω-limit set of (S0
2 , x

0
2), denoted ω(S0

2 , x
0
2), is non-empty and included in the1040

positive quadrant. If e2 6∈ ω(S0
2 , x

0
2) then, using Poincaré-Bendixon Theorem,1041

ω(S0
2 , x

0
2) is a limit cycle, but the system does not present any, due to the1042

divergence property. One then deduces e2 ∈ ω(S0
2 , x

0
2) and, as e2 is LES, then1043

ω(S0
2 , x

0
2) = {e2}. Consequently, e2 is GAS for (D34) in the positive quadrant.1044

Using again Thieme’s Theorem, for any positive (S0
2 , x

0
2), the solution1045

(S2(t), x2(t)) of (D29) converges towards e2 = (S∗2 , x
∗
2). Using (D33) we deduce1046



Springer Nature 2021 LATEX template

Performance study of two serial interconnected chemostats 45

that, ifD < r(f(Sin)−a1), then the solution (S1(t), x1(t), S2(t), x2(t)) of (B10)1047

converges towards E2 = (S∗1 , x
∗
1, S
∗
2 , x
∗
2). This ends the proof of the theorem.1048

D.2 Proof of Lemma 41049

Let us fix Sin such that δ := f(Sin)−a > 0. The proof consists in showing that1050

the function (D, r) 7→ G2(Sin, D, r) can be formally extended as a C2 function1051

for values of r larger than 1 (although such values have no physical meaning).1052

Recall first that for any D ∈ (0, δ), one has G2(Sin, D, 1) = Gchem(Sin, D). As1053

G2(Sin, D(1), 1) > 0 and G2(Sin, 0, 1) = 0, there exists by continuity of the1054

function G2, numbers D ∈ (0, D(1)), r ∈ (0, 1) such that1055

G2(Sin, D, r) < max
d∈(0,rδ)

G2(Sin, d, r), (D, r) ∈ [0, D]× [r, 1]. (D36)

Let ε > 0 be such that1056

Dε := ε

(
a+ max

s∈[0,Sin]
f ′(s)(Sin − s)

)
< D (D37)

and consider the domain1057

Dε :=

{
(D, r); D ∈ (Dε, δ), r ∈

(
max

(
r,
D

δ

)
, 1 + ε

)}
.

Note that for any (D, r) ∈ Dε, the number λ(D/r+ a) = f−1(D/r+ a) is well1058

defined. Posit the function1059

ϕ(S2, D, r) = (D + (1− r)a) (λ(D/r + a)− S2)

− (1− r)f(S2)
(
DSin+raλ(D/r+a)

D+ra − S2

)
,

where (S2, D, r) ∈ (0, Sin)×Dε. As f is C2, ϕ is C2 on (0, Sin)×Dε.1060

For r < 1 and (D, r) ∈ Dε, one has1061

ϕ(S2, D, r) = (1− r)
(
DSin+raλ(D/r+a)

D+ra − S2

)
(h(S2)− f(S2))

where h is the function defined in (5). According to Lemma 8, h is posi-1062

tive decreasing on (0, λ(D/r + a), and h − f admits an unique zero S?2 =1063

S?2 (Sin, D, r) on (0, λ(D/r + a). Then, one can write1064

∂S2
ϕ
∣∣∣
S2=S?

2

= (1− r)
(
DSin + raλ(D/r + a)

D + ra
− S2

)
(∂S2

h− f ′)
∣∣∣
S2=S?

2

< 0.

For r ∈ [1, 1 + ε) and (D, r) ∈ Dε, on has1065
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∂S2ϕ =− (D + (1− r)a)− (1− r)f ′(S2)
(DSin + raλ(D/r + a)

D + ra
− S2

)
+ (1− r)f(S2),

which is negative for any S2 ∈ (0, Sin) thanks to condition (D37). As1066

ϕ(0, D, r) > 0 and ϕ(Sin, D, r) < 0, we deduce the existence of a unique1067

S?2 = S?2 (Sin, D, r) in (0, Sin) such that ϕ(S?2 , D, r) = 0, which also verifies1068

∂S2
ϕ < 0 at S2 = S?2 .1069

Then, by the Implicit Function Theorem, the function (D, r) 7→1070

S?2 (Sin, D, r) is C2 on Dε. Recall that for r < 1 and D < rδ, on has the1071

expression G2(Sin, D, r) = V D(Sin − S?2 (Sin, D, r)) (see Proposition 4). We1072

extend now the function (D, r) 7→ G2(Sin, D, r) with this last C2 expression1073

on Dε. As G2(Sin, D, 1) = Gchem(Sin, D) for any D ∈ (0, δ), one deduces,1074

by continuity of the partial derivatives of G2 with respect to D and property1075

(D36), the existence of VD, Vr as neighborhoods respectively of D(1) and 11076

with VD × Vr ⊂ Dε such that for any r ∈ Vr, the function D 7→ G2(Sin, D, r)1077

possesses the following properties1078

1. it is strictly concave on VD,1079

2. it is increasing on (Dε, D(1)) \ VD and decreasing on (D(1), rδ) \ VD,1080

3. its maximum over (0, rδ) is not reached for D ≤ Dε.1081

We thus deduce that D 7→ G2(Sin, D, r) admits a unique maximum D(r) on1082

(0, rδ), for any r ∈ Vr.1083

Finally, for any r ∈ Vr, D(r) is characterized as the zero of the map D 7→1084

F (D, r) where F is the C1 function1085

F (D, r) := ∂DG2(Sin, D, r)

From property 1. above, one obtains1086

∂DF (D(r), r) = ∂2
DDG2(Sin, D(r), r) < 0, r ∈ Vr

and by the Implicit Function Theorem, there exists a neighborhood V1 ⊂ Vr1087

of 1 such that D is C1 on V1, which ends the proof of the lemma.1088

D.3 Proof of Proposition 61089

Sin being fixed, we shall drop the Sin dependency in the expressions of S∗i , x∗i1090

(i = 1, 2) and G2. Thus, let us define1091

G(D, r) := G2(Sin, D, r),
Fi(D, r) := f(S∗i (D, r))x∗i (D, r), i = 1, 2,

as functions of D ≥ 0 and r ∈ V1∩{r < 1}. Remark from the expression of F1,1092

that it is well defined as well as its partial derivatives at r = 1. In addition,1093

for the limiting case r = 1, using Lemma 9, for all D ≥ 0, one has1094
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S∗2 (D, 1) = S∗1 (D, 1) = λ(D + a)
x∗2(D, 1) = x∗1(D, 1) = D

D+a (Sin − λ(D + a)).
(D38)

Thus, for all D ≥ 0, one has1095

F1(D, 1) = F2(D, 1), (D39)

and F2 is also well defined for r = 1. Thus, according to (37), for all D ≥ 01096

and r ∈ V1 ∩ {r ≤ 1}, one has1097

G(D, r) = rF1(D, r) + (1− r)F2(D, r),

and from Lemma 4, for r ∈ V1 ∩ {r < 1}, one has1098

G(r) = G(D(r), r), (D40)

with G defined by (42). For convenience, for a function E of (D, r) that is1099

differentiable, we shall define the three following functions: E(r) := E(D(r), r)1100

and1101

∂rE(r) :=
∂E

∂r
(D(r), r), ∂DE(r) :=

∂E

∂D
(D(r), r).

Therefore, the function G writes1102

G(r) = rF 1(r) + (1− r)F 2(r), for r ∈ V1 ∩ {r < 1}. (D41)

As the functions Fi are differentiable and as D(r) is a maximizer of D 7→1103

rF1(D, r)+(1−r)F2(D, r) on the interior of the interval [0, f(Sin)−a], one has1104

r∂DF1(r) + (1− r)∂DF2(r) = 0, for r ∈ V1 ∩ {r < 1}, (D42)

and ∂DF1(1) = 0. As f is C2 and D is assumed to be differentiable on V1∩{r <1105

1}, G is differentiable and from (D41), for all r ∈ V1 ∩ {r < 1}, one has1106

G
′
(r) = F 1(r)− F 2(r) + r∂rF1(r) + (1− r)∂rF2(r)

+(r∂DF1(r) + (1− r)∂DF2(r))D
′
(r),

and with (D42), for all r ∈ V1 ∩ {r < 1}, one has simply1107

G
′
(r) = F 1(r)− F 2(r) + r∂rF1(r) + (1− r)∂rF2(r). (D43)

Let us now determine the limits of the terms of the right side of this last1108

equality when r tends to 1. Firstly, according to (D39), one has in particular1109

F 1(1) = F 2(1). (D44)

Secondly, remark that the dynamics of the first tank is parameterized by1110

the single dilution rate D1 = D/r, the other parameters being fixed (see the1111

expression (B17)). The function F1 takes then the form F1(D, r) = F̃1 (D/r)1112

where F̃1 is a smooth function. Therefore, one has1113

∂DF1(r) = − r

D(r)
∂rF1(r). (D45)
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As ∂DF1(1) = 0 then one deduces1114

∂rF1(1) = 0. (D46)

Finally, from Ṡ2 = 0, for all r ∈ V1 ∩ {r < 1}, one gets1115

F2(D, r) =
D

1− r (S∗1 (D, r)− S∗2 (D, r)). (D47)

Differentiating (D47) with respect to r gives1116

∂F2

∂r
(D, r) =

D

1− r

(
∂S∗1
∂r

(D, r)− ∂S∗2
∂r

(D, r)

)
+

D

(1− r)2
(S∗1 (D, r)−S∗2 (D, r))

which can be written equivalently as1117

(1− r)∂F2

∂r
(D, r) = D

(
∂S∗1
∂r

(D, r)− ∂S∗2
∂r

(D, r)

)
+ F2(D, r).

Thus, for D = D(r), one has1118

(1− r)∂rF2(r) = D(r)(∂rS
∗
1 (r)− ∂rS∗2 (r)) + F 2(r).

Notice that for D = D(r), (D47) gives1119

F 2(r) =
D(r)

1− r (S
∗
1(r)− S∗2(r)), for all r ∈ V1 ∪ {r < 1}. (D48)

Using L’Hôpital’s rule in (D48) when r tends to 1, one gets1120

F 2(1) = lim
r→1−

D
′
(r)(S

∗
1(r)−S∗2(r))+D(r)(∂rS

∗
1 (r)−∂rS∗2 (r))

−1

and using (D38) and (D44), one obtains1121

F 1(1) = lim
r→1−

−D(r)(∂rS
∗
1 (r)− ∂rS∗2 (r)).

Consequently, one has1122

lim
r→1−

(1− r)∂rF2(r) = 0. (D49)

With (D44), (D46) and (D49), expression (D43) gives the existence of the limit1123

of G
′

when r tends to 1 with r < 1, which is1124

G
′
(1−) = 0. (D50)

Note that G
′′
(1−) exists if and only if limr→1−

G
′
(r)−G′(1)
r−1 exists. Using (D50)1125

and (D43), one has1126

G
′
(r)−G′(1−)
r−1 = −G

′
(r)

1−r = −F 1(r)−F 2(r)+r∂rF1(r)+(1−r)∂rF2(r)
1−r (D51)
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On the one hand, using L’Hôpital’s rule, one has1127

lim
r→1−

F 1(r)− F 2(r)

1− r = lim
r→1−

F
′
1(r)−F ′2(r)
−1 .

Recall that ∂rF1(1) = 0 and thus one has F
′
1(1) = 0. Consequently, one has1128

lim
r→1−

fracF 1(r)− F 2(r)1− r = lim
r→1−

F
′
2(r) = lim

r→1−
∂rF2(r) + ∂DF2(r)D

′
(r).

(D52)
On the other hand, using (D42) and (D45), one has1129

r

1− r ∂rF1(r) =
D(r)

r
∂DF2(r). (D53)

Thus, according to (D51), (D52) and (D53), one gets1130

lim
r→1−

G
′
(r)−G′(1−)

r − 1
= lim
r→1−

(D54)

Let us show now that the limit of ∂DF2(r) is 0 when r tends to 1. One has1131

∂F2

∂D = f ′(S∗2 )
∂S∗2
∂D x

∗
2 + f(S∗2 )

∂x∗2
∂D .

Let use the expression G(D, r) = D(Sin − S∗2 (D, r)) given by Proposition 4.1132

As D(r) is a maximizer then one has1133

∂DG(r) = Sin − S∗2(r)−D(r)∂DS
∗
2 (r) = 0.

Using (D38), one then deduces1134

∂DS
∗
2 (1−) =

Sin − λ
(
D(1) + a

)
D(1)

.

In addition, using expressions (B18) and (D38), one gets1135

∂Dx
∗
2(1−) = − D(1)(

D(1) + a
)2 (Sin − λ (D(1) + a

))
,

and hence the limit of ∂DF2 when r tends to 1 exists:1136

∂DF2(1−) =
Sin − λ

(
D(1) + a

)
D(1) + a

f ′
(
λ
(
D(1) + a

))
A,

where A = Sin − λ
(
D(1) + a

)
− D(1)

f ′(λ(D(1)+a))
. Thus, one has1137

∂DF2(1−) =
Sin − λ

(
D(1) + a

)
D(1) + a

f ′
(
λ
(
D(r) + a

)) (
Sin − g

(
D(1)

))
,

with g defined by (A8). According to Proposition 9, one has Sin−g
(
D(1)

)
= 0.1138

Consequently, one has ∂DF2(1−) = 0.1139
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Finally, it remains to calculate the limit of ∂rF2(r) when r tends to 1. One1140

has1141

∂F2

∂r
= f ′(S∗2 )

∂S∗2
∂r

x∗2 + f(S∗2 )
∂x∗2
∂r

.

Let use again the expression G(D, r) = D(Sin−S∗2 (D, r)). According to (D41),1142

one has1143

G
′
(r) = ∂rG(r) + ∂DG(r)D

′
(r)

where ∂DG(r) = 0. According to (D50), we have ∂rG(1−) = 0, and thus1144

∂rS
∗
2 (1−) = 0. Using expression (B18), one gets1145

∂rx
∗
2(1−) = −aD(1)

Sin − λ
(
D(1) + a

)(
D(1) + a

)2 ,

and then the limit of ∂rF2 when r tends to 1 exists:1146

∂rF2(1−) = −aD(1)
Sin − λ

(
D(1) + a

)
D(1) + a

.

As D
′

is assumed to be bounded on V1 ∪ {r < 1}, we thus obtain from1147

(D54) the existence of G
′′
(1−) with1148

G
′′
(1−) = −2∂rF2(1−)

which is given by expression (43).1149
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