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Abstract
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding
pipelines has been considered for years. Here we examine to what extent and under what environmental conditions meta-
bolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multi-
variable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield
(GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive
stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based
on genomic data for the prediction of GY under drought (Q2 = 0.54–0.56 versus 0.35) and for stress-induced GY loss
(Q2 = 0.59–0.64 versus 0.03–0.06). Models based on the combined datasets showed predictabilities similar to metabolic/
biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also
quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxi-
dant enzymes of the ascorbate–glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY sta-
bility under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central
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metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physio-
logical responses to the environment and can help bridge the gap between the genome and the phenome of crops as pre-
dictors of GY performance under drought.

Introduction
In rice (Oryza sativa), as in most crops, grain yield (GY) is a
highly complex trait. It is controlled by many genes of small
effect, and these genes operate in coordinated networks
that are influenced by pleiotropic and epistatic effects as
well as by genotype-by-environment-by-management inter-
actions (Xing and Zhang, 2010).

The intrinsic complexity and polygenic nature of GY
makes it a difficult trait to improve using marker-assisted se-
lection. On the other hand, genomic selection (GS) over-
comes the limits that are associated with the absence of
major effect genes by simultaneously estimating the effect of
many markers (and underlying genes) distributed over the
whole genome. However, the need to account for different
sources of nongenetic variability, and nonadditive modes of
gene action has made model choice and implementation of
GS challenging for improving complex traits (Rice and Lipka,
2021).

One limitation of genomics for the prediction of complex
phenotypes, such as GY, lies in the fact that the information
encoded in genetic markers is a poor predictor of an organ-
ism’s ability to dynamically respond to environmental stim-
uli at the physiological level (Yin et al., 2004). For these
reasons, in other important cereal crops, such as maize (Zea
mays) and wheat (Triticum aestivum), physiological traits
have been studied in connection with genetics to improve
crop performance (Cooper et al., 2014; Reynolds and
Langridge, 2016). Cellular physiology provides a key interface
between genotype and phenotype. It represents an internal
phenotype (endophenotype) that integrates transcriptomic,
proteomic, and metabolomic networks of regulation that
are interconnected and continuously respond to environ-
mental factors (Großkinsky et al., 2015). Among these multi-
ple cellular layers of information, metabolite levels are more
directly linked to the phenotype than are gene transcripts
and protein levels (Fernie and Stitt, 2012) and the possibility
of introducing metabolic/biochemical phenotyping to com-
plement genomics in breeding pipelines for the improve-
ment of crop performance has been considered for years
(Fernandez et al., 2021).

In the last 15 years, metabolome-based models have been
used to predict complex traits, such as biomass, in large
Arabidopsis (Arabidopsis thaliana) and maize populations of
recombinant inbred lines (Meyer et al., 2007; Sulpice et al.,
2009; Steinfath et al., 2010; Riedelsheimer et al., 2012). In
rice, these models were successfully employed to predict the
yield of hybrids by directly using the hybrid’s metabolite
profiles (Xu et al., 2016) or those of the parents (Dan et al.,
2016). Despite the value of these findings for hybrid

breeding programs, the narrow genetic background of the
materials used in these studies did not explore the large,
qualitative, and quantitative genetic diversity available for
rice metabolism (Chen et al., 2014). In addition, most of the
metabolomics studies in crop species, including rice, have
been conducted under control conditions while in
Arabidopsis natural variation in metabolic plasticity (i.e. met-
abolic changes induced by the environmental changes) was
shown to be an important factor contributing to pheno-
typic plasticity (Kleessen et al., 2014). For these reasons, it is
still necessary to evaluate the power of metabolic/
biochemical-based models for predicting GY under different
environmental conditions in large panels of genetically di-
verse crop accessions. It is also necessary to compare the
predictive ability of metabolic/biochemical-based models,
genomic-based models, and models based on combined
datasets for the same trait to understand when and if meta-
bolic/biochemical traits complement or potentially outper-
form genomics-based prediction for yield improvement.

It was recently shown that a multivariable model based
on levels of flag leaf central metabolites and oxidative stress
markers/enzymes was able to efficiently predict drought-
induced GY loss in a large panel of genetically diverse indica
rice accessions grown in the field (Melandri et al., 2020a).
Here we use the same dataset to predict GY under both
well-watered and drought conditions, in addition to predict
stress-induced GY loss. We also evaluate a genomic dataset
as the basis for predicting the same GY traits under the
same conditions. This allowed us to: (1) analyze the differen-
ces between metabolic/biochemical-based models, genomic-
based models, and models that integrate the two datasets
for the prediction of rice GY traits under well-watered and
drought conditions and (2) identify which biochemical path-
ways/antioxidants are important predictors for GY perfor-
mance in this crop.

Results

Relationships between GY, plant height (PH), and
flowering time (FT)
In this study, the GY performance of 271 tropical and sub-
tropical, traditional, and improved indica rice varieties
(Supplemental Table S1) was assessed in a field experiment
under irrigated (control) and reproductive-stage drought
conditions. Drought stress reduced GY (GYLOSS) by an aver-
age of 29.3% (paired t test: P5 0.001) (Supplemental Table
S2). GYs under control (GYCON) and drought (GYDRO) con-
ditions were highly correlated (Pearson correlation, r = 0.75,
P5 0.001), and high estimates of broad-sense heritability
were observed under both treatments (H2 = 0.89 and 0.84
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for GYCON and GYDRO, respectively) (Figure 1; Supplemental
Table S3). Interestingly, GYLOSS was significantly (P5 0.001)
and negatively correlated (r = –0.61) with GYDRO but not
with GYCON (Figure 1). This observation indicates that the
yield performance of the accessions exhibited genotype-by-
treatment interaction and was highly influenced by
reproductive-stage drought.

To explore the nature of this interaction, we further
assessed the relationships between GY-related traits and two
important agronomic phenotypes, plant height (PH), and
flowering time (FT). Both of these traits showed high herita-
bility estimates (PH: H2 = 0.97; FT: H2 = 0.99; Supplemental
Table S3) and displayed significant variation in the diversity
panel (Figure 1; Supplemental Table S2). In this indica rice
panel, there was a high correlation between PHCON and
PHDRO (r = 0.95, P5 0.001), and the distribution of PH un-
der both treatments was bi-modal, with two, distinct normal
distributions around two different peaks (Figure 1). PH dif-
ferences under both treatments are strongly associated with
allelic variation of a single-nucleotide polymorphism (SNP)
marker on chromosome 1 (position: 38,286,772 bp; Welch’s t
test: P5 0.001; Supplemental Figure S1). This SNP marker
was previously mapped for PH differences in a larger version
of this panel (Kadam et al., 2017), and the linkage disequilib-
rium block (259 kbp) surrounding the marker included the
gibberellin 20-oxidase biosynthetic gene, also known as
SEMI-DWARF1 (OsGA20ox2, LOC_Os01g66100), introduced
during the Green Revolution. The genotypic difference asso-
ciated with the diagnostic SNP marker is a strong predictor
of PH across environments, despite a mean reduction of

8 cm when PHDRO is compared with PHCON (paired t test:
P5 0.001; Supplemental Table S2). This stature-associated
SNP is also strongly associated with yield performance
(Welch’s t test: P5 0.001; Supplemental Figure S1), as evi-
denced by the significant (P5 0.001) negative correlation
between PH and GY under both control (r = –0.31) and
drought (r = –0.26) conditions (Figure 1). In contrast,
GYLOSS displayed a random distribution among both short
and tall accessions of the panel (Supplemental Figure S2).

In this study, FT was synchronized by sowing and trans-
planting accessions on different dates to ensure that
drought stress was imposed on all genotypes at the flower-
ing stage (Kadam et al., 2018). FT synchronization was
largely, but not entirely achieved (Supplemental Table S1).
Reproductive-stage drought stress resulted in an almost uni-
form delay of three days in FT for all accessions
(Supplemental Table S2) consistent with the high correlation
(r = 0.97, P5 0.001) between FT under control (FTCON) and
drought (FTDRO) conditions (Figure 1). Despite the synchro-
nization of FT for stress application, FTDRO was negatively
and weakly correlated with GYLOSS (r = –0.16, P5 0.01) sug-
gesting that drought-induced yield loss was partially miti-
gated by late FT.

Variation in GY is better predicted by metabolome/
oxidative stress status-based models than by
genomic-based models
Our previous work (Melandri et al., 2020a) showed that
cross-validated (CV) partial least squares regression (PLSR)
modeling based on 111 flag leaf metabolites, oxidative stress

Figure 1 Correlation matrix between values (BLUEs) of PH, FT, and GY—under control (CON) and drought (DRO) conditions—and GY loss
(GYLOSS) of the 271 indica rice accessions. PH units are expressed in centimeters, FT in days, GY in grams/m2, and GYLOSS in percentage. Pearson
correlations (r, stronger correlations are represented by larger numbers) and levels of significance (in green, ***P5 0.001, **P5 0.01, *P5 0.05) are
reported in the upper-right portion of the matrix. Scatterplots of the pairwise combinations between traits (trendline in red) are reported in the
bottom-left portion of the matrix. Trait distributions are represented along the diagonal of the matrix (trendline in blue).
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markers, and enzyme activities (hereafter MetabOxi) mea-
sured under drought efficiently predicted stress-induced
GYLOSS in 292 genetically diverse indica rice genotypes.

In this study, we expanded the PLSR modeling approach
to predict GYCON and GYDRO, in addition to GYLOSS, in a
subset of 271 accessions from the same experiment using
the MetabOxi dataset (Supplemental Table S4). Control val-
ues of the MetabOxi dataset were used to predict GYCON

while drought values of the same dataset were used to pre-
dict GYDRO and GYLOSS. To compare the strength of model-
ing using these biochemical markers with genomic
prediction, a genomic dataset consisting of 81,347 SNP
markers on the 271 accessions (Supplemental Data Set 1)
was also used to build PLSR models for prediction of
GYCON, GYDRO, and GYLOSS. In addition, Ridge-Regression
Best Linear Unbiased Prediction (RR-BLUP) and BayesB mod-
els, more commonly employed in GS studies, were used to
run MetabOxi- and genomic-based models as the basis for
comparing the predictive ability of all three models for the
same traits. Goodness of prediction (Q2) was used to quan-
tify the predictability of the models (for more details on the
calculation of Q2, see “Materials and methods”) and used
throughout the manuscript to describe and discuss the
results. Prediction accuracies were also calculated as Pearson
correlation (Pearson’s r) coefficients between observed and
predicted GY values.

For each GY trait, Q2 values were similar between the 10-
fold CV PLSR, RR-BLUP, and BayesB models and always
higher for the MetabOxi than the genomic dataset
(Figure 2, A and C). Q2 values were most similar for GYCON

when MetabOxi- (Q2 = 0.32–0.40) and genomic-based
(Q2 = 0.31–0.32) models were compared. Differences in pre-
dictability were greater for GYDRO where genomic-based
models displayed similar values (Q2 = 0.35) as for GYCON but
MetabOxi-based models showed markedly better values
(Q2 = 0.54–0.56). The gap between MetabOxi- and genomic-
based models further increased when predicting GYLOSS,
with MetabOxi-based models showing good predictability
(Q2 = 0.59–0.64) and genomic-based models showing almost
null values (Q2 = 0.03–0.06). In all cases, Pearson correlation
coefficients showed the same trends as Q2 values (Figure 2,
A and C). Overall, the higher predictive power of the
MetabOxi dataset compared to the genomic dataset sug-
gests that metabolite levels and enzyme activities are more
closely aligned to the ability of a plant to dynamically re-
spond to stress than are fixed genetic determinants. This is
especially true for drought-induced GYLOSS, followed by
GYDRO and, to a lesser extent, for GYCON.

Models based on combined MetabOxi and genomic
data have a similar predictive power as
MetabOxi-based models alone
We compared the prediction accuracies of the 10-fold CV
PLSR, RR-BLUP, and BayesB models based on the combined
MetabOxi and genomic datasets (MetabOxi + Genomic in
Figure 2B) with the same models based on a single dataset

(Figure 2, A and C) for GY traits. The
MetabOxi + Genomic-based RR-BLUP and BayesB models
always predicted GY traits better than genomic-based

A

B

C

Figure 2 Multivariate models for the prediction of GY performance in
the 271 indica rice accessions of the panel. Scatterplots of observed
(BLUEs) versus predicted values of the 10-fold CV MetabOxi-based (A,
in blue), genomic-based (B, in purple), and MetabOxi + Genomic-
based (C, in orange) PLSR, RR-BLUP, and BayesB models for the pre-
diction of GY—under control (CON) and drought (DRO) conditions—
and GYLOSS. GY units are expressed in grams/m2 and GYLOSS in per-
centage. Predictability values (Q2 and Pearson’s r) of the models are
displayed in each scatterplot (Pearson’s r values in brackets).
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models alone, while the PLSR models showed no differ-
ence (Figure 2, B and C). Compared with MetabOxi-based
models, MetabOxi + Genomic-based RR-BLUP and BayesB
models showed a virtually identical predictability for
GYCON, GYDRO, and GYLOSS (Figure 2, A and B). The
MetabOxi + Genomic-based PLSR models displayed lower
predictability values for GY-related traits, particularly for
GYDRO and GYLOSS (GYCON showed the same predictabil-
ity). Overall, these results suggest that combining
MetabOxi and genomic information into a single model
did not improve the prediction of GY-related traits com-
pared with the use of MetabOxi-based models alone. In
the case of PLSR, the integration of the two datasets re-
duced the predictability of GY under stress compared
with the MetabOxi-based models.

Adjusting GY for PH and FT consistently improves
the predictive power of genomic-based models only
Given the influence of PH and FT variation on GY perfor-
mance (as discussed above), we next tested if accounting for
differences in PH and FT in the context of GY performance
could improve the predictability of MetabOxi- and/or
genomic-based models. To address this question, the 10-fold
CV PLSR, RR-BLUP, and BayesB models were re-run using re-
estimated values of GYCON, GYDRO, and GYLOSS calculated
using PH, FT, or both (PH + FT) as trait covariates.

The MetabOxi-based models showed virtually no improve-
ment in predicting GYCON when the GY values were ad-
justed using PH and/or FT as covariates, while prediction of
GYLOSS and GYDRO was slightly improved (a max Q2 increase
of �0.12 was observed using PH + FT corrected values)
(Table 1). In contrast, the genomic-based models displayed a
larger increase in predictability using the covariate-adjusted
GY traits. The increase in predictability was again minimal
for GYCON (max Q2 increase of 0.05) and larger for GYDRO

and GYLOSS (max Q2 increase of �0.25, for both traits).
Predictability values for the genomic-based models were
most improved for GYDRO and GYLOSS when the data were
adjusted using either PH alone or PH + FT as covariates,
while improvement was minimal (max Q2 increase of 0.08)
when FT alone was used as a covariate (Table 1). This sug-
gests that variation in PH exerts a stronger influence on GY
performance under drought than variation in FT, consistent
with the correlations among agronomic traits described
above (Figure 1). Despite the increased predictive ability of
the genomic-based and the MetabOxi-based models when
covariate-adjusted GY traits were used as input data, it is
noteworthy that the MetabOxi-based models always out-
performed the genomic models in terms of predictability
(Table 1). In all cases, Pearson correlation coefficients
showed the same trends as Q2 values (Table 1).

We also considered the effect of PH and FT (individually
and together) as secondary traits to predict GY by running
multi-trait PLSR and RR-BLUP models (for more details on
the calculation of the models see “Materials and methods”)
and report the results in Supplemental Table S5.

Interestingly, the results (compare Supplemental Table S5
with Table 1) show that better GY predictabilities were de-
termined when PH, FT, or both were used as covariates for
calculating the BLUEs rather than incorporating them into
the multi-trait models.

Taken together, these results suggest that metabolite val-
ues and enzyme activities provide a way to quantitatively es-
timate dynamic physiological responses to stress that
differentiate individual plants in a population, and that these
MetabOxi-variables already integrate inherent differences in
PH and FT known to impact GY performance.

Rankings of MetabOxi-based model predictors
reveal the importance of biochemical pathways
and antioxidants for GY performance
Each of the 10 MetabOxi-based sub-models (generated by
the CV procedure) for the prediction of GY traits provided a
rank of importance for the 111 MetabOxi-variables. By multi-
plying the 10 ranks derived from single sub-models, the over-
all ranking of each MetabOxi-variable was calculated
(Supplemental Tables S6–S8). We next determined the corre-
lation between the MetabOxi-variables and GY traits, PH,
and FT (Supplemental Tables S9 and S10) to gain insight
into the nature (positive or negative) and strength (r) of
their associations. The top three MetabOxi-variables from
each GY model (Table 2), that is, those with the lowest rank-
products (lower rank-product implies higher importance), in-
dicate which biochemical and antioxidant pathways are im-
portant for GY prediction in our dataset (Figure 3). We
additionally tested if these top-ranked predictors had a signif-
icant effect on GY by fitting them in linear models as single
explanatory variables for the trait (Supplemental Table S11).

Among the 111 MetabOxi-variables evaluated as top-
ranked predictors for GYCON, organic acids consistently
ranked high (Table 2). Chlorogenic acid (3-caffeoyl-quinic
acid), a compound with antioxidant and pathogen defense
activity in plants, is present among the top-ranked variables
for all three models (ranked first, second, and third in the
PLSR, RR-BLUP, and BayesB models, respectively). It corre-
lates negatively with GYCON (r = –0.36, P5 0.001), positively
with PHCON (r = 0.39, P5 0.001) and negatively with FTCON

(r = –0.33, P5 0.001) (Table 2; Supplemental Table S9).
These correlations suggest that the variation in concentra-
tion of this compound among rice accessions fully integrates
the complex interconnections between GY, PH, and FT ob-
served in the rice panel (Figure 1). A second organic acid, a-
ketoglutaric acid (2-oxo-glutaric acid) ranked first in both
the RR-BLUP and BayesB models. It is an intermediate of
the tricarboxylic acid (TCA) cycle, like isocitric and citric
acid, which are the second and third top-ranked variables of
the PLSR model. All three of these TCA cycle intermediates
are positively correlated with GYCON (P5 0.001, r = 0.27,
0.39, and 0.37 for a-ketoglutaric, isocitric, and citric acid, re-
spectively) and negatively with PHCON (P5 0.001, r = –0.31,
–0.38, and –0.45 for a-ketoglutaric, isocitric, and citric acid,
respectively) while they show no correlation with FTCON
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(Table 2). This indicates that higher abundance of TCA cycle
intermediates is associated with shorter PH in the panel,
and higher GYCON performance, independent of differences
in FT (Figure 3). A third variable, galactinol, is a sugar alco-
hol with osmoprotective/antioxidant activity. It ranked sec-
ond in the BayesB model for GYCON (fourth in the RR-BLUP
model, Supplemental Table S6) and, like chlorogenic acid, is
negatively correlated with GYCON (r = –0.23, P5 0.05) but
positively correlated with FTCON (r = 0.50, P5 0.001); it
shows no association with differences in PHCON (Table 2).
This may indicate that the variation in galactinol levels
impacts GY performance and is mainly associated with the
imperfect FT synchronization of the panel. Less clear is the
biochemical contribution of uridine, the third best predictor
of the RR-BLUP model (fourth in the BayesB model,
Supplemental Table S6) where variation is not associated
with differences in GYCON though it is positively correlated
with PHCON (r = 0.22, P5 0.05) and negatively with FTCON

(r = –0.22, P5 0.05) (Table 2). The presence of uridine
among the top BayesB model predictors hints at the impor-
tance of both PH and FT differences on GY performance of
the accessions under control conditions.

In contrast to the predictors identified for GYCON, the
top-ranked predictors in the MetabOxi-based GYDRO and
GYLOSS models are mostly antioxidant enzymes or oxidative
stress markers that are not significantly correlated with vari-
ation in either PHDRO or FTDRO (Table 2). The antioxidant
enzyme dehydroascorbate reductase (DHAR) is the highest-
ranking model predictor (rank-prod = 1 in all models) for
both GYDRO and GYLOSS. It is positively (r = 0.58, P5 0.001)
and negatively (r = –0.62, P5 0.001) correlated with the
two traits, respectively, and these correlations are the most
significant among the 111 MetabOxi-variables
(Supplemental Table S10). The lipid peroxidation product
malondialdehyde (MDA) ranked as the second-best variable
in the PLSR and RR-BLUP models, and third in BayesB, for

the prediction of both GYDRO and GYLOSS (Table 2). In con-
trast to DHAR, MDA is negatively correlated with GYDRO

(r = –0.41, P5 0.001) and positively with GYLOSS (r = 0.61,
P5 0.001). The fact that DHAR and MDA are the top-
ranked predictors of GYDRO and GYLOSS suggests that, dur-
ing drought imposition, the oxidative stress status of the
flag leaf is more predictive of GY performance than flag leaf
central metabolism (Figure 3). This is underscored by the
fact that another antioxidant enzyme, monodehydroascor-
bate reductase (MDHAR) was identified as the second
(BayesB model) and third (PLSR and RR-BLUP) most impor-
tant predictor of GYLOSS. MDHAR is only marginally corre-
lated with GYDRO (r = 0.21, P = 0.05) (Supplemental Table
S10) and not correlated with GYLOSS (Table 2). In addition,
MDHAR was the only top-ranked predictor with a nonsig-
nificant effect on GY (GYLOSS) when fit as a single explana-
tory variable in a linear model with the trait as response
variable (Supplemental Table S11). Like DHAR, MDHAR
regenerates oxidized ascorbate to its reduced form and is in-
volved in the ascorbate–glutathione antioxidant cycle. Its
presence as a top-ranked model variable suggests the impor-
tance of this cycle in counteracting drought-induced GY re-
duction, despite the weak relationship between its activity
and GY. Interestingly, a-ketoglutaric acid, which was also
positively associated with GYCON, ranked second in the
BayesB and third in the RR-BLUP model as a predictor of
GYDRO though it was not significantly correlated with
GYDRO (Table 2). Differences in a-ketoglutaric acid values
were negatively correlated with PH under both control and
drought conditions (PHDRO: r = –0.38, P5 0.001), suggesting
that the accumulation of this TCA cycle intermediate in
shorter plants contributes positively to both constitutive
GYCON performance and to GYDRO performance, even if the
latter is also strongly determined by dynamic responses to
stress (Figure 1).

Table 1 Predictability of MetabOxi- and genomic-based models for GY traits nonadjusted and adjusted by PH and FT

MetabOxi-based models Genomic-based models

PLSR RR-BLUP BayesB PLSR RR-BLUP BayesB

GY traits Q2 r Q2 r Q2 r Q2 r Q2 r Q2 r

BLUEs no cov GYCON 0.32 0.58 0.37 0.61 0.40 0.63 0.31 0.57 0.32 0.56 0.32 0.56
GYDRO 0.54 0.74 0.56 0.75 0.55 0.74 0.35 0.60 0.35 0.60 0.35 0.59
GYLOSS 0.61 0.78 0.59 0.77 0.64 0.80 0.03 0.25 0.06 0.26 0.06 0.26

BLUEs cov PH GYCON 0.34 0.59 0.37 0.61 0.40 0.63 0.31 0.57 0.31 0.56 0.31 0.56
GYDRO 0.60 0.78 0.64 0.80 0.64 0.80 0.54 0.73 0.53 0.73 0.53 0.73
GYLOSS 0.58 0.76 0.60 0.77 0.60 0.77 0.24 0.51 0.32 0.57 0.32 0.57

BLUEs cov FT GYCON 0.30 0.56 0.35 0.59 0.38 0.61 0.35 0.60 0.35 0.60 0.35 0.59
GYDRO 0.58 0.77 0.62 0.79 0.62 0.79 0.41 0.64 0.42 0.65 0.42 0.64
GYLOSS 0.66 0.81 0.66 0.81 0.67 0.82 0.03 0.30 0.14 0.37 0.14 0.38

BLUEs cov PH and FT GYCON 0.32 0.57 0.36 0.60 0.38 0.62 0.36 0.61 0.36 0.60 0.36 0.60
GYDRO 0.65 0.81 0.68 0.83 0.69 0.83 0.59 0.77 0.58 0.76 0.58 0.76
GYLOSS 0.67 0.82 0.66 0.82 0.67 0.82 0.24 0.51 0.30 0.55 0.30 0.55

Predictability (Q2 and Pearson’s r) values of the PLSR, RR-BLUP, and BayesB models for the best linear unbiased estimators (BLUEs) of GY—under control (CON) and drought
(DRO) conditions—and GY loss (GYLOSS) calculated considering PH and FT as covariates (cov PH, cov FT, cov PH&FT) or without (no cov, same values as in Figure 2, A and C).
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Discussion
The major goal of this study was to compare the potential
of flag leaf metabolism/oxidative stress status and genetic
markers to predict GY performance in a diversity panel of
indica rice accessions grown under well-watered and
drought conditions in the field. Our results show that
MetabOxi-based models predict GY with superior accuracy
compared to genomic-based models. This higher accuracy
can be explained by the fact that MetabOxi-variables inte-
grate quantitative estimates of complex biological processes
summarized as metabolite levels and/or enzyme activities.
These measurements incorporate responses from a multi-
layered network of regulation (DNA, RNA, and protein) in
response to dynamic internal and external stimuli
(Keurentjes, 2009; Sulpice and McKeown, 2015). This is espe-
cially true in the context of environmental stress-driven per-
turbations, including those caused by drought. Indeed, the
dynamic response to external signals from a changing envi-
ronment (phenotypic plasticity) is often characterized by
changing metabolite levels and enzyme activities as a result
of post-translational and/or transcriptional regulation (Stitt
et al., 2010). In support of this hypothesis, we observed that
MetabOxi-based models were superior at predicting GYLOSS

and GYDRO, while genomic-based models predicted GYDRO

with lower accuracy and were essentially unable to predict
GYLOSS (Figure 2, A and C). Interestingly, under well-watered
conditions, the predictive power for GYCON of MetabOxi-
and genomic-based models was virtually identical. These
findings indicate that under nonstress conditions, genetic
determinants are equally predictive of plant performance as
basal flag leaf central metabolites and oxidative stress
markers/enzymes, but under suboptimal conditions, meta-
bolic/biochemical traits provide valuable endophenotypes
that are much more predictive of crop yield stability than
genomic information (Kumar et al., 2017; Sulpice, 2020).

The possibility of modeling multi-omics data for a deeper
understanding of complex phenotypic traits (e.g. crop yield
under stress) and to improve the accuracy of selection in
breeding (mainly through GS) is a “hot topic” in plant sys-
tems biology and plant breeding (Jamil et al., 2020; Scossa
et al., 2021; Tong and Nikoloski, 2021; van Dijk et al., 2021).
Our results indicate that the integration of biochemical
(MetabOxi) and genomic data in the same statistical model
may slightly increase (GYCON and GYDRO) or decrease
(GYLOSS) trait predictability compared with the best single
omics (MetabOxi-based) models (Figure 2). These results
differ from previous studies where the integration of multi-
omics data improved the predictability of GY in maize and
rice hybrids under nonstressed field conditions (Westhues
et al., 2017; Schrag et al., 2018; Wang et al., 2019; Xu et al.,
2020). A possible explanation for the difference might be
that in our study we brought together two “distant” omics
layers which are difficult to connect without the informa-
tion carried by intermediate omics layers, that is, transcrip-
tome and proteome. In support of this hypothesis, Schrag
et al. (2018) found that the combination of two “close”T
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omics layers, genome and transcriptome, was more predic-
tive of GY in maize hybrids than combining genome and
metabolome. However, Xu et al. (2020) found that genome
and metabolome was the best omics combination for the
prediction of GY in rice hybrids, and that a combination of
three or four omics layers (adding transcriptome and prote-
ome) provided no improvement. Thus, the value of integrat-
ing different types of omics data for the prediction of GY
might also depend on factors such as crop species, data
quality, and the presence of quantifiable environmental
stress at the field site, with the latter having a strong associ-
ation with metabolic/biochemical data, as clearly demon-
strated in this study. This study also underscores the
importance of the statistical model used for prediction, as
the model itself can impact the predictability of the trait
when different omics datasets are integrated. The predict-
ability values of the MetabOxi + Genomic PLSR models
were similar to the corresponding MetabOxi-based model
for GYCON, but lower for GYDRO and GYLOSS (Figure 2). The
fact that the same did not happen for the
MetabOxi + Genomic-based RR-BLUP and BayesB models
suggest that the PLSR algorithm might not be able to inte-
grate the MetabOxi and genomic datasets in an efficient
way. Indeed, the concatenation of two data matrices of
vastly different sizes (111 versus 81,347 variables for the
MetabOxi and genomic datasets, respectively) into a single
matrix in the combined PLSR model might have over-
represented the global data structure since the weighting of
each variable is governed by the total sum of squares. This
resulted in a reduction of the relative contribution of the
MetabOxi variables for the prediction (Höskuldsson and
Svinning, 2006; Reinke et al., 2018). Overall, these results
highlight the need for further studies to better integrate
omics data to fully exploit their explanatory power in the
context of complex quantitative traits.

Another important finding of our study is that the perfor-
mance of MetabOxi-based models was little improved when
PH and/or FT were introduced as covariates whereas the
genomic-based models showed significant improvement,
particularly for GYDRO and GYLOSS. The same analysis dem-
onstrated that variation in PH had a stronger influence on
GY performance than FT (not entirely surprising, given that
FT was synchronized in the study). In rice, variation in the
gibberellic acid 20-oxidase gene (Os20ox2), also known as
the SEMI-DWARF1 (SD1) gene, is significantly associated
with both PH and GY. A recessive allele of this gene, sd1-d
(distinguished by a 382-bp deletion in Exons 1 and 2) was
introduced during the “Green Revolution” in the 1960s and
has become widely disseminated in modern, high-yielding
rice varieties since that time (Asano et al., 2011). Semi-dwarf
plants carrying sd1-d thrive under favorable conditions (e.g.
in paddy fields with availability of water and nitrogen), but
yield similarly to the taller, traditional varieties carrying the
SD1 allele under unfavorable conditions (e.g. in upland/
rainfed fields where water and/or nitrogen are in short and/
or variable supply) (Lafitte et al., 2007). Thus, variation at
the SD1 locus impacts not only PH but has far-reaching
repercussions that impact yield performance, and many of
the physiological differences associated with PH in the indica
rice diversity panel are implicitly integrated into the values
of metabolites and oxidative stress markers/enzymes in the
MetabOxi dataset, but this level of integration is not ob-
served in the genomic data.

An examination of the top-ranked MetabOxi-variables se-
lected as predictors of GYCON, GYDRO, and GYLOSS under-
scores the integrative nature of the metabolic data.

All three GYCON models identified chlorogenic acid among
the top predictors. Chlorogenic acid is strongly and nega-
tively correlated with GYCON and positively correlated with
PHCON. This compound is widely described in the literature
for its beneficial antioxidant and anti-herbivore activity in
plants (Niggeweg et al., 2004; Ferreres et al., 2011; Kundu
and Vadassery, 2019), consistent with the high degree of en-
vironmental plasticity associated with tall, low-yielding tradi-
tional varieties of rice adapted to environmentally variable,
low-input production systems (Lempe et al., 2013; Dwivedi
et al., 2016). In contrast, the shorter, higher-yielding modern
varieties have been bred for relatively stable, high-input sys-
tems where high levels of chlorogenic acid provided few
advantages. It might be that in this field trial, under irrigated
conditions and with the application of fertilizers and weed,
insect and disease control, a constitutively higher activity of
the chlorogenic acid pathway in the traditional, tall acces-
sions represented a metabolic cost and conferred little or no
advantage, as evidenced by the lower GY performance.
Chlorogenic acid is also described in the literature as an in-
termediate compound in lignin biosynthesis (Volpi e Silva
et al., 2019). Thus, a higher availability of this metabolite
may positively affect growth, resulting in increased PH.
Three intermediates of the TCA cycle (citric, isocitric, and a-
ketoglutaric acid) were also among the top predicting

Figure 3 Summary of the main biochemical pathways predictors for
GY performance in the indica rice panel and their relationships with
GY—under control (CON) and drought (DRO) conditions—and GYLOSS.
The blue triangle represents the TCA cycle (isocitric, citric, and a-ke-
toglutaric acids) and constitutive antioxidants (chlorogenic acid and
galactinol) which displayed higher prediction importance from left to
right (GYCON ! GYDRO ! GYLOSS). The purple triangle represents
the ascorbate–glutathione cycle (DHAR and MDHAR) and lipid per-
oxidation (MDA) which displayed higher prediction importance from
right to left (GYCON  GYDRO  GYLOSS). The influence of PH and
FT on the pathways of the two triangles is represented by the red ar-
row (up = high; down = low).
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MetabOxi-variables of the GYCON models. This fundamental
pathway provides energy and carbon skeletons for many
plant biosynthetic processes (Sweetlove et al., 2010; Araújo
et al., 2012) and these three organic acids are positively cor-
related with GYCON and negatively with PHCON. The nega-
tive correlation with PHCON suggests the presence of an
altered TCA/biosynthetic activity between the short, high-
yielding varieties of the panel compared to the tall, lower-
yielding traditional accessions. This indicates that the trans-
lation of increased radiation- and nitrogen-use efficiency
into higher yields in modern semi-dwarf rice varieties (Zhu
et al., 2016) is also determined by metabolic adaptations of
central metabolism (Figure 3).

During drought, leaf oxidative stress status is more pre-
dictive of GY performance than central metabolism. This
is evidenced by the selection of three antioxidant
enzymes/oxidative stress markers—DHAR, MDHAR, and
MDA—as top-ranked variables from the MetabOxi-based
models for predicting GYDRO and GYLOSS. When drought
is imposed at the flowering stage, like in this study, plants
are constrained in their ability to make system-wide met-
abolic adjustments due to the focused export of assimi-
lates from the flag leaf to the developing panicles
(Yoshida, 1972; Biswal and Kohli, 2013). This likely
increases the importance of antioxidant mechanisms to
counteract oxidative damage resulting from enhanced
generation of reactive oxygen species (ROS) in response
to drought (Melandri et al., 2021). Among the top predic-
tors, MDA, which is negatively correlated with GYDRO and
positively with GYLOSS, is a lipid peroxidation product in-
dicative of stress-induced oxidative damage to the cellular
lipid membranes (Møller et al., 2007). DHAR and MDHAR
are two antioxidant enzymes involved in the ascorbate–
glutathione cycle, the central redox-hub in planta, where
oxidized ascorbate is recycled to its reduced form that, in
turn, can be utilized for the scavenging of ROS (Foyer and
Shigeoka, 2010; Foyer and Noctor, 2011; Smirnoff, 2011).
In contrast to MDA, DHAR is positively correlated with
GYDRO and negatively with GYLOSS. The opposite relation-
ships of MDA and DHAR with GY traits highlight the im-
portance of the ascorbate–glutathione cycle in preventing
drought-induced oxidative damage and its negative im-
pact on rice GY (Melandri et al., 2020a). Surprisingly,
MDHAR is not correlated with GYDRO or GYLOSS. The im-
portance of MDHAR in the prediction models may be as-
sociated with its ascorbate reducing activity that
contributes to increase the efficiency of DHAR in a non-
linear synergistic fashion (Shin et al., 2013). Interestingly,
the drought levels of DHAR (also of MDHAR and MDA)
do not significantly correlate with variation in PHDRO.
This suggests that there is abundant genotypic variation
for the activity of this enzyme under drought in both the
tall, low-yielding traditional landrace varieties and in the
shorter, higher-yielding modern varieties of the panel.
This combination of findings makes the ascorbate–gluta-
thione cycle, and DHAR in particular, interesting as

breeding targets for improving drought tolerance of rice
varieties at the reproductive stage.

Conclusions
This study provides evidence that metabolic/biochemical
traits, referred to as endophenotypes, can help bridge the
gap between the genome and the visible phenome of plants,
and that they outperform the explanatory power of genetic
markers when used as variables in models for predicting
yield performance under stress. Therefore, breeding pipelines
aimed at improving drought resilience in rice could benefit
from integrating the information carried by metabolic/bio-
chemical traits representative of the plant endophenome. In
particular, our study identified antioxidant enzymes and oxi-
dative stress markers as strong predictors of drought toler-
ance in rice at the reproductive stage, with higher
importance than variables associated with leaf central me-
tabolism. Thus, high activity of leaf antioxidant enzymes and
low oxidative damage represent two phenotypes that could
guide the development of drought tolerant rice varieties.
Despite their value as predictors, using oxidative stress
markers and antioxidant enzyme activities as selection tools
in breeding is challenging because of their responsiveness to
environmental changes, developmental stages, and even di-
urnal variation. The effort involved in collecting a large num-
ber of plant tissue samples in the field, within a limited time
window, and synchronizing the developmental stage of
many hundreds of accessions, as done in this study, will
likely remain a job for the fundamental research community
or prebreeding experts, rather than for commercial breeders.
Further efforts are needed to translate the information cap-
tured by metabolic/biochemical traits into rapid and cost-
effective tools for routine breeding application.

Materials and methods

Genetic resources and experimental design
The 271 accessions of rice (O. sativa subsp. indica)
(Supplemental Table S1) were part of a larger panel (approx-
imately 300) used in a field experiment at the International
Rice Research Institute, Los Ba~nos, Philippines during the
2013 dry season. The panel includes traditional and im-
proved indica rice varieties originating from rice-growing
countries in tropical and sub-tropical regions around the
world. The panel was evaluated for a number of diverse
traits as the basis for GWA mapping (Rebolledo et al., 2016;
Kadam et al., 2017, 2018; Melandri et al., 2020b). The experi-
ment comprised a control field and a drought stress field,
with three replicates (experimental blocks) of the panel ar-
ranged in a serpentine design for each treatment. To syn-
chronize flowering, the accessions were divided into six
groups according to the number of days to flowering (previ-
ously collected data), and progressively sown and trans-
planted, with intervals of 10 days between each group.
Drought stress consisted of 14 consecutive days of water
withholding applied only to the stress field at the reproduc-
tive stage (targeting 50% flowering). At the end of the stress
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period, the field was re-watered until all the accessions
reached maturity for harvest. Further details on the field ex-
periment can be found in Kadam et al. (2018).

Statistical analysis of agronomic traits
Best linear unbiased predictors (BLUEs) of PH, FT, and GY
for individual accessions in the same treatment were calcu-
lated considering only field replicates (two for control and
three for drought) used for the metabolomics and oxidative
stress status analyses (Supplemental Table S1). The BLUEs
for each line under the two experimental conditions were
calculated by the following general mixed model:

yij ¼ lþ Gi þ cj þ eij

where yij is the response variable for the ith genotype at the
jth block, l is the intercept, Gi is the effect of the ith geno-
type, cj is the random effect of the jth block with
cj � N 0;r2

B

� �
, and eij is the experimental error. PH under

control (PHCON) and drought (PHDRO) conditions was
expressed in centimeter. FT under control (FTCON) and
drought (FTDRO) conditions were expressed as number of
days (calendar days in 2013) required for 50% flowering. GY
under control (GYCON) and drought (GYDRO) conditions
was expressed in grams/meter square. Percentage of GY loss
(GYLOSS) of each accession was calculated as 100*(GYCON –
GYDRO)/(GYCON). BLUEs of GYCON, GYDRO, and GYLOSS were
also calculated considering PH, FT, and PH&FT as covariates
by the following general mixed model:

yij ¼ lþ Gi þ cj þ b1X1ij þ b2X2ij þ eij

where yij is the response variable for the ith genotype at the
jth block, l is the intercept, Gi is the effect of the ith geno-
type, cj is the random effect of the jth block with
cj � N 0;r2

B

� �
, X1ij and X2ij are the covariates in the ith ge-

notype and the jth block, and b1 and b2 are the regression
slopes of the covariates (PH and/or FT) for the corrected
BLUEs, and eij is the experimental error.

For each agronomic trait under the same condition,
broad-sense heritability (H2), which captures the proportion
of phenotypic variance explained by genetic factors
(Supplemental Table S3), was calculated by the following
formula:

H2 ¼
r2

g

r2
g þ

r2
e

r

where r2
g is the genotypic variance, r2

e is the environmental
variance, and r is the number of replications.

Leaf tissue sampling, metabolite profiling, oxidative
stress status analysis, and data pre-processing
Flag/top leaves of the 271 rice accessions were sampled
from control and drought field replicates (two for control
and three for drought) and immediately frozen in liquid ni-
trogen as described in Melandri et al. (2020a). Drought field
replicates were collected (09.30–11.00 h) on Day 14 of the

stress treatment. Control field replicates were collected
2 days later, during the same time window. For each acces-
sion and condition, equal amounts of leaf tissue from each
field replicate were pooled together before performing bio-
chemical analyses. Leaf tissues were analyzed by untargeted
GC–MS-based metabolite profiling to assess the variation in
polar metabolites as described by Riewe et al. (2012) and
Riewe et al. (2016). A total of 88 metabolites were identified,
predominantly primary metabolites (amino acids, sugars,
and organic acids). Glucose, fructose, and sucrose were
quantified spectrophotometrically (Riewe et al., 2008). The
same leaf materials were analyzed for the oxidative stress
status. For this, the level of molecular antioxidants (2), oxi-
dative stress markers (2), and the activity of enzymes (16)
involved in the antioxidant system and in photorespiration
were quantified using high-throughput colorimetric assays
(Zinta et al., 2014; AbdElgawad et al., 2016). Further details
on metabolite profiling and analysis of oxidative stress status
of the samples can be found in Melandri et al. (2020a). The
values of metabolites and oxidative stress markers/enzymes
activities were log10 transformed to improve normality be-
fore being used for statistical analyses. Imputation of missing
values of metabolites and oxidative stress markers/enzyme
activities was performed by the function knnImputation in
the R package “DMwR” (Torgo, 2010). The list of the 111
metabolites and oxidative stress markers/enzyme activities
considered in this study, and their variation among acces-
sions and treatments, are shown in Supplemental Table S4.

Genotypic data
The 271 accessions of this study represent a subgroup of a
larger panel of 329 indica accessions that were genotyped
using genotyping-by-sequencing. The genotypic dataset con-
sisted of 91,591 SNP markers (with 22.8% missing data im-
puted by the Fast Phase Hidden Markov Model, Scheet and
Stephens, 2006) with minor allele frequency (MAF) 5 0.05
(Rebolledo et al., 2016). The subset of accessions (271) used
in this study altered the MAF threshold and therefore the
91,591 SNPs were re-filtered for MAF5 0.05 to exclude rare
alleles. The resulting 81,347 SNP map is available in a
nucleotide-based hapmap format (hmp) as Supplemental
Data Set 1 (.rds). Before being used for modeling, the SNP
map was transformed from the hapmap format to a nu-
meric “0, 1, 2” format using an R script, where “0” and “2”
denote the major and minor homozygous alleles, respec-
tively, and “1” denotes the heterozygote.

Multivariable models for the prediction of GY traits
Metabolome/oxidative stress status-based and genomic-
based multivariable models were used to predict GY perfor-
mance of the rice accessions. Three different methods were
used to generate the prediction models: PLSR, RR-BLUP, and
BayesB. For real prediction estimates based on independent
data, the multivariable models were built employing a 10-
fold CV procedure for which the 271 accessions were ran-
domly subdivided into 10 groups without replacement.
These 10 groups were kept the same in generating PLSR, RR-
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BLUP, and BayesB prediction models thus allowing for full
comparability of their results. Each multivariable model was
fit with data from 9th of the groups (training set), while data
from the 10th group was used for model testing (test set),
and the process was iterated such that each group of sam-
ples was used for model testing one time. The predictability
(Q2) for the 10-fold CV models was calculated as follows:

Q2 ¼ 1 – PRESS=TSS

where PRESS is the predictive residual error sum of squares,
and TSS the total sum of squares. PRESS and TSS were cal-
culated as follows:

PRESS ¼
Xn

i¼1

ðyi � ŷiÞ
2

TSS ¼
Xn

i¼1

ðyi � yÞ2

where yi is the observed GY (GYCON and GYDRO, or GYLOSS)
value of the ith individual, ŷi is the predicted GY value of
the ith individual, and yi is the mean of the predicted GY
values of the n (271) individuals.

PLSR models

Let Y be an n � 1 vector of GY responses (BLUEs of
GYCON and GYDRO, or GYLOSS) and X is an n-observation by
p-variable matrix of predictors (the set of 111 metabolites/
oxidative stress markers and enzymes or the 81,347 SNP
markers), PLSR aims to decompose X into a set of A orthog-
onal scores such that the covariance with corresponding Y
scores is maximized. The X-weight and Y-loading vectors
that result from the decomposition are used to estimate the
vector of regression coefficients, bPLS, such that Y = X
bPLS + e where e is an n � 1 vector of error terms. The R
package “pls” (Mevik and Wehrens, 2007) was used for PLSR
in this study. Each variable was centered (mean subtraction)
and scaled (standard deviation division) before analysis. In
the 10-fold CV procedure, for each training set, a PLSR
model was constructed with the GY trait as a single depen-
dent variable (Y) and the set of metabolites/oxidative stress
markers and enzymes or the SNP markers as the indepen-
dent variables (X). To choose the appropriate number of
factors for each training model (A from above), leave-one-
out cross validation was used to estimate root mean
squared error (RMSECV) for models fit with zero through 10
factors (linear combinations of the metabolites/oxidative
stress markers and enzymes or of the SNP markers), and the
model that produced the smallest RMSECV was selected for
prediction of the GY trait in the test set.

RR-BLUP models

The RR-BLUP model is described as follows:

yi ¼ lþ
Xp

k¼1
xikbk þ ei

where yi is the GY response (BLUE of GYCON and GYDRO, or
GYLOSS) of the ith individual, l is the intercept, xik is the

genotype at the kth predictor of the ith individual, p is the
total number of predictors (the set of 111 metabolites/oxi-
dative stress markers and enzymes or the 81,347 SNP
markers), bk is the estimated random additive effect of the
kth predictor with bk � N 0;r2

g

� �
, and ei is the residual er-

ror term with ei � N 0;r2
e

� �
. The BLUP of each bk received

the following penalty:

J bð Þ ¼
Xp

k¼1
b2

k

where all the terms are the same as those described above.
This model was implemented using the R package “rrBLUP”
(Endelman, 2011).

BayesB models

The basic model of BayesB is the same as RR-BLUP, but in
this case all parameters are treated as random variables in a
Bayesian framework, and we do not assume the same vari-
ance for all predictor effects. The prior distributions were de-
fined as g � N 0;Dð Þ and e � N 0;r2

e I
� �

, where

D ¼ diag r2
g1; . . . ;r2

gp

� �
, for the intercept l we assumed a

flat prior. For each I, the prior distribution of r2
gi is assumed

to be zero with probability p and a scaled inverse chi-
squared distribution with probability (1 – p). The prior of p
is a beta distribution. The prior of r2

e is also a scaled inverse
chi-squared distribution. A Gibbs sampler algorithm was
then applied to infer all the parameters in the model. The
BayesB model was implemented using the R package
“BGLR” (P�erez and De Los Campos, 2014).

Predictor importance for the MetabOxi-based models

For the metabolome/oxidative stress status-based models,
the relative importance of the predictors was summarized
using rank-products (Smit et al., 2007; Mumm et al., 2016).
To this purpose, for each of the 10 different single sub-
models (generated by the cross-validating procedure), the
predictors were ranked (from 1 to 111) based on their abso-
lute regression coefficient (with rank 1 for the predictors
with the highest absolute value). Then, for each predictor,
the rank numbers from the 10 sub-models were multiplied
together, giving a final rank-product for the overall model. A
low rank-product implies that a predictor is of high impor-
tance in the model.

Combined MetabOxi and genomic-based models

For the PLSR models based on the combined MetabOxi and
genomic data, a single data matrix of predictors (P-variables)
was generated concatenating the two datasets based on the
samples (n-observations). Then, the PLSR models for the
prediction of GY responses were built as for the single data-
sets, described above. The combined RR-BLUP and BayesB
models were built as follows:

y ¼ XSNPbSNP þ XMETbMET þ e

where SNP and MET denote the genomic and MetabOxi
data, respectively. Parameter assumptions were the same as
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for the prediction models based on a single dataset de-
scribed above.

Multi-trait MetabOxi and genomic-based models

For the multi-trait PLSR and RR-BLUP models based on
MetabOxi and genomic data, the values of the secondary
traits (PH, FT, and both) were included in the training sets
of the CV procedure, but not in the test sets. Then the
models were run as described above. It was not possible to
run a multi-trait BayesB model because of the specific R
package (“BGLR”; P�erez and De Los Campos, 2014) we used.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Boxplots representing the PH
performance under control (PHCON) and drought (PHDRO)
conditions of the rice accessions carrying the minor (AA) or
major (GG) alleles at the locus (Chr1 pos: 38,286,772 bp;
Supplemental Data Set 1) associated with the gibberellin 20-
oxidase biosynthetic gene (SEMI-DWARF1; recessive sd1 and
functional wild-type SD1 allele).

Supplemental Figure S2. Distributions of GY traits in the
271 indica rice accessions sorted by increasing PH.

Supplemental Table S1. PH, FT, and GY of the 271 indica
rice accessions.

Supplemental Table S2. Agronomic trait performance of
the 271 indica rice accessions.

Supplemental Table S3. Heritabilities and variances for
PH, FT, and GY of the 271 indica rice accessions.

Supplemental Table S4. Flag leaf values of the 111
MetabOxi variables in the 271 indica rice accessions under
control and drought conditions.

Supplemental Table S5. Predictability of multi-trait
MetabOxi- and genomic-based models for the prediction of
GY traits.

Supplemental Table S6. Ranking of the MetabOxi-
variables in the PLSR, RR-BLUP, and BayesB models for the
prediction of GY under control conditions.

Supplemental Table S7. Ranking of the MetabOxi-
variables in the PLSR, RR-BLUP, and BayesB models for the
prediction of GY under drought conditions.

Supplemental Table S8. Ranking of the MetabOxi-
variables in the PLSR, RR-BLUP, and BayesB models for the
prediction of drought-induced GY loss.

Supplementary Table S9. Correlations between control
values of the 111 MetabOxi-variables and GY, FT, and PH
under control conditions.

Supplementary Table S10. Correlations between drought
values of the 111 MetabOxi-variables and GY, GY loss, FT,
and PH under drought conditions.

Supplemental Table S11. Results of the linear models
created by fitting GY traits (response) and the top-ranked
predictors (single explanatory variable) identified by the
MetabOxi-based models.

Supplemental Data Set 1. A total of 81,347 SNP map in
hapmap (hmp) format.
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