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Abstract 28 

Key message 29 

Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios 30 

is accurate. Modelling the genotype by environment interaction effect using phenomic data is a potentially 31 

low-cost complement to genomic prediction. 32 

The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the 33 

genotype by environment interactions (GxE). Phenomic selection is supposed to be efficient for modelling the 34 

GxE effect because it accounts for non-additive effects. Here, phenomic data are near infrared (NIR) spectra 35 

obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain 36 

yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter 37 

wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain 38 

yield and heading date in different MET scenarios. We also compared different methods to model the GxE using 39 

different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar 40 

in all the different MET scenarios. Better predictive abilities were obtained when GxE effects were modelled with 41 

NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for 42 

modelling the GxE. To facilitate the implementation of phenomic prediction, we tested MET designs where the 43 

NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. 44 

Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for 45 

grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection 46 

is an efficient and practicable prediction method for dealing with GxE. 47 

Key words:  48 

Bread wheat, Genomic selection (GS), Multi-Environment Trial (MET), Near infrared spectroscopy (NIRS), 49 
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Introduction 20 

To select superior crop cultivars, plant breeders mainly compare the recorded phenotypes of candidates then select 21 

the best ones. However, phenotypic information only documents the relative performance of a cultivar in that 22 

environment, which depends on the genome in interaction with the environment (GxE). The relative performance 23 

of cultivars commonly differs in different environments, leading to differences in how cultivars are ranked 24 

(Comstock and Moll 1963; Allard and Bradshaw 1964). To take GxE into account, breeders evaluate candidate 25 

lines across several environments (combinations of year × site × management). These multi-environment trials 26 

(MET) enable breeders to identify high-performing selection candidates in each environment. METs are very 27 

expensive because of the phenotyping costs, so only a limited number of candidates and environments can be 28 

tested at a time, which slows genetic progress.  29 

Genomic selection (GS) (Bernardo 1994; Whittaker et al. 2000; Meuwissen et al. 2001) is a method developed to 30 

predict the performances of candidates using a predictive model calibrated with a genotyped and phenotyped 31 

training population, potentially taking GxE into account. Single-environment predictions on breeding material 32 

were promising, because the predictive abilities (PA) were higher than those obtained using pedigree information 33 

only (de los Campos et al. 2009; de los Campos et al. 2010; Crossa et al. 2010). In the past decade, specific GS 34 

models have been proposed for predicting GxE. Burgueño et al. (2012) found that integrating the information that 35 

was common to different environments could improve the PA of the model by 17.5% compared to models with a 36 

main genetic effect only. To do this, an environmental covariance matrix was introduced in the prediction model. 37 

However, these models were still only applicable to environments in which some phenotypes had been measured. 38 

Other models were proposed that relied on environmental covariates , either pedoclimatic data (e.g. temperature, 39 

radiation, soil characteristics) or stress indexes (Ly et al. 2017; Rincent et al. 2019). Environments with similar 40 

environmental covariates values are assumed to interact with genotypes in a similar way, so the model can be used 41 

to predict plant behaviour in new environments (Heslot et al. 2014; Jarquín et al. 2014; Malosetti et al. 2016; Lado 42 

et al. 2016; Ly et al. 2018). However, further improvements in predictions based on environmental covariates are 43 

marginal, as modelling GxE this way does not account for complex interactions between plants and environments. 44 

Some environmental covariates may not be responsible for GxE while the covariates responsible for the GxE may 45 

differ from one genotype to another. The response of a plant to its environment can be characterised at the 46 

molecular level using endophenotypes such as transcripts, proteins or metabolites. An endophenotype is essentially 47 

a measurable molecular trait that is intermediate between the genome and the final phenotype. It has been shown 48 

that transcripts (Frisch et al. 2010; Fu et al. 2012; Zenke-Philippi et al. 2017; Azodi et al. 2020), and a combination 49 

of transcripts and metabolites (Guo et al. 2016; Westhues et al. 2017; Schrag et al. 2018; Wang et al. 2019) can be 50 

used in accurate genomic-like omics based (GLOB) prediction of the performances of hybrid maize or hybrid rice, 51 

especially for complex traits. Prediction of grain yield (GY) using such omics data was on average just as accurate 52 

as those obtained with GS models using molecular markers. However, when only information on metabolites was 53 

used to inform the model, PA were lower than when using molecular markers to predict GY in hybrid maize and 54 

in barley (Riedelsheimer et al. 2012; Xu et al. 2016; Gemmer et al. 2020). Practically, GLOB prediction is similar 55 

ACCEPTED MANUSCRIPT/ CLEAN COPY



3 

 

to genomic prediction with the difference that scoring molecular markers is replaced by omics data collection for 1 

the chosen endophenotypes (Robert et al. 2022b). To limit costs, the omics data are generally collected once and 2 

for all on material grown in controlled conditions. The control conditions are radically different than the 3 

environments of MET, so endophenotype data may be of limited use in predicting GxE.  4 

Phenomic selection (PS) is a recently developed method (Rincent et al., 2018) similar to GS and GLOB, that 5 

replaces molecular markers or endophenotypes with information from near infrared spectroscopy (NIRS). By 6 

measuring the reflectance or absorbance of a tissue sample at different wavelengths of light from visible to near 7 

infrared (NIR), NIRS quantifies the chemical bonds and hence the molecular composition of the tissue. Like the 8 

endophenotypes, this molecular composition is under genetic control and is a consequence of the expression of the 9 

genotype in a particular environment. NIR spectra are not themselves molecular traits, but they are influenced by 10 

the molecular composition, and are thus able to capture genetic similarity between genotypes. NIRS, which is 11 

already routinely used by cereal breeders to predict quality traits such as grain protein content, has the advantage 12 

of being low-cost, high throughput and non-destructive (Osborne 2006). PS was shown to outperform GS in two 13 

prediction scenarios. The first used NIR spectra acquired in the same environment as the phenotyping, and the 14 

second used NIR spectra acquired in a different environment than the one in which the training population was 15 

phenotyped (Rincent et al., 2018). For single environment scenarios, PS has shown promising results for the 16 

prediction of GY in bread wheat (Rincent et al. 2018; Krause et al. 2019; Cuevas et al. 2019; Robert et al. 2022a), 17 

rye (Galán et al. 2020), maize (Lane et al. 2020), triticale (Zhu et al. 2021b) and soybean (Parmley et al. 2019; 18 

Zhu et al. 2021a). More recently, Robert et al. (2022a) found that it might be preferable to use the NIRS data from 19 

the same environment as the target trait (e.g. for GY) or to combine several spectra from various environments 20 

(e.g. for heading date (HD)) depending on the interactivity of the underlying genes with the environment. One of 21 

the key advantage of PS is the low cost of NIRS data acquisition for any species, in contrast to genotyping. For 22 

some major crops such as wheat, NIRS data are already routinely collected in breeding programs, which means 23 

that PS can already be applied without any additional cost for some applications. 24 

Like endophenotypes, NIR spectra are the result of a genotype, an environment, and the interaction between them. 25 

Therefore, it is reasonable to expect that the spectra capture the genetic effect and the GxE even for complex traits 26 

such as GY. By comparing PA of models based on NIR spectra collected in the same or in different environments 27 

from the one in which the training population was phenotyped, it was shown that the information from NIRS was 28 

indeed able to capture part of the GxE (Rincent et al., 2018; Robert et al., 2022a). A few examples of phenomic 29 

prediction in the context of MET have now been reported. Krause et al. (2019) compared different best linear 30 

unbiased prediction (BLUP) models in GS (G-BLUP) and in PS (H-BLUP) and a model combining molecular 31 

markers and NIR spectra (multi-omics model) on MET data. They found that the maximal PA obtained was with 32 

the multi-omics model where the main genetic effect is modelled by markers or pedigree and the GxE effect is 33 

modelled by NIR spectra collected in each environment. Lane et al. (2020) integrated the wavelength-by-34 

environment interaction effect with all spectra collected in each environment of a MET in a H-BLUP model or in 35 

functional regression. They then tested these models in a MET scenario where one environment was new in the 36 

trial network and no genotypes were phenotyped. On average, the PA reached 0.40 for H-BLUP and 0.53 for the 37 

functional regression. These two demonstrations show the promise of integrating information from NIR spectra 38 

with GxE estimates.  39 

Our aim here was to compare different PS, GS and multi-omics models (combining molecular markers and NIR 40 

spectra) for predicting GY and HD of wheat breeding candidates in different MET scenarios. More precisely, we 41 

investigated whether NIR spectra can model the GxE effect in predictive models by comparing different covariance 42 

structures based on spectral data. For the modelling of GxE using NIR spectra to be practicable, breeders would 43 

ideally acquire spectra in all environments of the MET and for all genotypes, whether they were used to calibrate 44 

the model or not, which would require specific nurseries for growing the reference genotypes in each environment. 45 

To overcome this limitation, we also tested two approaches for predicting missing spectra and evaluated them in 46 

two original MET scenarios.  47 

 48 

Materials and Methods  49 

Plant material, genotyping and NIRS acquisition  50 

The plant material, genotyping and NIR spectra acquisition in the present study have been previously described in 51 

Robert et al. (2022a). Briefly, four datasets of winter bread wheat breeding lines were used: Set1-2016, Set2-2019, 52 

Set4-2018, Set4-2019. Set1 corresponds to lines developed in the breeding program of Florimond Desprez (France) 53 

and the other sets to lines developed in the breeding program of Agri-Obtentions (France) in collaboration with 54 

INRAE (France). Set1 and Set2 correspond to the first year of trial evaluation for the candidate lines and the two 55 

Set4 sets to the second year of trial evaluation. These datasets were chosen based on the number of environments 56 
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of the MET where NIR spectra were acquired and the number of candidate lines phenotyped and genotyped. Each 1 

dataset was analysed independently. 2 

In more detail, Set1-2016 is composed of 152 candidate lines genotyped with the 35K breeder Bristol array 3 

(Axiom™ Wheat Breeder's Genotyping Array). NIR spectra of 10 g of wheat flour were acquired with the NIR 4 

6500 FOSS spectrometer (FOSS NIR Systems, Silver Spring, MD, USA) over the range 400 to 2500 nm in steps 5 

of 2 nm. Final spectra are the average of 32 repeated measurements. Set2-2019 is composed of 325 lines genotyped 6 

with the 35K BreedWheat array (Axiom™ BreedWheat Genotyping Array) which is a subset of the TaBW410k 7 

SNPs array (Kitt et al. 2021) including 280k SNPs from the TaBW280k SNP array (Rimbert et al. 2018). NIR 8 

spectra of 150 g of grain were acquired with the XDS NIR Analysers FOSS spectrometer (FOSS NIR Systems, 9 

Silver Spring, MD, USA) in the range 400 to 2500 nm in steps of 2 nm. Final spectra are the average of 16 repeated 10 

measurements. Set4-2018 and Set4-2019 are composed of 71 and 100 lines, respectively, genotyped with the 35K 11 

BreedWheat array (Axiom™ BreedWheat Genotyping Array) which is a subset of the TaBW410k SNP array  12 

including 280k SNPs from the TaBW280k SNP array (Rimbert et al. 2018). NIR spectra on 350 g of grain were 13 

acquired with the MPA II FT‐NIR analyser (Bruker Optics, Ettlingen, Germany) ranging from 3594.92 cm-1 to 14 

12489.60 cm-1 in steps of 7.7 cm-1. Final spectra are the average of 64 repeated measurements. NIRS data of Set4 15 

were harmonised with the other NIRS data using a conversion into nm in steps of 2 nm and a common window 16 

was defined from 802 to 2492 nm for all the NIR spectra. 17 

Analysis of the phenotypes measured in the METs, genotypic data and NIRS data  18 

Description of the different METs and the phenotypic data 19 

The trial information and designs of the different METs (two to four environments) recorded in the datasets are 20 

described in Robert et al. (2022a). Briefly, Set1-2016 is composed of two environments (two sites × one year) with 21 

augmented design trials in Houville and Lectoure for the year 2016. Lines were phenotyped for GY and HD. Set2-22 

2019 is composed of two environments (two sites × one year) with augmented design trials in Estrée-Mons and 23 

randomised block trials in Genlis for the year 2019. Intensive management practices were used at both of the latter 24 

sites, except that lines were not treated with fungicide at Estrée-Mons. Lines were phenotyped for GY. Set4-2018 25 

and Set4-2019 are composed of four environments (two sites × two treatments) with three complete randomised 26 

block trials in Estrée-Mons and Le Moulon and intensive practices or low input treatment at each, in the years 27 

2018 and 2019. Set4-2018 and Set4-2019 are thus independent datasets. For Set4-2018, one environment was 28 

removed from the analysis due to a mis-association between genotypes and phenotypes, so only three environments 29 

were analysed here. Lines in Set4-2018 and Set4-2019 were phenotyped for GY and HD.  30 

Adjustment of the phenotypic and NIRS data and estimation of the variance components  31 

When possible, GY, HD and the NIR spectra at each wavelength were adjusted with specific spatial models 32 

described in Robert et al. (2022a). Briefly, statistical models were used to compute adjusted means corrected for 33 

spatial effects, or block and replicate effects, or all three depending on the experimental design. The same model 34 

was applied for target traits (GY and HD) and the absorbance at each of the 845 wavelengths. 35 

Spectra were visualised to filter out any spectra with abnormal absorbances resulting from technical errors. For 36 

trials which included repetitions, adjusted means of NIR absorbance were computed as for GY and HD. Finally, 37 

all the spectra were pre-treated (first derivative of the normalized spectra) to eliminate noise inherent in the 38 

absorbance measurement. The different corrections are described in Robert et al. (2022a). 39 

For the datasets with replicates (Set4-2018 and Set4-2019) we estimated the different variance components for 40 

GY, HD and NIRS wavelength readouts based on the following equation: 41 

Ŷijk = μ + Ej + Gi + GEij + ϵijk (1) 42 

Ŷijk is the trait value corrected for spatial effects for the replicate k of the genotype i in the environment j; μ is the 43 

intercept; Ej, Gi and GEij are random environmental, genetic and interaction effects, respectively; and ϵijk is the 44 

random residual effect. We assumed that the random effects are independent and identically distributed (i.i.d) and 45 

normally distributed such that Ej ~
i.i.d.

N(0, σE
2), Gi ~

i.i.d.
N(0, σG

2 ), GEij ~
i.i.d.

N(0, σGE
2 ) and ϵijk ~

i.i.d.
N(0, σϵ

2). Broad-sense 46 

heritabilities within each environment for traits and wavelengths were described in Robert et al. (2022a).  47 

For all the datasets without replicates we followed the Rincent et al. (2018) approach where the genomic variance 48 

components were estimated from the following bivariate mixed model across two environments: 49 

ŷ = [
y1

y2
] = Xβ + Zu + e (2) 50 
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where y1 and y2 are the absorbances for a given wavelength in each environment, corrected for spatial effects. X 1 

and Z are the design matrices of the corresponding effect, 𝛃 is the vector of fixed environment effect, u is the 2 

random polygenic effect with var(u) = [
σu1

2 σu12

σu21 σu2
2 ] ⊗ 𝐊, and 𝐞 is the vector of the residuals with  3 

var(𝐞) = [
σe1

2 0

0 σe2
2 ] ⊗ 𝐈 , K being the genomic relationship matrix described below, and I the identity matrix. 4 

The variance components were then estimated with the approach of Yamada et al. (1998): 5 

σG
2 = σ̂u12, σG×E

2 =
1

2
(σ̂u1 + σ̂u2) − σ̂u12 and σϵ

2 =
1

2
(σ̂e1

2 + σ̂e2
2 ) 6 

This decomposition was conducted on paired environments from two different sites. For Set1-2016 and Set2-2019, 7 

the two environments of each dataset were used to compute the variance components. For Set4-2018, only the data 8 

from a low input treatment were used. Finally, for Set4-2019, data were paired by environments from the same 9 

treatment (intensive practices or low input) but from different sites (Estrée-Mons and Le Moulon). 10 

From now on, we consider that Yij stands for the adjusted mean of the considered trait for the genotype i in 11 

environment j. It is recommended to use the precision of the estimates of this first stage in subsequent analysis 12 

(Damesa et al. 2017). But, as precision could not be estimated for all the datasets and was homogeneous in the 13 

others, we did not use it in the second stage of our analysis (genomic and phenomic predictions).  14 

Quality analysis of the genomic data  15 

Molecular marker results were checked for quality. Markers were eliminated if the minor allele frequency was less 16 

than 5%, or the heterozygosity rate or missing value rate were greater than 5%. A total of 5 824 SNPs for Set1-17 

2016, 12 303 SNPs for Set4-2018, and 19 512 SNPs for both Set2-2019 and Set4-2019 remained after filtering. 18 

On average, 1.1% of the SNPs were missing and were imputed with the average allele frequency of the 19 

corresponding marker. All the data quality analysis was conducted with the sommer R package (Covarrubias-20 

Pazaran 2016). 21 

Estimation of the covariance matrices describing the similarities between genotypes or 22 

environments 23 

The predictive models developed further in this study rely on covariance matrices to describe the covariance 24 

between the genotypes and between the GxE interactions. Relationship matrices between varieties were estimated 25 

based on molecular markers (kinship matrix K) or NIR spectra (hyperspectral relationship matrix H).  26 

Genomic and hyperspectral relationship matrices 27 

The kinship matrix K was computed following the Endelman and Jannink (2012) equation: 28 

K =
𝐀𝐀′

2 ∑ pk(1 − pk)
 29 

where A is a centred genotypic matrix with dimensions NG × M, NG is the number of genotypes, and M the number 30 

of molecular markers. For the ith individual and the kth marker, Aik = Xik + 1 − 2pk with X the genotype matrix, 31 

coded in {-1,0,1} and pk the frequency of allele 1 at marker k. K was computed with the rrBLUP R package 32 

(Endelman 2011). 33 

The hyperspectral relationship matrix specific to environment j was computed as: 34 

𝐇𝐣 =
𝐒𝐩𝐣

∗ 𝐒𝐩𝐣
∗′

L
 35 

where 𝐒𝐩𝐣
∗ is the centred and scaled matrix of NIR spectra (dimension NG ×  L) from environment j, L the number 36 

of wavelengths, and j the environmental index with j ∈ {1, … , NE}, NE being the number of environments of the 37 

MET.  38 

The combined hyperspectral relationship matrix was computed as 39 

𝐇𝐜𝐛 =
𝐒𝐜𝐛

∗ 𝐒𝐜𝐛
∗′

L
 40 
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where 𝐒𝐜𝐛
∗  is the centred and scaled matrix of NIR spectra added one next to the other from NIR spectrum 1 matrix 1 

(S1) to NIR spectrum NE matrix (𝐒𝐍𝐄
) 2 

𝐒𝐜𝐛 = (𝐒𝟏 … 𝐒𝐍𝐄) 3 

𝐒𝐜𝐛 had NG × ∑ λj
NE
j=1  dimensions where λj designates the number of wavelengths for the NIR spectrum j, and NG 4 

the number of genotypes.  5 

The K, 𝐇𝐣 and 𝐇𝐜𝐛 matrices have the same dimensions (NG × NG). 6 

Genotype-by-environment covariance matrix 7 

We then decided to characterise the covariance between all the genotype-environment combinations based on NIR 8 

spectra. It was shown in literature that environmental covariates can be used to estimate such covariances. We 9 

assumed that wavelengths constituting the NIR spectrum are similar to environmental covariates and relevant to 10 

describe GxE because they capture the expression of the genotype in a specific environment.  11 

Each wavelength of a spectrum corresponds to an environmental covariate in which the absorbance is dependent 12 

on an environment j and a genotype i. The matrix of the environmental covariates is then all the NIR spectra of 13 

the MET, called 𝐒𝐚𝐥𝐥 with dimension NGE ×  L, NGE corresponding to the number of genotype-environment 14 

combinations.  15 

𝐒𝐚𝐥𝐥 = (

𝐒𝟏

…
𝐒𝐍𝐄

) 16 

The GxE interaction similarity matrix P was computed based on the full matrix of NIR spectra 𝐒𝐚𝐥𝐥. First, we 17 

calculated the Euclidian distance (𝐃𝐒𝐚𝐥𝐥
) between the different combinations of genotype × environment terms with 18 

𝐒𝐚𝐥𝐥. Then, we estimated the genotype × environment covariance matrix following the equation: 19 

𝐏 = 𝟏𝐆𝐄 −
𝐃𝐒𝐚𝐥𝐥

max (𝐃𝐒𝐚𝐥𝐥
)
 20 

where 𝟏𝐆𝐄 is a matrix of 1 of size (NG ×  NE , NG ×  NE). Here we assume that two genotype-environment 21 

combinations will covary if the two corresponding spectra are similar. The underlying hypotheses is that spectra 22 

capture the similarity between genotypes as well as the genetic similarity between environments. 23 

K, 𝐇𝐣, 𝐇𝐜𝐛 and P were scaled to have a sample variance of 1 to avoid biased parameter estimations due to different 24 

scales (Kang et al. 2010; Forni et al. 2011). 25 

Scenarios of prediction and corresponding cross-validation schemes 26 

Six prediction scenarios were considered to simulate the different prediction objectives of genomic and phenomic 27 

selection (Figure 1). In four scenarios, all the NIR spectra are available for all varieties in each environment of the 28 

MET, whether phenotyped or not for the target trait. In the other two scenarios, one environment of the MET is 29 

the environment of reference where all the varieties have their NIR spectrum acquired, while in the other 30 

environments the NIRS are collected only on the varieties phenotyped for the target trait. The phenotype and NIR 31 

spectra of other varieties are hence missing in the non-reference environments. For each prediction scenario a 32 

cross-validation scheme is described below.  33 

For the first category of scenarios, NIR spectra are available for all varieties in each environment, whether or not 34 

phenotyped for the target trait. oGoE corresponds to a sparse testing scenario. This scenario was tested in a 35 

CVRandom scheme with 5-fold cross-validation, which consisted in randomly splitting the MET data in five folds 36 

of the same size. nGoE corresponds to new varieties in observed environments, which mimics the evaluation of 37 

new varieties in the MET without any phenotyping of the target trait. Concretely, missing data were attributed in 38 

all the environments for the varieties designated as new. This scenario was tested in a CVNewG scheme with 5-39 

fold cross-validations, in which varieties are randomly split in five groups. oGnE corresponds to observed varieties 40 

in a new environment as it mimics the prediction in a new environment. The predicted environment is new in the 41 

sense that the target trait is not measured, but the NIR spectra are known. This scenario was tested in a CVNewE 42 

scheme with a leave-one-environment-out scheme, in which one environment of the MET is predicted with the 43 

others. Finally, nGnE corresponds to new varieties in a new environment. This scenario was tested in a CVNewGE 44 

scheme with a leave-one-environment-out scheme and a 5-fold cross-validation to determine the varieties 45 

considered as new. 46 
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For the second category of scenarios, in which NIR spectra are only available for the plots phenotyped for the 1 

target trait, oGoEref and nGoEref correspond to the same scenarios as oGoE and nGoE respectively, with the 2 

exception that one environment was randomly designated the environment of reference in which the phenotyping 3 

and NIR spectra are available for all varieties. In the other environments, the new varieties were not observed at 4 

all (neither for the target trait nor for NIRS). This mimics the situation where traditionally a breeder evaluates all 5 

the varieties in a single reference environment with sparse testing in the other environments. The scenario oGoEref 6 

was tested in a CVRandom_Ref scheme with one environment considered as reference and a 5-fold cross-7 

validation, by randomly splitting the rest of the MET data in five folds of the same size. The scenario nGoEref 8 

was tested in a CVNewG_Ref scheme with one reference environment and a 5-fold cross-validation, by randomly 9 

splitting varieties in five folds of the same size. 10 

To compare the performance of the different predictive models in the different cross-validation schemes, we 11 

calculated the predictive ability (PA) of each model as the Pearson’s correlation coefficient between the predicted 12 

values and the adjusted means of the target trait (GY or HD) on the validation set, for each environment of 13 

prediction in the MET. For CVRandom, CVNewG and CVNewGE 5 × NE PA were calculated once the five folds 14 

were designated as the validation sets. For CVNewE, NE PA were calculated because we applied a leave-one-15 

environment-out method. In scenarios oGoEref and nGoEref, the PA was not calculated for the reference 16 

environment. For CVRandom_Ref and CVNewG_Ref, 5 × (NE − 1) ×  NE PA were then calculated on the 5-fold 17 

cross-validation multiplied by the number of environments, which are in turn considered as the new environment 18 

or reference environment. All the different cross-validation schemes were repeated 50 times to get stable results, 19 

except for the CVNewE, which is a simple leave-one-environment-out validation.  20 

Models developed for the different multi-environment prediction scenarios 21 

Genomic prediction models 22 

In the different prediction scenarios, we compared models with different levels of complexity, using molecular 23 

markers, NIR spectra or both. All the different models used in further analysis are summarised in Table 1. 24 

For genomic prediction, we used two reference models based on the genomic relationship matrix (kinship) 25 

allowing to share information between varieties but not between environments (Jarquín et al. 2014). 26 

𝐄𝐆 ∶  Yij = μ + Ej + Gi + ϵij  (3) 27 

𝐄𝐆_𝐆𝐱𝐄 ∶  Yij = μ + Ej + Gi + GEij + ϵij  (4) 28 

Yij is the phenotype for variety i in environment j;  μ is the intercept; Gi is a random polygenic effect of the variety 29 

i following a normal distribution G~N(0, KσG
2 ); and GEij is a random effect corresponding to the interaction 30 

between variety i and environment j following a normal distribution GE~N(0, [𝐙𝐊𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ]σGE

2 ). So, in this 31 

model (4) no information is shared between environments in the GE term. 𝐊 is the relationship matrix calculated 32 

with molecular markers (see above), 𝐙 the incidence matrix for the genetic effect and 𝐙𝐄 the incidence matrix for 33 

the effects of the environments. ⊙ corresponds to the Hadamard product. Finally, ϵi is the random residual effect 34 

that follows the normal distribution ϵij ~
i.i.d.

N(0, σϵ
2). We assumed a same residual variance for all environments. 35 

The different random effects of the models are assumed to be independent. 36 

Single-NIRS phenomic models  37 

For phenomic prediction we used two kinds of predictive models, involving a NIR spectrum acquired in only one 38 

environment (Single-NIRS) or from multiple NIR spectra acquired in different environments of the MET (Multi-39 

NIRS). Like the genomic prediction models (3) and (4), we compared two reference models based on the 40 

hyperspectral relationship matrix computed from a single environment.   41 

𝐄𝐖 ∶  Yij = μ + Ej + Wi + ϵij  (5) 42 

𝐄𝐖_𝐖𝐱𝐄 ∶  Yij = μ + Ej + Wi + WEij + ϵij  (6) 43 

Yij is the phenotype for variety i in environment j;  μ is the intercept; Wi is a random genetic effect of the variety i 44 

following a normal distribution W~N(0, HSσW
2 ); and WEij is a random effect corresponding to the interaction 45 

between variety i and environment j  following a normal distribution WE~N(0, [𝐙𝐇𝐒𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ]σGE

2 ). 𝐇𝐒 is the 46 

relationship matrix calculated with NIR spectra (see above) from the environment S with S ∈ {1, …, NE}. Finally, 47 

ϵi is the random residual effect following a normal distribution ϵij ~
i.i.d.

N(0, σϵ
2). The different random effects of the 48 
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models are assumed to be independent. In Models (5) and (6) the HS matrix of each environment was tested 1 

successively, resulting in NE Models (5) and (6). 2 

Multi-NIRS phenomic models  3 

The next objective was to assess the effect of using a hyperspectral relationship matrix combining NIR spectra 4 

acquired from different environments to predict GY and HD. To do this, we used the 𝐇𝐜𝐛 matrix (the hyperspectral 5 

relationship matrix computed with Scb) described above. Multi-NIRS models were adapted from the single-NIRS 6 

models (5) and (6) with models called 𝐄𝐖𝐜𝐛 and 𝐄𝐖𝐜𝐛_𝐖𝐜𝐛𝐱𝐄  respectively: 7 

𝐄𝐖𝒄𝒃 ∶  Yij = μ + Ej + Wcbi + ϵij  (7) 8 

𝐄𝐖𝒄𝒃_𝐖𝒄𝒃𝐱𝐄 ∶  Yij = μ + Ej + Wcbi + WcbEij + ϵij  (8) 9 

The description of the different effects is the same as in the previous models, and Wcbi is a random genetic effect 10 

of the variety i following a normal distribution Wcb~N(0, HcbσWcb
2 ), WcbEij is a random effect corresponding to 11 

the interaction between variety i and environment j  following a normal distribution WcbE~N(0, [𝐙𝐇𝐜𝐛𝐙′] ⊙12 

[𝐙𝐄𝐙𝐄
′ ]σGEcb

2 ). 𝐇𝐜𝐛 is the relationship matrix calculated with Scb NIR spectra. Finally, ϵi is the random residual 13 

effect which follows the normal distribution ϵij ~
i.i.d.

N(0, σϵ
2). The different random effects of the models are 14 

assumed to be independent. 15 

We tested several other models to evaluate how well NIR spectra capture and predict GxE interactions. First, we 16 

specified in the WEij covariance matrix a block-diagonal structure (Malosetti et al. 2016), in which each block 17 

corresponds to the 𝐇𝐣 matrix of the corresponding environment. In this model we consider that within one 18 

environment, varieties covary according to their hyperspectral similarity in the same environment. The assumption 19 

is that NIR spectra capture information on local adaptation. The corresponding model is: 20 

𝐄𝐖𝒄𝒃_𝐖𝐝𝐢𝐚𝐠𝐱𝐄 ∶  Yij = μ + Ej + Wcbi + WEdij + ϵij  (9) 21 

The description of the different effects is the same as in Model (7), and WEdij follows a normal distribution 22 

WEd~N(0, 𝐇𝐝𝐢𝐚𝐠σWEd
2 ), with 𝐇𝐝𝐢𝐚𝐠 = (

H1 0 0
0 ⋱ 0
0 0 HNE

) and 𝐇𝟏 to 𝐇𝐍𝐄
 correspond to the NE hyperspectral 23 

relationship matrices available in the NE environments of the MET. 24 

Secondly, we described GxE by using the P similarity matrix based on all the NIR spectra:  25 

𝐄𝐖𝒄𝒃_𝐏 ∶  Yij = μ + Ej + Wcbi + WEpij + ϵij  (10) 26 

The description of the different effects is the same as in Model (7), and 𝐖𝐄𝐩𝐢𝐣 follows a normal distribution 27 

WEp~N(0, P σWEp
2 ). 𝐏 is the genotype-by-environment similarity matrix computed with the NIR spectra (see 28 

above). 29 

Results of models (9) and (10) are presented in the Supplementary section. 30 

Multi-omics models  31 

We developed models combining information from molecular markers and NIR spectra. We tested different 32 

models including genetic effects involving covariance matrices K or 𝐇𝐜𝐛 and GxE involving covariance matrices 33 

K, 𝐇𝐜𝐛, 𝐇𝐝𝐢𝐚𝐠 or P.  34 

𝐄𝐆_𝐏 ∶ Yij = μ + Ej + Gi + Pij + ϵij  (11) 35 

𝐄𝐆𝐖𝐜𝐛 ∶ Yij = μ + Ej + Gi + Wcbi + ϵij  (12) 36 

𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄 ∶  Yij = μ + Ej + Gi + Wcbi + GEij + ϵij  (13) 37 

𝐄𝐆𝐖𝐜𝐛_𝐖𝐜𝐛𝐱𝐄 ∶  Yij = μ + Ej + Gi + Wcbi + WcbEij + ϵij  (14) 38 

𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄_𝐖𝐜𝐛𝐱𝐄 ∶  Yij = μ + Ej + Gi + Wcbi + GEij + WcbEij + ϵij  (15) 39 

 40 
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The description of the different effects is the same as in the previous models. Alternatives to models (13) and (14) 1 

were defined by replacing WcbEij with 𝐖𝐝𝐢𝐚𝐠𝐱𝐄 (models 𝐄𝐆𝐖𝐜𝐛_𝐖𝐝𝐢𝐚𝐠𝐱𝐄 and 𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄_𝐖𝐝𝐢𝐚𝐠𝐱𝐄), or with 2 

WEp~N(0, 𝐏 σWEp
2 ) (models 𝐄𝐆𝐖𝐜𝐛_𝐏 and 𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄_𝐏). Results from these alternatives to models (13) and 3 

(14) are presented in the Supplementary section. 4 

All the models presented here were fitted with the R package BGLR (Pérez and de los Campos 2014) with a burn-5 

in of 2 000 iterations on a running total of 10 000 iterations to reach convergence. Starting parameters for df0 and 6 

S0 were chosen as 5 and 0.5 by default.  7 

Imputation of missing spectra for unphenotyped varieties  8 

All the models developed above assume that NIR spectra have been obtained from all the varieties, whether 9 

phenotyped or not, in all the environments of the MET. However, in more ambitious scenarios such as oGoEref 10 

and nGoEref, the genotype-environment combinations to be predicted are not characterised by NIRS, except in 11 

the reference environment. It is necessary to predict the missing spectra for the models involving local NIR spectra 12 

(Multi-NIRS and Multi-omics).  13 

We used two approaches to predict the missing NIR spectra of the genotype-environment combinations to be 14 

predicted using the spectra of all genotypes in the reference environment, and the spectra of the training genotypes 15 

in the environment to be predicted. These predicted spectra were then used to compute the environment-specific 16 

or the combined hyperspectral relationship matrices compatible with all the phenomic models presented above. 17 

For the single-NIRS models, the NIR spectra were acquired on all genotypes only in the reference environment. 18 

So, Models (5) and (6) were adapted using 𝐇𝐫𝐞𝐟 instead of 𝐇𝐒, leading to models 𝐄𝐖𝒓𝒆𝒇 and 𝐄𝐖𝒓𝒆𝒇_𝐖𝒓𝒆𝒇𝐱𝐄, 19 

respectively. For multi-NIRS models and the modelling of the GxE interaction with local or combined spectra, 20 

missing spectra were added by imputation using one of two methods. 21 

The first method is a nearest neighbour method. For any given environment each missing genotype is attributed 22 

the same spectrum as the most similar genotype. This similarity is based on the lowest Euclidian distance between 23 

the NIR spectra in the environment of reference (Figure S1). Results from this method are presented in the 24 

Supplementary section. 25 

The second method is a weighted multivariate ridge regression (WMRR) following the equation:  26 

𝐘 = 𝐗𝛃 + ϵ (14) 27 

Y is the matrix of spectra to be predicted and X the matrix of spectra from the reference environment, and both 28 

matrices have dimensions NG ×  L. 𝛃 is the matrix of estimated wavelength effects with dimensions L × L, while 29 

𝝐 is the matrix of random error effect such as vec(ϵ)~N(0, σϵ
2𝐈𝐍𝐆× 𝐋 ). 30 

We weighted the wavelengths so that some are more explicative than others. For this, we applied a ridge regression 31 

to the training set to predict the target trait in the environment to be predicted. This was possible because NIR 32 

spectra were acquired on the training set in the environment to be predicted. We then used the estimated β (absolute 33 

value) to define a weight matrix: 𝐐 = (
q1

2 0 0
0 ⋱ 0
0 0 qL

2
) 34 

To minimise the norm: ‖𝐘 − 𝐗𝐁‖2 = ‖𝐘𝐐 − 𝐗𝐁𝐐‖² , the estimator B was calculated with the following equation:  35 

𝑩̂ = [(𝑸 ⊗ 𝑿)𝑇 (𝑸 ⊗ 𝑿) + 𝜆𝑰𝑳×𝑳]−1 (𝑸 ⊗ 𝑿)𝑇 (𝑸 ⊗ 𝑰𝑵𝑮
)𝒀𝒗𝒆𝒄 36 

⊗ stands for the Kronecker product. 37 

The shrinkage parameter 𝜆 was selected based on a 10-fold cross-validation. Multivariate ridge regression and 38 

estimation of the weights were run with the glmnet package (Friedman et al. 2010). 39 

Contrary to the nearest neighbour method, the WMRR predicts a new spectrum for all the genotypes (training and 40 

validation sets) in the specific environment. The predicted spectra of both calibration and validation sets were used 41 

to compute the hyperspectral matrix. Predictive ability of models involving predicted spectra were compared to a 42 

theoretical “Optimum” model, based on the observed NIR spectra instead of the predicted ones.  43 

 44 

 45 
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Table 1 Summary of all genomic, phenomic and multi-omics models. For each model the different effects and 1 

associated covariances matrices are indicated, as well as the prediction scenarios in which they were tested. 2 

Effects were either included (×) or excluded (-). For random effects, the covariance matrices are indicated. 3 

Models were tested on of two scenarios (O, WMRR) or not (-). For oGoE, nGoE, oGnE and nGnE, models used 4 

a H matrix computed on observed NIRS (O), whereas for oGoEref and nGoEref, the multi-NIRS models and multi-5 

omics models, used an H matrix computed on all spectra predicted by the weighted multivariate ridge regression 6 

(WMRR). Eref corresponds to an environment of reference in which the phenotyping and NIR spectra are available 7 

for all varieties. The 𝑯𝑺 matrix was computed on spectra from one single environment. The 𝑯𝒓𝒆𝒇 matrix was 8 

computed on spectra from the environment of reference. Finally, the 𝑯𝒄𝒃 was computed on spectra from multiple 9 

environments. 10 

 11 

12 

Models 

Model effects Prediction scenarios 

E G W G×E W×E 
oG 

oE 

nG 

oE 

oG 

nE 

nG 

nE 

oG 

oEref 

nG 

oEref 

Genomic models            

𝐄𝐆 × 𝐊 - - - O O O O O O 

𝐄𝐆_𝐆𝐱𝐄 × 𝐊 - [𝐙𝐊𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ] - O O - - O O 

            

Single NIRS models            

𝐄𝐖 × - 𝐇𝐒 - - O O O O - - 

𝐄𝐖_𝐖𝐱𝐄  × - 𝐇𝐒 - [𝐙𝐇𝐒𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ] O O - - - - 

𝐄𝐖𝐫𝐞𝐟 × - 𝐇𝐫𝐞𝐟 - - - - - - O O 

𝐄𝐖𝐫𝐞𝐟_𝐖𝐫𝐞𝐟𝐱𝐄 × - 𝐇𝐫𝐞𝐟 - 
[𝐙𝐇𝐫𝐞𝐟𝐙′]
⊙ [𝐙𝐄𝐙𝐄

′ ] 
- - - - O O 

            

Multi-NIRS models            

𝐄𝐖𝐜𝐛 × - 𝐇𝐜𝐛 - - O O O O WMRR WMRR 

𝐄𝐖𝐜𝐛_𝐖𝐜𝐛𝐱𝐄 × - 𝐇𝐜𝐛 - [𝐙𝐇𝐜𝐛𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ] O O - - WMRR WMRR 

            

Multi-omics models   
 

        

𝐄𝐆_𝐏 × 𝐊 - - 𝐏 O O O O WMRR WMRR 

𝐄𝐆𝐖𝐜𝐛 × 𝐊 𝐇𝐜𝐛 - - O O O O WMRR WMRR 

𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄 × 𝐊 𝐇𝐜𝐛 [𝐙𝐊𝐙′] ⊙ [𝐙𝐄𝐙𝐄
′ ] - O O - - WMRR WMRR 

𝐄𝐆𝐖𝐜𝐛_𝐖𝐜𝐛𝐱𝐄 × K Hcb - [ZHcbZ′] ⊙ [ZEZE
′ ] O O - - WMRR WMRR 

𝐄𝐆𝐖𝐜𝐛_𝐆𝐱𝐄_𝐖𝐜𝐛𝐱𝐄 × K Hcb [ZKZ′] ⊙ [ZEZE
′ ] [ZHcbZ′] ⊙ [ZEZE

′ ] O O - - WMRR WMRR 
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Results 1 

Characterisation of the METs based on phenotypes 2 

We characterised and compared four previously established sets of data from METS of two winter wheat breeding 3 

programs in France. Within each dataset, correlations were calculated between the adjusted means for GY for each 4 

pair of environments in the MET, that is, two environments in each of Set1-2016 and Set2-2019, three for Set4-5 

2018, and four for Set4-2019 (Figure 2). GY correlations between environments were very variable, from as low 6 

as 0.01 in Set1 to a maximum of 0.72 in Set4-2019. Where possible, correlations were also calculated for the 7 

adjusted means for HD between each pair of environments within a MET (Figure 2). Unlike GY, the HD 8 

correlations were strong and did not vary widely. For example, in Set4-2019 the correlation ranged from 0.89 to 9 

0.97.  10 

For Set4-2019, the variance in GY and HD was decomposed using Equation (1). For Set4-2018, only the variance 11 

for GY was decomposed (Table S1, B). The other two sets did not have any replicate for GY and HD so the 12 

decomposition of variance could not be done. For GY, the variance in the GxE effect was low for Set4-2019 13 

(12.81) and high for Set4-2018 (47.58) compared to the genetic effect (16.77 and 12.76, respectively). For GY, 14 

the environment explained most of the variance. For HD, the variance was mainly explained by the genetic effect. 15 

Decomposition of the variance along NIR spectrum 16 

We decomposed the genetic variance for all spectra based on the genomic kinship (Figure 3). Spectra from Set1-17 

2016 had the lowest proportion of genomic variance (18% on average) and Set2-2019 had the highest proportion 18 

(67% on average). In all sets, the total variance in absorbances included a non-negligible proportion of GxE 19 

variance. Two datasets, Set1-2016 and Set4-2018-LI had on average, more GxE variance (30% and 28%, 20 

respectively) than genetic variance (18% and 23%, respectively). We also decomposed the variance of the 21 

absorbances based on Equation (1) and using NIRS acquisition replicates for Set4-2018 and Set4-2019 (Figure 22 

S2). The E effect explains most of the absorbance variances across all wavelengths. The G variance was also larger 23 

across the spectrum (on average 21.5% and 24.3% of total variance) than the GxE variance (representing 12.8% 24 

and 17.3%) in the respective sets.  25 

Comparison of genomic, phenomic and multi-omics models in classical MET scenarios for the 26 

prediction of GY and HD 27 

To predict the performance of individual genotypes in particular environments, several models (Table 1) were 28 

tested using different scenarios according to the objective of the prediction and which data were available or 29 

necessary for training and validation of the models (Figure 1).  30 

Comparison of the scenarios oGoE and nGoE 31 

For the oGoE and nGoE scenarios NIRS data were available for all genotype-environment combinations, and 32 

predictions were sought for certain unobserved combinations or new genotypes in all environments, respectively. 33 

The PA of models for GY were highly variable between each other, between the two scenarios and between 34 

datasets. Taking the average PA for the four datasets and comparing CVRandom (Table 2) and CVNewG (Table 35 

3) validation scenarios, the highest PA were reached by the model EGWcb_GxE_WcbxE in the CVRandom (range 36 

0.4-0.67) and in the CVNewG (range 0.42-0.67) validations.. On average, several models reached very high PA 37 

in validation scenario CVRandom (range 0.81-0.94) as well as high PA in CVNewG (0.57-0.74). 38 

We considered first the models without a GxE effect. On average, for the prediction of GY, single NIRS model 39 

EW gave similar PA as multi-NIRS model EWcb in both scenarios. For the prediction of HD, EWcb gave higher 40 

PA than EW with an average gain of 16%. The best phenomic models in the CVRandom scenario gave similar PA 41 

to genomic models for the prediction of GY and HD. In scenario CVNewG, the best phenomic model was better 42 

than the best genomic model for the prediction of GY (0.44 versus 0.38) and for the prediction of HD (0.51 versus 43 

0.43). Combining information from molecular markers and NIR spectra gave the best PA for GY in both scenarios 44 

(0.54 for CVRandom and 0.50 for CVNewG) and was equivalent to genomic and phenomic models for HD in 45 

scenario CVRandom. For CVNewG, multi-omics models performed better than genomic and phenomic models 46 

for the prediction of HD (0.64 versus 0.43 and 0.51). 47 

Then we considered the models with a GxE effect. For GY, the predictive models that included the GxE effect 48 

always gave better predictions than those without. For the prediction of HD, the PA were similar for both kinds of 49 

models. We therefore focused on GY prediction only. In genomic models, a single covariance matrix was used to 50 

integrate the GxE effect, which increased the gain in PA by 24% on average. In single-NIRS and multi-NIRS 51 

models, the integration of the GxE effect, described in Table 1, increased the gain in PA by 23% on average. For 52 

phenomic models integrating the GxE effect, we also compared the results of using different covariance matrix 53 
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structures (Tables S2 and S3). In multi-NIRS models, all the models with a GxE effect performed similarly. 1 

Finally, the multi-omics models with higher PA were the ones combining all main genetic effects (G and Wcb) and 2 

all the GxE interaction effects (GxE and WcbxE or WdiagxE).  3 

Comparison in the scenarios oGnE and nGnE 4 

In the scenarios oGnE and nGnE, there are NIRS data for every genotype-environment combination but some 5 

environments do not have any phenotypic data, and for nGnE some genotypes are not phenotyped. The PA for GY 6 

were much lower in oGnE (Tables S4) and nGnE (Tables S5) than in oGoE and nGoE. Considering the average 7 

of the different sets and comparing CVNewE and CVNewGE validation scenarios, the highest PA were reached 8 

with the multi-omics model EG_P (0.32 and 0.27, respectively), higher than with the EG model (0.24 and 0.16, 9 

respectively). Models integrating the GxE effect (modelled by P) had better PA than those without it, with an 10 

average gain of 36% and 57% for the corresponding scenarios. EG_GxE was not compared to the other models 11 

because the GxE could not be estimated with this model for new environments. This was also the case for models 12 

with WcbxE and WdiagxE. The best models were EG_Wcb and EG_Wcb_P with PA reaching 0.91 for CVNewE and 13 

around 0.62 for CVNewGE. Adding the GxE effect in the models did not increase the PA for HD. 14 

 15 

Comparison of genomic, phenomic and multi-omics models in two original MET scenarios for the 16 

prediction of GY and HD 17 

We compared the previous developed models in two original scenarios oGoEref (Table 4) and nGoEref (Table 5) 18 

where the NIR spectra were missing for the validation set in the environments for which GY was to be predicted. 19 

We imputed the missing spectra by weighted multivariate ridge regressions (WMRR). The results of this imputing 20 

methods was lower than the “optimum” for both CV schemes when all the spectra were known. For the best multi-21 

NIRS model with WMRR, the loss in PA was around 28% for both scenarios and for the best multi-omics model, 22 

the loss in PA was around 11% for CVRandom_Ref and 14% for CVNewG_Ref. In comparison to the nearest 23 

neighbour imputation (Tables S6 and S7), the WMRR gave on average, better PA for multi-NIRS and multi-omics 24 

models in both scenarios. 25 

Using multi-NIRS models with imputed spectra gave slightly better PA than using the single NIRS model based 26 

on spectra of reference, while using multi-omics models gave slightly better PA than genomic models. The best 27 

multi-omics models integrated all the G, W, GxE and WxE effects (Table 4, Table 5) in both scenarios. On average, 28 

EGWcb_GxE_WcbxE with imputed spectra gave the best PA for both scenarios, 10% better than genomic models. 29 

Models including the GxE effect gave higher PA than those without. The different types of covariance structures 30 

to model the GxE effect performed similarly (Tables S6 and S7). Finally, the PA of the best model in 31 

CVRandom_Ref and in CVNewG_Ref were lower than those of the best model in CVRandom and CVNewG with 32 

a decrease of 11% and 14% respectively.  33 

 34 
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oGoE scenario 

(CVRandom) 
GY prediction HD prediction 

Models 

Set1 

2016 

Set2 

2019 

Set4 

2018 

Set4 

2019 Average  

Set2 

2019 

Set4 

2018 

Set4 

2019 Average 

 

Genomic models           

EG 0.13 0.35 0.31 0.55 0.34  0.76 0.91 0.94 0.87 

EG_GxE 0.17 0.55 0.44 0.6 0.44  0.72 0.92 0.94 0.86 
           

Single NIRS models           

EW 0.19 0.38 0.28 0.38 0.31  0.69 0.79 0.93 0.80 
EW_WxE  0.29 0.46 0.28 0.41 0.36  0.67 0.73 0.93 0.78 
           

Multi-NIRS models           

EWcb 0.21 0.43 0.33 0.45 0.36  0.78 0.87 0.93 0.86 

EWcb_WcbxE 0.38 0.6 0.33 0.49 0.45  0.76 0.88 0.93 0.86 
           
Multi-omics models           

EG_P 0.32 0.57 0.35 0.59 0.46  0.76 0.92 0.94 0.87 
           
EGWcb 0.18 0.43 0.32 0.57 0.38  0.83 0.91 0.94 0.89 
EGWcb_WcbxE 0.37 0.61 0.35 0.64 0.49  0.82 0.93 0.94 0.9 

           
EGWcb_GxE 0.22 0.60 0.43 0.62 0.47  0.82 0.92 0.94 0.89 
EGWcb_GxE_WcbxE 0.4 0.67 0.43 0.66 0.54  0.81 0.93 0.94 0.89 

 

Table 2. Predictive abilities of the different genomic, single NIRS, multi-NIRS and multi-omics models in scenario oGoE for 

GY and HD. CVRandom is a five-fold cross-validation scheme in which random data were missing from the dataset. This CV 

corresponds to a sparse-testing design. Averaged predictive abilities based on 50 repetitions are presented for each set, and 

averaged over all sets for GY or three sets for HD. The best predictive abilities by set and by model category (based on 

Average) are shown in bold. 
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Table 3. Predictive abilities of genomic, single NIRS, multi-NIRS and multi-omics models in scenario nGoE for GY and HD. CVNewG 

is a five-fold cross-validation scheme in which ramdom genotypes are unphenotyped in all the environments of the trial network. 

Predictive abilities based on 50 repetitions are presented by set and are averaged over all sets for GY or three sets for HD. The best 

predictive abilities by set and model category (based on Average) is shown in bold. 

 

 

nGoE scenario 

(CVNewG) 
GY prediction HD prediction 

Models 

Set1 

2016 

Set2 

2019 

Set4 

2018 

Set4 

2019 Average  

Set2 

2019 

Set4 

2018 

Set4 

2019 Average 

 

Genomic models           

EG 0.25 0.40 0.24 0.37 0.32  0.36 0.42 0.52 0.43 
EG_GxE 0.23 0.54 0.34 0.43 0.38  0.36 0.42 0.52 0.43 
           
Single NIRS models           

EW 0.22 0.38 0.22 0.31 0.28  0.63 0.29 0.32 0.41 
EW_WxE  0.30 0.46 0.25 0.37 0.34  0.62 0.30 0.32 0.41 
           
Multi-NIRS models           

EWcb 0.25 0.44 0.27 0.36 0.33  0.73 0.36 0.43 0.51 

EWcb_WcbxE 0.39 0.59 0.30 0.43 0.43  0.72 0.36 0.42 0.50 
           
Multi-omics models           

EG_P 0.38 0.59 0.31 0.46 0.44  0.43 0.4 0.54 0.46 
           
EGWcb 0.29 0.48 0.26 0.47 0.38  0.74 0.58 0.60 0.64 

EGWcb_WcbxE 0.41 0.63 0.29 0.53 0.46  0.74 0.58 0.60 0.64 

           
EGWcb_GxE 0.29 0.61 0.34 0.52 0.44  0.74 0.57 0.59 0.63 
EGWcb_GxE_WcbxE 0.42 0.67 0.36 0.56 0.50  0.74 0.57 0.59 0.63 
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Discussion 1 

Phenomic prediction and genomic prediction performed similarly and were outperformed by 2 

multi-omics prediction in MET designs 3 

We studied the PA of genomic, phenomic and multi-omics models in classic MET designs for the prediction of 4 

GY and HD. We adapted the models proposed by Robert et al. (2022a) to the MET context, by modelling the 5 

genetic and environmental effects, and in some models the GxE effect too. For the prediction of GY, we found 6 

that single-NIRS models gave slightly lower PA than multi-NIRS models. For the prediction of HD, the single-7 

NIRS models gave much lower PA than multi-NIRS models. These results are consistent with the results found 8 

by Robert et al. (2022a), in which combining several spectra from different environments increased the PA for 9 

HD, but not necessarily for GY. We suppose that this difference is due to different effects on the variance of the 10 

trait, being mainly additive for HD and additive and interactive (G×E) for GY. Also, the relationship between 11 

spectra and HD is more likely to be similar in the different environments of the MET knowing that the phenotypic 12 

correlations were very strong between environments for this trait (Figure 2). GY is strongly influenced by the 13 

response of the plants to the specific environmental conditions in which they are grown. NIR spectra are apparently 14 

able to capture part of this response, so may be useful in predicting G×E. 15 

We compared the phenomic to the genomic prediction models in each MET scenario. In scenarios oGoE and 16 

oGnE, there was little difference in PA of phenomic and genomic prediction models for either trait. These results 17 

are consistent with those of Krause et al. (2019) who found that predictions of GY with NIR spectra in a multi-18 

environment context were similar to the predictions with molecular markers. In scenarios nGoE and nGnE, when 19 

the behaviour of a new genotype (nG) has to be predicted, no phenotyping is available in a MET. Phenomic 20 

prediction gave slightly better PA than genomic prediction for both traits. The genomic models appeared to be 21 

more sensitive to missing information than the phenomic models. In single environment predictions, several 22 

studies also found that PA of models using NIR spectra were similar or higher than for models using molecular 23 

markers (Rincent et al. 2018; Krause et al. 2019; Galán et al. 2020; Zhu et al. 2021b; Robert et al. 2022a). In the 24 

present study, the multi-omics models combining information from molecular markers and NIR spectra were the 25 

best models whatever the MET scenario. Krause et al. (2019) also reported that the multi-kernel model performed 26 

better than single kernel models. In addition, Galán et al. (2021) found that a bivariate model across environments, 27 

incorporating molecular markers, height and NIR spectra gave better PA than the G-BLUP or H-BLUP alone.  28 

 29 

Modelling the GxE effect with NIR spectra improves the ability to predict grain yield  30 

Modelling the G×E effect is challenging for complex traits like GY in multiple environments, because it is 31 

influenced by both additive genetic and GxE effects (Burgueño et al. 2012). We proposed different ways to model 32 

GxE based on NIR spectra. Our results showed that modelling GxE with molecular markers or with NIR spectra 33 

always improved the PA for GY, consistent with several reports from the past decade (Heslot et al. 2013; Jarquín 34 

et al. 2014, 2017; Lopez-Cruz et al. 2015; Lado et al. 2016; Cuevas et al. 2016; Pérez-Rodríguez et al. 2017; Ly et 35 

al. 2018; Rincent et al. 2019; Robert et al. 2020). However, for HD there was no improvement in PA, probably 36 

because the interaction effect only has a slight influence on the trait variance. This was not unexpected considering 37 

the very high correlation for HD between environments (Figure 2) and the genetic decomposition of variance 38 

(Table S1b). Indeed, all experiments in the MET were autumn sown and we do not expect a high G×E for winter 39 

wheat genotypes in these conditions.  40 

Different covariance structures computed with NIR spectra (WcbxE, WdiagxE and P) were used to model the GxE 41 

effect. In scenarios with observed environment (oE/oEref), WcbxE , WdiagxE and P performed similarly. These 42 

results showed that considering all the NIR spectra in the same matrix (Wcb) or specifying each NIR spectra for 43 

each environment (Wdiag) contribute the same information towards describing the WxE effect, while no 44 

information is shared between environments. By contrast, the P structure considers the covariance between each 45 

genotype-environment combination of the MET, allowing the sharing of information between environments using 46 

NIR spectra. This structure did not seem to better model the WxE effect. However, in scenarios in which a new 47 

environment is predicted (oGnE and nGnE), only the P matrix allows sharing information between environments. 48 

The P matrix can be used in these scenarios to improve the predictive ability of the model. We found that models 49 

with this GxE effect gave better PA than models without it, which confirms that NIR spectra capture part of the 50 

genetic similarity between environments. 51 

  52 
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oGoEref scenario 

(CVRandom_Ref) 
GY prediction 

Models 

Set1 

2016 

Set2 

2019 

Set4 

2018 

Set4 

2019 Average  

 

Genomic models       

EG 0.12 0.31 0.32 0.55 0.32  

EG_GxE 0.17 0.54 0.46 0.60 0.44  
       

Single NIRS models       

EWref 0.11 0.27 0.27 0.38 0.26  

EWref_WrefxE  0.24 0.35 0.24 0.40 0.31  
       

Multi-NIRS models       

Optimum       

EWcb 0.17 0.40 0.36 0.45 0.35  

EWcb_WcbxE 0.38 0.60 0.33 0.49 0.45  
       

       

Weighted Multivariate Ridge Regression  

EWcb 0.13 0.28 0.27 0.38 0.26  

EWcb_WcbxE 0.28 0.40 0.24 0.41 0.33  

Multi-omics models       

Optimum       

EGWcb_GxE 0.19 0.59 0.46 0.62 0.46  

EGWcb_GxE_WcbxE 0.39 0.67 0.44 0.66 0.54  
       

       

Weighted Multivariate Ridge Regression 

EGWcb_GxE 0.15 0.55 0.45 0.61 0.44  

EGWcb_GxE_WcbxE 0.29 0.57 0.44 0.64 0.48  

 

 

Table 4. Predictive abilities of the genomic, single NIRS, multi-NIRS and multi-omics models in scenario oGoEref for 

GY. CVRandom_Ref is a leave-one-environment-out scheme followed by a five-fold cross-validation in which there is 

sparse testing in all the environments of the MET except the reference environment. Predictive abilities based on 50 

repetitions are presented for each set and as the average over all sets. The optimum models are shown in red type, and 

the best predictive ability by set and by model category (based on Average) in bold type. 
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nGoEref scenario 

(CVNewG_Ref) 
GY prediction 

Models 

Set1 

2016 

Set2 

2019 

Set4 

2018 

Set4 

2019 Average  

 

Genomic models       

EG 0.25 0.39 0.24 0.38 0.32  

EG_GxE 0.23 0.54 0.34 0.44 0.39  
 

      

Single NIRS models       

EWref 0.16 0.29 0.19 0.30 0.23  

EWref_WrefxE  0.25 0.35 0.20 0.37 0.29  
 

      

Multi-NIRS models       

Optimum       

EWcb 0.25 0.44 0.27 0.36 0.33  

EWcb_WcbxE 0.40 0.60 0.29 0.43 0.43  
       

       

Weighted Multivariate Ridge Regression  

EWcb 0.19 0.31 0.17 0.30 0.24  

EWcb_WcbxE 0.29 0.40 0.19 0.37 0.31  
 

      

Multi-omics models       

Optimum       

EGWcb_GxE 0.29 0.61 0.33 0.52 0.44  

EGWcb_GxE_WcbxE 0.43 0.67 0.33 0.56 0.50  
       

       

Weighted Multivariate Ridge Regression  

EGWcb_GxE 0.24 0.56 0.33 0.48 0.40  

EGWcb_GxE_WcbxE 0.33 0.57 0.31 0.51 0.43  

 

Table 5. Predictive abilities of genomic, single NIRS, multi-omics and multi-NIRS models in scenario nGoEref for GY. 

CVRandom_Ref and CVNewG_Ref are leave-one-environment-out schemes followed by five-fold cross-validation in 

which new genotypes are unphenotyped in all the environments of the MET except the reference environment. Predictive 

abilities calculated based on 50 repetitions are presented by set and averaged over all sets. The optimum models are 

shown in red, and the best predictive abilities by set and by model category (based on Average) in bold. 
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The PA were not too low (0.32 and 0.27, Tables S4-S5) considering the difficulty of predicting GY in new 1 

environments. For some sets, the PA markedly increased when the P matrix was used to model GxE. For example, 2 

the PA of model EG was 0.03 for Set2-2019 while the PA of model EG_P was 0.27 (Table S3). We found that 3 

using a single NIRS model was less effective than using all spectra available to model GxE. The main genetic 4 

effect can be modelled by an H matrix computed on a single environment, but GxE is better modelled by combining 5 

all the NIR spectra available. The optimal situation for predicting GxE is therefore to have NIR data for each 6 

predicted environment.   7 

Is it better to model GxE with information from NIR spectra or from molecular markers? Unlike molecular 8 

markers, the spectra characterise the effects of both the genotype and the environment on the plant material tested, 9 

so they may provide more information. After trying different combinations to model the main genetic effect with 10 

molecular markers (G) or NIRS (W) and the GxE effect with molecular markers (GxE) or NIRS (P), we found that 11 

the best combination was G for the main genetic effect and P for the GxE effect. However, the increase in PA is 12 

moderate. Similar conclusions were reported by Krause et al. (2019) for predicting GY in wheat. Montesinos-13 

López et al. (2017) also reported that modelling GxE by the interaction between spectral band and the environment 14 

(BxE) resulted in higher PA than models without this term. To assess the benefit of using NIR spectra to model 15 

the GxE effect, larger datasets with numerous and contrasted environments would need to be studied. The size of 16 

our dataset, and in particular the low number of environments clearly made difficult the sharing of information 17 

between environments. 18 

Our assumption here was that NIR spectra can be considered as simple environmental covariates for estimating 19 

the similarity between environments. They are indeed the results of the complex regulation and expression of genes 20 

in a specific environment, as confirmed by the large amount of GxE along the spectra (Figure 3). However, the 21 

environmental factors responsible for the absorbance variance are not necessarily the same as the ones responsible 22 

for the GY variance. It might be informative to select wavelengths which capture most of the GxE variance for the 23 

GY trait. For example, to weight the contribution of the different wavelengths, Additive Main effects and 24 

Multiplicative Interaction (AMMI) decomposition can determine the markers and ECs important for predicting 25 

the interactions (Rincent et al., 2019).  26 

 27 

Original MET designs enable breeders to use PS at minimal cost 28 

To extend the application of PS for breeders, we compared different MET scenarios with different assumptions. 29 

oGoE, nGoE, oGnE and nGnE are classic MET scenarios in which GS has been applied. We first tested our models 30 

in a sparse testing scenario (oGoE) and in a scenario where a new line would not have been phenotyped in the 31 

MET (nGoE). It is acknowledged that the datasets are very small, both in terms of the number of environments 32 

and the number of breeding lines. Despite this, we demonstrate the advantage of MET prediction by PS in the high 33 

PA for GY and HD achieved by models developed in oGoE and nGoE. We then tested our models in more 34 

challenging scenarios where no genotype was phenotyped in the environment of prediction (oGnE) and new 35 

genotypes were not phenotyped in the MET (nGnE). As expected, PA were lower than the previous scenarios. 36 

Similarly, Lane et al. (2020) found that for a CV0 scenario equivalent to oGnE, the PA of a multi-NIRS model 37 

including the GxE interaction for maize GY was around 0.54. The maize trial covered 4 environments (two years 38 

x two treatments) and around 300 hybrids. For wheat, we found similar PA for GY with the largest dataset, Set4-39 

2019, but this level of accuracy was not attained with the sets with fewer genotypes (Set4-2018) or with just two 40 

environments (Set1-2016 and Set2-2019). This may be partly because the environmental conditions of the 41 

unobserved environment did not fall within the range of those of the training environments (Jarquín et al. 2017). 42 

For Set1-2016 and Set2-2019, the correlation of GY between environments is close to null (Figure 2), and the 43 

prediction of GY cannot be accurate when the training and validating environment differ so much.  44 

In designing these scenarios, we suppose that breeders acquire NIR spectra on all lines (training and validation) in 45 

each environment of the MET. Practically this could be done by dedicating nursery rows in each environment to 46 

observation (i.e. scoring diseases and lodging) and NIR spectra acquisition of all lines, in parallel to trial plots 47 

dedicated to the measurement of GY of the training lines. This is feasible if the grains or tissue samples are in a 48 

good state with no deterioration due to biotic or abiotic factors. Even in the event of disease, we assume that biotic 49 

stress will influence the phenotype of the plant and the NIR spectra, but it would still be possible to compute the 50 

covariance between genotypes. In our study of Set2_2019, the two environments are different sites with intensive 51 

management practices, with the difference that Genlis was treated with fungicide but Estrée-Mons was not. The 52 

PA reached by our models for this dataset were the highest for GY in most scenarios (Tables 2-5). For an easier 53 

and cheaper application of PS, we also proposed two new experimental designs (oGoEref and nGoEref) in which 54 

NIR spectra are acquired only on the plots evaluated for GY, which means there is no need for a nursery in parallel 55 

to the trials. The principle is to observe and acquire NIRS from all lines in one environment. This environment 56 

serves as the reference which is usually chosen by the breeder to observe all the candidate lines for selection. 57 
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Scenario oGoEref resembles a sparse testing scenario and scenario nGoEref resembles a new genotype scenario, 1 

except that they use one environment as reference to acquire NIR spectra on all genotypes.  2 

To compare multi-NIRS models and multi-omics models in these scenarios, we had to impute the missing spectra. 3 

Our results showed that WMRR gave better PA for GY than the NN imputation method (Table 4, Table 5). This 4 

may be because NN assumes that if two lines have a similar spectrum in one environment, then they will have 5 

similar spectra in the other environments. This is clearly not in accordance with the observation of strong GxE 6 

across the spectra (Figure 3). Two genotypes can have similar spectra in one environment and dissimilar spectra 7 

in another due to the GxE effect, which is the reason why they are able to capture GxE of the predicted trait more 8 

efficiently than markers. Inversely WMRR was expected to consider GxE in the spectra by predicting the specific 9 

spectrum of a specific genotype in a specific environment, and thus better impute the missing spectra. The expected 10 

maximum PA for GY (“optimum" scenario) were however still not reached when the WMRR method was used. 11 

The correlations between predicted and acquired spectra were very variable from one set to another, but for Set4-12 

2019 the correlation across spectra was high (Figures S3, FigureS4). Set4-2019 was the only set for which the best 13 

model using predicted spectra almost reached the PA of the optimum (0.64 instead of 0.66 in Table 4 for 14 

CVRandom_Ref and 0.51 instead of 0.56 in Table 5 for CVNewG_Ref). The objective with the WMRR method 15 

was not to accurately predict the entire spectra, but to accurately predict the wavelengths indicative of major effects 16 

on the target trait. However, all the wavelengths are somewhat explicative, so it was not possible to isolate distinct 17 

wavelengths or peaks. PA for GY were slightly higher compared to an unweighted multivariate ridge regression 18 

method (not shown here).  19 

The WMRR method is promising because it circumvents the potential obstacle of acquiring NIR spectra on all 20 

genotypes in each environment. It would be more convenient for breeders to directly apply PS in already defined 21 

MET designs and without any additional cost. The PA obtained with WMRR were however lower than those 22 

obtained with the GS model in our study. There is scope to improve the method as the optimum has not been 23 

reached yet. Two factors which could be adjusted is the size and the composition of the training set for predicting 24 

missing spectra. As we know, these factors influence the PA of different traits (Albrecht et al. 2011; Heffner et al. 25 

2011; Pszczola et al. 2012; Rincent et al. 2012; Daetwyler et al. 2013) in GS as well as in PS (Parmley et al. 2019; 26 

Galán et al. 2020; Zhu et al. 2021a; Robert et al. 2022a). We assume that the prediction of the absorbances will 27 

also be influenced by these factors. Other methods of imputation could be considered. We tried the single-step 28 

method of Legarra et al. (2009) to overcome the issue of incomplete NIRS acquisition. We used the NIR spectra 29 

acquired in the environment of reference combined with the incomplete NIR spectra in another environment to 30 

have a hybrid covariance matrix between all genotypes (Michel et al. 2021). The hybrid matrix has the advantage 31 

of being quick to compute. However, PA obtained with the hybrid matrix were slightly lower compared to PA of 32 

our WMRR method.  33 

Phenomic selection is a promising tool to improve breeding programs 34 

More and more studies have tried to apply PS to annual crops like bread wheat (Montesinos-López et al. 2017; 35 

Rincent et al. 2018; Krause et al. 2019; Cuevas et al. 2019; Robert et al. 2022a), maize (Lane et al. 2020), rye 36 

(Galán et al. 2020, 2021), triticale (Zhu et al. 2021b) or soybean (Parmley et al. 2019; Zhu et al. 2021a), or perennial 37 

crops like poplar (Rincent et al. 2018) and recently grapevine (Brault et al. 2021). PS has the advantage, compared 38 

to other types of predictors, of being more flexible as to which data acquired. NIR spectra can be collected on 39 

different tissues (leaves, wood, grain, fruits, roots) at multiple stages of the growing cycle, which is similar to other 40 

omics methods but less costly. Conventionally, NIR spectra are collected in controlled conditions in a laboratory, 41 

with coverage of wavelengths from the visible and near infrared (Osborne 2006). With the rapid development of 42 

high throughput phenotyping and new sensors, NIR spectra can be collected at moderate to low cost directly in the 43 

fields with an unoccupied aerial vehicle, portable (micro)spectrometer, or directly in the harvester. The 44 

experimental protocol for acquiring NIR spectra has clearly to be further studied for an optimal use of PS. It is still 45 

not clear which spectrophotometer and on which tissue it is best to work with. The method is also very 46 

straightforward for breeders who are used to the prediction models already developed for GS. Multiple applications 47 

are possible in breeding like sparse testing in single environments (Rincent et al. 2012; Cuevas et al. 2019; Robert 48 

et al. 2022a) or in MET designs as we showed here. PS is also useful to predict breeding material genetically 49 

distant from the training set (Galán et al. 2021). Other avenues do not have been explored yet but have great 50 

potential to interest breeders (Opinion and review in Robert et al. 2022b) like the screening of diversity collections 51 

at lower cost, or the prediction of breeding material at early stages in nurseries.  52 

 53 

 54 

 55 
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 1 

 2 

Conclusion 3 

We explored whether PS can be used by breeders in different multi-environmental contexts to predict GY and HD. 4 

Our main results showed that the PS models performed as well as GS models in the prediction of GY for classic 5 

MET designs. For the prediction of HD, GS performed slightly better than PS because HD variance is mainly 6 

additive. We compared different ways to model GxE and found that models integrating the GxE effect modelled 7 

with NIR spectra were more accurate than the models without this term. We incorporated a P matrix characterising 8 

the covariance between the different genotype-environment combinations of the MET, which effectively shares 9 

information between environments. For scenarios with new environments, this gave better predictions than models 10 

without the P matrix. Finally, we designed two new MET scenarios specific to PS in which NIR spectra were 11 

missing for the genotypes to be predicted. Among the different methods available for spectra imputation, the 12 

WMRR gave the best PA but not the optimum. The models developed in this paper as well as the original MET 13 

designs would enable breeders to use PS for diverse objectives and at minimal cost. 14 
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 9 

Figure captions  10 

 11 

Fig. 1 Schematic overview of the six prediction scenarios representing the associated missing data to be 12 

predicted in the MET. 𝐺𝑖  corresponds to the genotype i with 𝑖 ∈ {1, … , 𝑁𝐺}   and 𝐸𝑗 corresponds to the 13 

environment j of the MET, with 𝑗 ∈ {1, … , 𝑁𝐸}. Filled squares represent data of the training set and 14 

crosses represent data of the validation set. Blue shading indicates that a phenotype and a NIR spectrum 15 

were acquired from genotype i in environment j. Yellow shading indicates that only the NIR spectrum 16 

was acquired, not the phenotyping. Finally, orange shading indicates that neither phenotyping nor NIR 17 

spectrum were acquired. oGoE corresponds to prediction in a sparse testing scenario where some 18 

combinations of genotypes and environments are not phenotyped. oGnE corresponds to a new 19 

environment in which no phenotype is available. nGoE corresponds to the prediction of new genotypes 20 

in observed environments. nGnE corresponds to new genotypes to be predicted in a new environment. 21 

oGoEref and nGoEref correspond to two scenarios where one environment is considered as a reference 22 

where NIR spectrum is acquired on all genotypes. oGoEref therefore is similar to scenario oGoE except 23 

that NIR spectra are not acquired on the validation set, while nGoEref is similar to scenario nGoE 24 

except that NIR spectra are not acquired on the validation set apart from in the reference environment.  25 

 26 

Fig2. Correlation coefficient matrices between trial environments for heading date adjusted means 27 

(upper left) and grain yield adjusted means (lower right). A trial environment is defined as a combination 28 

of treatment × year × site. Treatments were denoted by T, treated (equivalent to intensive practices) or LI, 29 

low input. Sites were denoted by EM (Estrée-Mons), GL (Genlis), HV (Houville), LC (Lectoure), LM (Le 30 

Moulon). Asterisks indicate the significance level: *P-value <0.05, **P-value <0.01 and ***P-value 31 

<0.001. 32 

 33 

Fig 3. Proportion of the genomic (G), the genomic x environment (GxE) and residual variances across 34 

the NIR spectra of winter wheat grains from 5 different MET sets.  35 

 36 
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