Environmental assessment of contrasting French organic vegetable farms
Antonin Pepin, Hayo van Der Werf, Kevin Morel, Dominique Grassely, Marie Trydeman Knudsen

To cite this version:
hal-03766007

HAL Id: hal-03766007
https://hal.inrae.fr/hal-03766007
Submitted on 31 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Environmental assessment of contrasting French organic vegetable farms

Antonin Pépin *, Hayo van der Werf, Kevin Morel, Dominique Grasselly, Marie Knudsen
Contact: antonin.pepin@ctifl.fr
Context

• Diversity of organic vegetable farms (Pépin et al., 2021)

• What are the environmental performances of organic vegetable farms that are contrasted by their agroecological functioning?
Method: Life cycle assessment (LCA)

- **Inputs**: Farm
 - CO₂, N₂O, CH₄, NO₃, etc.
 - Energy, resources (metal, plastic, etc.)

- **Farming system approach of LCA**
 - All inputs and operations are estimated for the entire farm
 - The output is the total production of vegetables
 - Comparison of 3 contrasting farms

- **Outputs**:
 - Climate change
 - Land competition
 - Plastic pollution
 - Biodiversity

After Jolliet et al. (2015)
MF: microfarm

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microfarm (MF)</td>
<td></td>
</tr>
<tr>
<td>Outdoor</td>
<td>0.16 ha</td>
</tr>
<tr>
<td>Tunnel</td>
<td>0.12 ha</td>
</tr>
<tr>
<td>No. of veg.</td>
<td>35</td>
</tr>
<tr>
<td>Yield</td>
<td>35 t/ha/yr</td>
</tr>
<tr>
<td>Agroecology</td>
<td>Agroeco ++</td>
</tr>
<tr>
<td></td>
<td>Inputs -</td>
</tr>
<tr>
<td></td>
<td>Microfarm (MF)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Outdoor</td>
<td>0.16 ha</td>
</tr>
<tr>
<td>Tunnel</td>
<td>0.12 ha</td>
</tr>
<tr>
<td>No. of veg.</td>
<td>35</td>
</tr>
<tr>
<td>Yield</td>
<td>35 t/ha/yr</td>
</tr>
<tr>
<td>Agroecology</td>
<td>Agroeco ++</td>
</tr>
<tr>
<td>Inputs</td>
<td>Inputs -</td>
</tr>
</tbody>
</table>

SP: specialised in sheltered production
OP: specialised in outdoor production

<table>
<thead>
<tr>
<th></th>
<th>Microfarm (MF)</th>
<th>Sheltered production (SP)</th>
<th>Outdoor production (OP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor</td>
<td>0.16 ha</td>
<td>0 ha</td>
<td>17.5 ha</td>
</tr>
<tr>
<td>Tunnel</td>
<td>0.12 ha</td>
<td>2.0 ha</td>
<td>0 ha</td>
</tr>
<tr>
<td>No. of veg.</td>
<td>35</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Yield</td>
<td>35 t/ha/yr</td>
<td>67 t/ha/yr</td>
<td>9 t/ha/yr</td>
</tr>
<tr>
<td>Agroecology</td>
<td>Agroeco ++</td>
<td>Agroeco -</td>
<td>Agroeco +</td>
</tr>
<tr>
<td>BY</td>
<td>Inputs -</td>
<td>Inputs ++</td>
<td>Inputs +</td>
</tr>
</tbody>
</table>
Climate change

Greenhouse gas emissions
Method: IPCC
Unit: kg CO₂ eq.

Contribution analysis
- Microfarm (MF):
 - Diesel 49% (irrigation + tractor)
 - Tunnel 27% (steel + plastic)
- Sheltered farm (SP):
 - Tunnel 34% (steel + plastic)
 - Fertiliser 16% (fabrication)
 - Seedling production 15% (gas heating of nursery)
- Open field farm (OP):
 - Diesel 54% (tractors)
 - Field emissions 34% (N₂O)
- Different environmental profiles → different hints for eco-design / redesign

Total values
- Ranking depends on functional unit
- Per ha, OP << MF << SP
- Per kg, OP < MF & SP, but smaller differences
- Higher productivity per ha does not fully compensate the higher impact of SP
Land competition

Land occupied by the system
Method: CML-IA non-baseline
Unit: m²a

- Per ha, same impact: little indirect land
- Per kg, OP has the largest impact
 - 1 cycle/year
 - Lower yields
- Trade-off: land competition vs. climate change
Growing concern in horticulture

- SP >> MF >> OP
 - Tunnel (SP & MF)
 - Single-use plastic (mulch, pipes) (SP)
 - Reusable plastic (MF)
 - Scale issue?

- Indicator combining all types of plastic and uses (single-use, hardware, in/out of soil, etc.)
 - Probably not the same impact
 - Indicator to be improved

- Not an LCA indicator: use, not impact
 - Microplastics in soil and water

Plastic pollution in LCA: emerging topic

- Recognising the long-term impacts of plastic particles (Gontard et al., 2022).
- Create LCA indicators for plastic pollution (Lavoie et al., 2021; Saling et al., 2020; Woods et al., 2021).

Method: the sum of plastic used on the farm or contained in its inputs
Unit: kg of plastic
Biodiversity

SALCA-BD (Jeanneret et al., 2014)
An expert system based on scientific literature
Based on a detailed inventory of farming practices

- On cultivated areas, small differences: MF & OP > SP
 - Sensitivity of SALCA-BD?
- On whole farms, including semi-natural areas: SP > MF > OP
 - Large fields → low field perimeter:area ratio (OP)
 - Large area of ruderal areas between tunnels (SP)
- Importance of semi-natural areas (hedges, extensive grassland, etc.) for biodiversity
- Question of spatial farm boundaries (MF)
Conclusion

- No clear ranking of the farms, depends on the indicator and the FU
 - Climate change & plastic: inputs
 - Land occupation: yield
 - Biodiversity: semi-natural areas, field size

- Complementarity of the systems
 - Vegetables / Markets
 - Responses to different environmental issues
 - Matter of choice: vision of farming

- Farm-specific effects / case study
 - MF: diesel vs. electric pump
 - SP: plastic tunnel vs. glasshouse
 - OP: use of plastic mulch

Find the best trade-off
Design of farming systems
Thank you!