

IHC2022, 15 August 2022 International symposium on AGROECOLOGY AND SYSTEM APPROACH FOR SUSTAINABLE AND RESILIENT HORTICULTURAL PRODUCTION

Environmental assessment of contrasting French organic vegetable farms

Antonin Pépin *, Hayo van der Werf, Kevin Morel, Dominique Grasselly, Marie Knudsen

Contact: antonin.pepin@ctifl.fr

Context

• Diversity of organic vegetable farms (Pépin et al., 2021)

 What are the environmental performances of organic vegetable farms that are contrasted by their agroecological functioning?

Method: Life cycle assessment (LCA)

Energy, resources (metal, plastic, etc.)

after Jolliet et al. (2015)

Farming system approach of LCA

- All inputs and operations are estimated for the entire farm
- The output is the total production of vegetables
- → Comparison of 3 contrasting farms

MF: microfarm

	Microfarm (MF)	
Outdoor	0.16 ha	
Tunnel	0.12 ha	
No. of veg.	35	
Yield	35 t/ha/yr	
Agroecolo gy	Agroeco ++ Inputs -	

SP: specialised in sheltered production

	Microfarm (MF)	Sheltered production (SP)	
Outdoor	0.16 ha	0 ha	
Tunnel	0.12 ha	2.0 ha	
No. of veg.	35	6	
Yield	35 t/ha/yr	67 t/ha/yr	
Agroecolo gy	Agroeco ++ Inputs -	Agroeco - Inputs ++	

OP: specialised in outdoor production

	Microfarm (MF)	Sheltered production (SP)	Outdoor production (OP)
Outdoor	0.16 ha	0 ha	17.5 ha
Tunnel	0.12 ha	2.0 ha	0 ha
No. of veg.	35	6	20
Yield	35 t/ha/yr	67 t/ha/yr	9 t/ha/yr
Agroecolo gy	Agroeco ++ Inputs -	Agroeco - Inputs ++	Agroeco + Inputs +

Climate change

Greenhouse gas emissions

Method: IPCC

Unit: kg CO₂ eq.

- Ranking depends on functional unit
- Per ha, OP << MF << SP
- Per kg, OP < MF & SP, but smaller differences
- Higher productivity per ha does not fully compensate the higher impact of SP

Other

■ Plastic

■ Tunnel

Diesel

Electricity

■ Seedlings

Contribution analysis

- Microfarm (MF):
 - Diesel 49% (irrigation + tractor)
 - Tunnel 27% (steel + plastic)
- Sheltered farm (SP):
 - Tunnel 34% (steel + plastic)
 - Fertiliser 16% (fabrication)
 - Seedling production 15% (gas heating of nursery)
- Open field farm (OP):
 - Diesel 54% (tractors)
 - Field emissions 34% (N₂O)
- Different environmental profiles → different hints for eco-design / redesign

Land competition

Land occupied by the system Method: CML-IA non-baseline

Unit: m²a

- Per ha, same impact: little indirect land
- Per kg, OP has the largest impact
 - 1 cycle/year
 - Lower yields
- Trade-off: land competition vs. climate change

Plastic use

Method: the sum of plastic used on the farm or contained in its inputs

Unit: kg of plastic

- Growing concern in horticulture
- $SP \gg MF \gg OP$
 - Tunnel (SP & MF)
 - Single-use plastic (mulch, pipes) (SP)
 - Reusable plastic (MF)
 - Scale issue?
- Indicator combining all types of plastic and uses (single-use, hardware, in/out of soil, etc.)
 - Probably not the same impact
 - Indicator to be improved
- Not an LCA indicator: use, not impact
 - Microplastics in soil and water

- Plastic pollution in LCA: emerging topic
 - Recognising the long-term 0 impacts of plastic particles (Gontard et al., 2022).
 - Create LCA indicators for plastic pollution (Lavoie et al., 2021; Saling et al., 2020; Woods et al., 2021).

Other

netting

■ Pipes

Mulch

Tunnel

Biodiversity

SALCA-BD (Jeanneret et al., 2014) An expert system based on scientific literature Based on a detailed inventory of farming practices

- On cultivated areas, small differences: MF
 & OP > SP
 - Sensitivity of SALCA-BD?
- On whole farms, including semi-natural areas: SP > MF > OP
 - Large fields → low field perimeter:area ratio (OP)
 - Large area of ruderal areas between tunnels (SP)
- Importance of semi-natural areas (hedges, extensive grassland, etc.) for biodiversity
- Question of spatial farm boundaries (MF)

Conclusion

- No clear ranking of the farms, depends on the indicator and the FU
 - Climate change & plastic: inputs
 - Land occupation: yield
 - o Biodiversity: semi-natural areas, field size

Find the best trade-off
Design of farming systems

- Complementarity of the systems
 - Vegetables / Markets
 - Responses to different environmental issues
 - Matter of choice : vision of farming
- Farm-specific effects / case study
 - o MF: diesel vs. electric pump
 - SP: plastic tunnel vs. glasshouse
 - OP: use of plastic mulch

