

A review of existing soil monitoring systems to pave the way for the EU Soil Observatory

Antonio Bispo, Maria Fantappiè, Fenny van Egmond, Bozena Smreczak, Zsofia Bakacsi, Rudi Hessel, Johanna Wetterlind, Grzegorz Siebelec, Arwyn T. Jones

▶ To cite this version:

Antonio Bispo, Maria Fantappiè, Fenny van Egmond, Bozena Smreczak, Zsofia Bakacsi, et al.. A review of existing soil monitoring systems to pave the way for the EU Soil Observatory. 22. world congress of soil science, British Society of Soil Science, Jul 2022, Glascow, United Kingdom. pp.1-15. hal-03766878

HAL Id: hal-03766878 https://hal.inrae.fr/hal-03766878v1

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GLASGOW22

22ND WORLD CONGRESS OF

SOIL SCIENCE

A review of existing soil monitoring systems to pave the way for the EU Soil Observatory

Antonio Bispo, Maria Fantappiè, Fenny van Egmond, Bozena Smreczak, Zsófia Bakacsi, Rudi Hessel, Johanna Wetterlind, Grzegorz Siebelec and Arwyn Jones

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 652615.

What is EJP SOIL?

- A European Joint Programme Cofund on Agricultural Soil Management contributing to key societal challenges including climate change, water and future food security.
- The EJP SOIL consortium consists of **26 partners from 24 countries** ensuring a large representation of European countries.
- The main aim of EJP SOIL is to develop a sustainable framework for an integrated community of researchers working on related aspects of agricultural soil management.

WCSS/Glasgow - WG1.7 – Advances in soil monitoring

www.ejpsoil.eu

INRA

EJP SOIL WP6 main objectives and links with EU Soil Observatory

EJP SOIL WP6

Monitoring Mapping Indicators &

Benchmark values

Data management

<u>Monitoring</u> Indicators Data Monitoring EU Dashboard Data Center R&I Open forum

EU Soil Observatory

Describe and analyse Soil Monitoring Systems across EJP SOIL partners

- **Stocktake** the description of monitoring networks across EJP SOIL partners through the use of a **questionnaire**
 - Institution identification
 - SMS short description
 - Site information
 - Sampling protocol
 - Sampling for bulk density
 - Soil description
 - Soil sample preparation and conservation
 - Litter sample
 - Analyses and methods
 - Harmonization options

European Joint Programme

- Collaborations and/or synergies between Member States and LUCAS
- 20 answers, 41 contributors

Published on the EJP SOIL web portal:

https://ejpsoil.eu/fileadmin/projects/ejpsoil/WP6/ EJP SOIL Deliverable 6.3 Dec 2021 final.pdf

× :

WP6 - Supporting harmonised soil information and reporting Task 6.3 - Agricultural potential and sustainable values of SOC, agricultural soil fertility and degradation

AIM OF THE QUESTIONNAIRE Within EJP-SOIL, WP6 is dedicated to the harmonisation of data (from collection to use), data exchange and within EJP-SOIL, WP6 is dedicated to the harmonisation of data in a UE (ID-SOI countries and is providing data treatment (e.g. mapping). WP6 is analysing the existing data in all EJP-Soil countries and is providing guidance for the future collection, storage, exchange and use of soil data (e.g. to produce new information

WP6 is collaborating with EU structures dealing with soil information (mainly JRC-ESDAC, but also DG Env, DG Agri and DG Climate) and in particular in the activities related to the development of the next fore coming LUCAS soil camaians (in 2022) and others) and of the EU Soil Observatory (https://de-ucona.eu/irc/envies.ail-

PROPOSAL OF METHODOLOGICA DEVELOPMENT FOR THE LUCAS PROGRAMME IN ACCORDANCE WITH NATIONAL MONITORING PROGRAMMES

Deliverable 6.3

EJP SOIL Delivarable 6.3

SMS in EJP SOIL countries

- 20 countries answered out of 24 (ending with 27 declared SMS)
- Turkey and Portugal do not have SMS
- Five countries have 2 or 3 monitoring systems
 - SMS managed at regional scale
 - SMS with different purposes (e.g. agricultural vs forest, monitoring trace element vs agricultural parameters, monitoring a network of highly instrumented sites vs network agricultural soils)
- Caution: Not all countries declared their forest SMS

INRAC

Results at a glance

Main objective of the SMS

Results at a glance

Sampling design

Grid

Mixed (grid + representative sites)

Stratified

representative sites

WCSS/Glasgow - WG1.7 – Advances in soil monitoring

Results at a glance - Sampling depths

4 according to horizons

E

INRA

16 MS sample for bulk density

13 MS are sampling deeper than 30 cm

Analytical methods (still to be completed)

	Countries	Sweden	France	EU-JRC	Czech	Republic	La	tvia	Lithuania	Belgium - Wallonia	Belgium - Flanders	Netherlands	Slovakia	Denmark	Germany	TOTAL	
	Name of the Soil Monitoring System	Soil & Crop Inventory	RMQS	LUCAS _a	Basal soil	I monitoring	SPPS	SPPS N	Dirv_DR10LT	CARBIOSOL	Koolst of monitoring netwerk	Netherlands Soil Sampling Program (NSSP)	CMS-P	DSMDB	Boden-Dauerbeobachtung _b		
Main soil properties, according to Global Soil Map specifications, 2015	total profile depth plant exploitable (effective) soil depth organic carbon pH in water sand silt clay gravel ECEC bulk density of the fine earth (< 2 mm) fraction (excludes gravel) bulk density of the whole soil in situ (includes gravel) available water capacity	x x x x x	x x x x x x x x x x x	x x x x x x x		- C - p - S - C	Dre DH Soi Cal	gan (in l te ciu	N ic ca wat xtur m/ca	lain « irbon er) e arbon	commor	n » paramet	ers	:		6 4 13 10 10 10 10 6 9 5 5 7 2 6	
	Electrical Conductivity calcium- carbonate content	×	x <mark>x</mark>	×		- N	Ла	crc	/mi	cronu	trients					10	
er soil properties	Field capacity (mm) Plant available amounts of macro and micro nutrients Total amounts of macro ad micro nutrients/trace alement	× x	×	×						but di	fferent n Iso Delive	nethods are	ap froi	plied m Fl	d (see	2 12 8	
othe	quality of clay minerals (e.g. type or ratio of illite, smectite, montmorillonite in clay fractionetc)			x						u					1 3012)	2	
	distribution of soil organisms properties for NIR and MIR (near and mid	x	x x	x x							x	x		x	x	5	
1	Intrared)	JP	S	0					W	CSS/Glasgow -	WG1.7 – Advances in s	oil monitoring				INF	22

WCSS/Glasgow - WG1.7 – Advances in soil monitoring

European Joint Programme

Harmonization options

Can you modify:

- the sampling design of your SMS => NO but we may add new points (#12)
- the sampling area => NO (#20)
- the sampling depths => NO (#18) but we may sample deeper (#4)
- the soil sample preparation, before analysis => NO (#21)
- the analytical methods => NO (#16)
- Can you consider collecting new information on the monitoring sites?
 - YES: (#24)
- Can you improve soil description on the monitoring sites?
 - YES: (#16)
- Can you add extra analytical parameters?
 - YES: (#21)

Any change would make impossible the comparison with previous data...

But this will require more funds ...

Main recommendations

- Compare national and LUCAS sampling strategies/schemes
- **ONGOING**
- Compare national and LUCAS data, country/country
- Develop transfer functions (from sampling to analytical methods), taking the opportunity of LUCAS 2022
- Identify / test methods to merge national and LUCAS datasets and/or existing maps
- Develop / test benchmark values/scoring approaches

WCSS/Glasgow - WG1.7 – Advances in soil monitoring

Table 3. Equations of PTFs built by partial least square regression (PLSR) for estimating Olsen P_2O_5 with their mean R^2 and RMSE values based on cross-validation.

	RMSE (mg kg ⁻¹)	Equations
s b	uilt with Joret-H	Hebert P_2O_5 and other variables
8 a	33.719aa	Olsen P ₂ O ₅ = 27.215 + 0.244*Joret-Hébert P ₂ O ₅
5b	29.627bb	Olsen $P_2O_5 = -19.619 + 0.254*$ Joret-Hébert $P_2O_5 + 0.096*$ Silt
5b	29.630bb	Olsen $P_2O_5 = 299.664 + 0.270^*$ Joret-Hébert $P_2O_5 - 35.208^*pH_{water}$
8c	27.198 cc	Olsen P2O5 = 218.385 + 0.263*Joret-Hébert P2O5 - 29.419*pHeuter + 0.079*Silt
s o Sd	27.860dd	Olsen P2O5 = 28.315 + 0.19*Dyer P2O5
8d	27.860dd	Olsen $P_2O_5 = 28.315 + 0.19^*Dyer P_2O_5$
	26.167dd	Olcon P. O 21.5 + 0.193*Deer P. O. + 35.49*exchangeable 4]
ld		Olsen 1203 - 21.5 + 0.155 Dyer 1203 + 55.45 exchangeable h
1d 9d	27.062dd	Olsen P2O5 = 63.246 + 0.195 *Dyer P2O5 - 6.063*PH _{water}
1d 9d 5d	27.062dd 25.985dd	Olsen P2O5 = 63.246 + 0.195*Dyer P2O5 - 6.063*pH _{water} Olsen P2O5 = 63.246 + 0.195*Dyer P2O5 - 6.063*pH _{water} Olsen P2O5 = 57.522 + 0.193*Dyer P2O5 - 5.987*pH _{water} + 35.447*exchangeable

LUCAS / SIMS comparison protocol

INRAO

Back-to-back histogram of sand content from SIMS and LUCAS datasets

https://nicolassaby.pages.mia.inra.fr/ejpsoilwp6lucas/

WCSS/Glasgow - WG1.7 – Advances in soil monitoring

EJP SOIL partners investment in the development of transfert functions (in link with LUCAS SOIL 2022)

- Double samples obtained from LUCAS 2022 samplers
- Between 100 and 200 sites will be analyzed depending on the countries
- 17 countries involved
- Comparison of EU and national results

rocedures

analytica

Sampling and

- Sampling (on national SMS and/or on LUCAS 2022 points) according to national and LUCAS 0 sampling protocols
 - 6 countries involved
 - Compare the overall process

Conclusions

- Updated overview of SMS in EJP SOIL countries
- Based on the questionnaire: full harmonization seems impossible

• Next steps:

- Common sites may be implemented to compare soil monitoring systems
- Ways to take advantage of national/EU data are currently being tested as
 - Merging datasets / maps knowing and understanding the differences (by the end of this year)
 - Transfer functions to be developed next year using the LUCAS 2022 sampling campaign
 - Scoring functions to transform the data obtained through different ways (next year)

• Results can be later used to implement and populate the EU Soil Observatory!

Thank you for your attention

LE STUDIUM CONFERENCES ORLÉANS | 2023

7-9 February 2023 Soil Mapping for a Sustainable Future

2nd joint Workshop of the IUSS Working Groups Digital Soil Mapping and Global Soil Map

Auditorium du Musée des Beaux Arts 1 Rue Fernand Rabier 45000 Orléans - FR

AUSPICES OF **IUSS** - International

Union of Soil Sciences Digital Soil Mapping and Global Soil Map Working Groups

registration@lestudium-ias.fr www.lestudium-ias.com

CRLÉANS

WCSS/Glasgow - WG1.7 – Advances in soil monitoring