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Abstract

Second-order cone programming is a highly tractable convex optimization class. In this paper, we fit general second-order cone
constraints to data. This is of use when one must solve large-scale, nonlinear optimization problems, but modeling is either
impractical or does not lead to second-order cone or otherwise tractable constraints. Our motivating application is biochemical
process optimization, in which we seek to fit second-order cone constraints to microbial growth data. The fitting problem is
nonconvex. We solve it using the concave-convex procedure, which takes the form of a sequence of second-order cone programs.
We validate our approach on simulated and experimental microbial growth data, and compare its performance with conventional

nonlinear least-squares fitting.
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1. Introduction

Second-order cone programming (SOCP) is a highly
tractable nonlinear optimization class [1, 2]. In this paper, we
fit second-order cone (SOC) constraints to data. This could be
useful in several scenarios, e.g., when first principles modeling
does not lead to a tractable constraint or is simply not viable,
and one must solve large-scale problems that are fundamentally
nonlinear.

Our motivating application is the optimization of biochemi-
cal processes, for which the Monod [3] and Contois [4] func-
tions are established models of microbial growth. In [5], it was
shown that Monod growth with constant biomass and Contois
growth can be represented as SOC constraints. These models
have been extensively validated over many years, but are not
derived from first principles. It is therefore plausible that a gen-
eral SOC constraint, which has more parameters, could accu-
rately model a broad range of microbial growth. At the same
time, by virtue of being an SOC, any such constraint could be
used in an optimization problem without sacrificing tractability.

In this paper, we estimate the parameters of a general SOC
constraint from data. We formulate this as an optimization
problem, which is nonconvex but does have partial SOC struc-
ture. We exploit this through the concave-convex procedure
(CCP) [6, 7], which here takes the form of a sequence of
SOCPs. The problem nonetheless has a number of local minima
and a trivial global minimum. We circumvent these difficulties
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using multiple starting points and by adding constraints on the
parameters, as is standard in ellipse fitting [8].

To the best of our knowledge, this is the first attempt to fit
general SOC constraints to data. The most relevant existing lit-
erature concerns fitting ellipses or conics to data [9, 10]. These
papers often focus on problems in computer vision, and there-
fore in two and three dimensions. We use ideas from these pa-
pers to prohibit the trivial solution where all parameters are esti-
mated to be zero [8], and to quantify error in terms of geometric
distance [11].

There is an extensive literature on fitting microbial growth
rates like the Monod and Contois functions to data [12]. The
closest work to ours in this area is [13], in which splines are fit
to microbial growth data. While this can better accommodate
growth that does not follow a simple mathematical expression,
splines are not representable as a tractable or convex constraint
in an optimization problem. On the other hand, an empirically
fitted SOC constraint can potentially capture a wide range of
microbial growth, and is well-suited for use in large scale opti-
mization problems arising in applications like wastewater treat-
ment [14].

Our original contributions are as follows.

e We formulate an optimization problem for fitting SOC
constraints to data. We discuss several constraints for pro-
hibiting trivial solutions and enforcing certain practical re-
quirements, e.g., that microbial growth is zero when the
substrate or biomass is zero.

e We adapt the CCP to the optimization problem, which is
implementable as a sequence of SOCPs.

e We validate our approach on three examples based on mi-
crobial growth: (i) Contois growth, which has an exact
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SOC representation, (ii) general Monod growth and Hal-
dane growth, which do not have SOC representations, and
(iii) experimental growth data from [15].

2. Formulation

2.1. Problem statement

We have a set of data points z; € R™, k € K, where K is
an index set. We want to find the SOC constraint that best fits
the data. An SOC constraint is parametrized by the matrices
AeR™ bheR" ¢ e R*" and d € R. Note that the number
of rows in A and b, n, is a tunable parameter, which we discuss
at the end of Section 3.

In standard form the SOC constraint is written

|Azy + b|| < czi +d. )

Note that (1) does not need to be satisfied for all k € K. We are
rather interested in the surface on which the constraint binds,
and which best goes through the data. We therefore seek to find
the matrices A, b, ¢, and d that achieve the least squared error,
given by

D WAz + bl - cz - d)

keK

Observe that there is a trivial solution wherein A, b, ¢, and

d are all zero. To prohibit this, one or a set of the variables
must be fixed at a nonzero value. For example, similar to [16],
we could set d = 1. Because there are multiple such choices,
as well as constraints representing practical requirements, we
write this as the generic convex constraint (A, b, c,d) € N. This
leads to the optimization

. 2
min > (IAz + bl = ez~ d) (22)
ke
such that (4, b,c,d) € N. (2b)

We discuss the constraints that define the set AV in more detail
in Section 2.2.

If keeping the number of parameters small is also of interest,
we can add a sparsity regularizer [17] to the objective such as
the /; norm,

v (Al + 6] + Icly + 1dD) (20)

where vy is a positive weighting factor.

In the same vein, we can choose the number of rows in A
and b, n, that yields the best fit. A larger n corresponds to more
parameters and a potentially more precise fit, but may lead to
overfitting and increase the number of local minima.

2.2. Constraints

We now discuss the specific constraints in (2b). As men-
tioned in Section 2.1, there is a trivial solution in which all pa-
rameters are zero. There is a second trivial solution with one
row of A equal to ¢ and the rest zero, and there are likely more
that attain zero error for any data set via perfect cancellation.

We prohibit such solutions with non-degeneracy constraints
such as the following.

e The simplest such constraint is d = 1. However, as will
be seen in Example 1, there may be good solutions with
d=0.

e We set the sum of the diagonal elements of A to a con-
stant while enforcing a lower limit on each entry. This
prohibits the trivial solution and is compatible with Exam-
ples 1 and 2. There is an infinite number of such linear
combinations of the parameters that one could consider.

e Reference [8] uses a quadratic constraint on the parame-
ters. Here we do not consider such constraints because
they make N nonconvex, but note they may also be bene-
ficial and compatible with the CCP.

There may be additional constraints arising from practical
considerations. For example, one might want the fitted sur-
face to go through zero; e.g., in Section 4, this means that there
should be no microbial growth when the substrate and biomass
concentrations are both zero. The corresponding constraint is
obtained by requiring (1) to bind when z = 0:

16l = d.

This is unfortunately nonconvex, but we can still make use of
the convex half,
bl < d,

which is an SOC constraint. We find in the numerical examples
that this does indeed force the resulting surface to go through
the origin.

3. Solution via CCP

Problem (2) is a nonconvex optimization. However, given
that the number of parameters will be no more than a few dozen,
it is reasonable to hope for a global or good local minimum,
e.g., by trying multiple starting points. We now show how to
exploit the problem’s partial SOC structure in the CCP [6, 7].
We also refer to [18], in which the CCP was applied to a non-
linear model of microbial growth with partial SOC structure.

We first rewrite (2) as

s, 24 o
such that for all k € K,

|Azx + bl < qx + czx +d (3b)

—llAzg + bl < gx — czx —d (3¢)

(A,b,c,d) e N. (3d)

Here we have left out the regularizer for concision, and could
add it back with no issue. Observe that (3b) is an SOC con-
straints and may therefore be left as is. Only (3¢c) is nonconvex,
and must be linearized in the CCP. Let J(A, b) be the Jacobian
of —[|Az; + bl|.

The CCP for (3) is as follows. First, choose initial values
for the parameters, Ag and by, and set the iteration counter to
a = 0. Repeat the below steps until the stopping criterion has
been reached.



1. Solve

(Ags1, bar1) = argmin " g2

Ab,c,d,q e K
such that for all k € K,
[Azg + Dl < gr + czx +d

A-A,
jk(Am ba)T [b -b } - ”A(ka + baf”

<qr—cz—d
(A,b,c,d)e N.

2. If the termination criterion is reached, stop. Otherwise set
a =a+ 1 and go to Step 1.

The termination criterion is typically the convergence of the ob-
jective and/or solution, or when a reaches a maximum number
of iterations.

Based on our numerical experiments, (3) appears to possess
numerous local minima. To improve the chance of finding a
good solution, one can run the CCP multiple times using dif-
ferent values of Ag and by. This is straightforward because
any values of Ay and by will be feasible, and, given the offline
and low-dimensional nature of the problem, the CCP generally
needs no more than a second.

As aresult of the nonconvexity of (3), increasing the number
of rows in A and b, n, generally does not improve performance.
We believe that this is because more parameters leads to more
minima, making it harder to find good minima. The difficulty of
finding global minima also makes it impractical to apply tools
like the likelihood-ratio test to systematically choose n. In our
numerical experiments, we find that n < m yields the best re-
sults.

4. Application to microbial growth

We consider a well-mixed volume with a substrate concentra-
tion, s, biomass concentration, x, and growth kinetics, r. Each
data point is a measurement, z; = [sg, Xi, 7%]” € R3, k € K.
The kinetics generally take the form r = u(s, x)x, where u(s, x)
is called the growth rate. Two common cases are the Contois
and Monod growth rates, which are respectively given by

/Jmax max s
s, X) = and s, X) = .

Hc(s, x) Koxts Hm(s, x) K 1

Both are parametrized by a maximum specific growth rate,

U™ and the constant, K [19].

The next two examples demonstrate how (2) can be used to
estimate u™** and K for the Contois and Monod growth rates.
Note, however, that we expect existing, specialized techniques
to achieve better performance, and intend (2) for estimating the
parameters of general SOC constraints.

Example 1 (Contois growth). In [5], it was shown that the
Contois growth constraint r < uc(s, x)x is equivalent to the
SOC constraint

us
#maxKSx
K,r

max

< U™ s 4+ u"™ Kox — Kr.

We therefore want d in (1) to be zero. We normalize by setting
A1 = c¢1 = 1, which corresponds to dividing through by u™*.
The resulting parameter matrices are

1 0 0
K
A=|0 K, O ,c:[l,Ks,— max].
0o o X X
IJIHGX

We implement this in terms of (2) by setting the off-diagonal el-
ement of A to zero and enforcing the linear constraints Ay, =
Given the solution to (2), the

max _

c1 =1, An = ¢, A3z = —cs.
growth rate parameters are given by K; = A and u
An/As;.

Example 2 (Monod growth with constant biomass). In [5],
it was shown that if we assume the biomass is constant, i.e.,
X = X, then the Monod growth constraint r < Ly (s, X)X is
equivalent to the SOC constraint

maxs)-c
K,r < u™sx — Kgr + g™ K x.

Iumax KS x

u

In this case, we let 7 = [s,r, 1]7. We normalize by setting d = 1,
which corresponds to dividing through by u™* K x. The result-
ing parameter matrices are

0 0
I
s 0 ’C=[;’-W’0}~
0 1 oy

A=

o oA~

We implement this in terms of (2) by setting the off-diagonal
element of A and the third entry of c to zero, and enforcing the
linear constraints A1y = c¢; and Ayy = —cy. Assuming that x
is known, the growth parameters are given by K; = 1/A|, and

um = 1/(Anx).

We remark that these are of course inequality constraints, and
thus only describe the Monod or Contois kinetics when they
bind. In [5] and [14], analytical conditions are given that guar-
antee this at the optimal solutions of certain optimizations.

4.1. Evaluation metrics

We evaluate goodness of fit in terms of the algebraic distance
(AD) and geometric distance (GD) between the data and the
fitted surface. Given data z;, k € K, and a fitted surface with
parameters (A, b, ¢, d), the AD is given by

D Az + bl = cze = d .
ke
The GD between the fitted surface and the training data is given
by
Z min||p — z|*> suchthat ||JAp+b||—cp—d=0.
keK P

GD is generally preferable to AD for fitting surfaces, but the
minimization makes it difficult to compute [11]. We approxi-
mate each term in the sum by minimizing the Lagrangian

minllg. -l + A (IAge + I = (cqe + ), @)



where A is a large positive number. This is a nonlinear program,
which we solve for multiple starting points and choose the one
corresponding to the lowest GD.

4.2. Numerical data generation

We used the simulation-based procedure of [13] to create
substrate concentrations (s), biomass concentrations (x), and
growth kinetics (r). The simulation parameters are given in Ta-
ble 1.

Parameter Value Unit

b 0.04 1/day
K, 3 mg/L
K; 20 mg/L

Y 0.1 1
umax 1.6 1/day
o 0.5 mg/L
o 0.1 mg/L

Table 1: Simulation parameters. Note that K is unitless for the Contois growth
rate.

The data was generated by numerically solving the system

ds r dx
=y a ™
for the Contois, Monod, and Haldane growth rates. The first
two are given at the start of this section, and the Haldane kinet-
ics by
SX
K, +s+s2/K;’

Note that, unlike in Example 2, we do not assume constant
biomass in any case.

The bx term accounts for the decay of the biomass, and Y is
the yield. We ran the simulations for multiple initial conditions,
which were chosen as follows. The initial substrate concentra-
tion ranged from 5 to 40 mg/L, at an interval of 5 mg/L; the
initial biomass concentration ranged from 1 to 10 mg/L, at an
interval of 1 mg/L. Together, this resulted in 80 sets of initial
conditions for each growth rate. The system was solved over
a nine hour period using an Euler step with a twenty minute
stepsize. Samples were taken at each step, resulting in a total of
2160 data points per growth rate.

r=pu

4.3. Fitting convex data—Contois growth

Here we test how well the CCP can estimate K; and u™**
when the growth rate is Contois. To enforce the structure of the
Contois constraint, as described in Example 1, we include the
following linear constraints in (2b) on A € R¥3 and ¢ € RP:
A11 = 1, A22 >0, A33 >0, A]l =C, A22 = Cy, and A33 = —C3,
where 6 is a positive constant. Ay and by were initialized to be
all zeros. In this and the next two example, the CCP stopped
when the change in the objective was less than 0.1%.

We added noise to the data according to the following four
scenarios.

1. No noise.

2. Scaled zero-mean, unit-variance Gaussian noise was
added to s and x after simulation. The scaling factors are
o and o, for the substrate and biomass concentrations,
respectively. r was computed after adding noise.

3. Noise was added as in the previous case, but » was com-
puted before adding noise.

4. Noise was added as in the above scenario. The growth
kinetics at time ¢ was approximated by r(f) ~ (Inx(¢ + 1) —
In x())x(1)/A.

The performance of CCP was compared to a Contois model
fitted using the Matlab built-in function 1sqcurvefit, which
represents the standard nonlinear least squares approach. The
results are summarized in Table 2.

Case CCP Least squares
1 GD=AD=0 GD=AD=0
2 GD=AD=0 GD=049,AD =70
3 GD = 1, 600, GD = 850,
AD = 1,000 AD = 2,700
4 GD = 100,000, GD = 94,000,
AD =9,200 AD = 36,000

Table 2: Performance of the CCP and nonlinear least squares on Contois data.
In Scenario 4, 6 = 0.5.

The CCP recovers u™** and K, exactly in both Scenarios 1
and 2, while nonlinear least squares only recovers them exactly
in Scenario 1. This indicates that the CCP is somewhat more
robust to noise. Both models performed similarly in Scenar-
ios 3 and 4, with CCP achieving better AD and worse GD. In
Scenario 4, where the data deviates most from convexity, the
CCP’s performance becomes dependent on the choice of 8, and
can only retrieve the correct parameters if 6 ~ 3. The perfor-
mance of the CCP is nonetheless comparable with the standard
approach in this case.

4.4. Fitting nonconvex data—Monod and Haldane growth

In this section we test how well the CCP can fit a general
SOC constraint to data generated from noiseless Monod and
Haldane growth kinetics, which are not concave functions. We
fitted surfaces in which A and b had two rows, as we observed in
other tests that additional rows did not improve accuracy. This
could be due to the large number of local minima, which likely
increases with the number of variables. Ay was initialized to be
all zeros and by all ones.

Growth AD GD
Monod 0.51 52.5
Haldane 0.36 599

Table 3: Performance of the CCP on Monod and Haldane data

The results are shown in Table 3. As expected, the CCP per-
formed better on the convex (Contois) data set than on the non-
convex (Monod and Haldane) data sets. Similarly, it attained
lower error on the Monod data, which is more nearly convex,
than on the Haldane data. The data and the fitted SOC surface
are shown for the Monod case in Figure 1.
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Figure 1: Plot of the fitted surface (in red) and the Monod data points (in blue).

4.5. Experimental data

We lastly tested the CCP on experimental data from [20],
in which biomass in a continuous biological reactor was fed
diluted wine. The initial biomass concentration and the inlet
substrate concentration were varied, and measurements of s and
x were taken daily from days 8 to 16. The growth kinetics at
time ¢ was approximated by 7(¢) = (In x(¢ + 1) — In x(¢))x(¢) /A +
D, where A is the sampling time interval and D is the dilution
rate (1/day).

We set up the CCP as follows. The measured substrate con-
centrations were scaled by a factor of ten to make them com-
mensurate with the biomass measurements. A and b have two
rows. Ay was initialized to be all zeros and by all ones.

Figure 2 shows the data with the fitted surface. For each data
point k € K, the nearest point on the fitted surface was found
by solving (4), and each was plotted against the corresponding
data point in Figure 3. The GD between the data set and the
fitted surface is 0.57, which is smaller than the total squared
error reported for an augmentation of the Monod model in [20].
Overall we see in the error and figures that the SOC surface fits
the data very well, and would therefore be adequate for use in
optimization of this system.

5. Conclusion

We use the CCP to fit SOC constraints to data. Our main mo-
tivation is the microbial growth in bioprocesses, wherein certain
standard growth rates like the Monod and Haldane functions
lead to nonconvex constraints.

In numerical tests on both synthetic and experimental mi-
crobial growth data, we found that the fitted SOC surfaces
achieved similar or better goodness of fit to standard techniques,
and some robustness to noise. Most importantly, unlike most
standard growth rates, the resulting SOC constraints are highly
amenable to large-scale optimization [5, 14].

Future work includes systematically dealing with outliers
and noise using stochastic and robust optimization, further anal-
ysis of local minima and the effect of various constraints on the

Figure 2: Plot of the fitted surface (in red) and the experimental data (in blue).

SOC parameters, and fitting both SOC and semidefinite con-
straints to higher dimensional data, e.g., biochemical processes
with multiple substrates and biomasses.
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