Characterization of the gene content of Coxiella burnetii from different lineages in Europe
Aminah A. Keliet, Karim Sidi-Boumedine, Elsa Jourdain, Richard Thiéry, Elodie Rousset, Xavier Bailly

To cite this version:
Aminah A. Keliet, Karim Sidi-Boumedine, Elsa Jourdain, Richard Thiéry, Elodie Rousset, et al.. Characterization of the gene content of Coxiella burnetii from different lineages in Europe. Journées Ouvertes en Biologie, Informatique et Mathématiques (JOBIM), Jul 2022, Rennes, France. hal-03767741

HAL Id: hal-03767741
https://hal.inrae.fr/hal-03767741
Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Characterization of the gene content of Coxiella \textit{burnetii} from different lineages in Europe

Aminah Keliet1, Karim Sidi-Boumedine2, Elsa Jourdain3, Richard Thiéry2, Elodie Rousset1 and Xavier Bailly1

1 Université Clermont Auvergne, INRA, VetAgro Sup, UMR EPIA Épidémiologie des maladies animales et zoonotiques, 63122, Saint-Genès-Champanelle, France
2 Anses (French Agency for Food, Environmental, and Occupational Health and Safety), Laboratory of Sophia Antipolis, Animal Q Fever Unit, Sophia Antipolis, France.

Corresponding Author: Aminah KELIET - aminah.keliet@inafr.e www.ara.inra.fr

Context and objectives

Coxiella \textit{burnetii} is the bacterium responsible for Q fever in humans. It causes fevers, headache, endocarditis, obstetrical complications, hepatitis, pneumonia, endovascular infections. \textit{C. burnetii}, whose main reservoirs are ruminants, is resistant to heat, UV radiation and conventional disinfectants. In these ruminants, it is excreted mainly through the vagina, through the faeces and through the milk.

It is thus found in dust, which is the main route of contamination in humans and ruminants.

In Europe, host specificity has been demonstrated [4]. We hypothesize that differences in host spectrum could have a genetic basis.

The aim of the study is therefore to understand the evolution of \textit{C. burnetii} genomic diversity, by identifying and analyzing the specific genes of the main lineages and by describing the dynamics which lead to the distribution of the genes.

Results

BPGA: many noises (unique genes)

Panaroo: Expected outcomes

Panaroo's presence/absence matrix

Comparison of BPGA with Panaroo

- Group C gene content is highly homogenous.
- Throughout evolution, there were two main period of gene loss that influenced the genomic composition of \textit{C. burnetii}: one that impacted lineages A and C and a related group including american isolates, and another impacting lineage C only.

Conclusion

Some genes are very specific to lineages and constitute a first set of candidate for host specificity.

Also, a gene dynamic is at the origin of gene losses on the internal nodes of the tree (nodes at the origin of large groups), influencing an absence of genes in the lineages.

Perspectives

Further analyses are needed to clearly identify the host-specific polymorphisms.

The analysis of synonymous and non-synonymous substitution rates in \textit{C. burnetii} strains could give complementary information in the impact of selective pressures associated with host-range in \textit{C. burnetii}.

References
