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Preprint

Seed predation-induced Allee effects, seed dispersal and masting
jointly drive the diversity of seed sources during population
expansion

Violette Doublet∗ · Lionel Roques∗ · Etienne K.
Klein · François Lefèvre · Thomas Boivin

Abstract The environmental factors affecting plant reproduction and effective dispersal, in
particular biotic interactions, have a strong influence on plant expansion dynamics, but their
demographic and genetic consequences remain an understudied body of theory. Here, we use a
mathematical model in a one-dimensional space and on a single reproductive period to describe
the joint effects of predispersal seed insect predators foraging strategy and plant reproduction
strategy (masting) on the spatio-temporal dynamics of seed sources diversity in the colonisation
front of expanding plant populations. We show that certain foraging strategies can result in a
higher seed predation rate at the colonisation front compared to the core of the population,
leading to an Allee effect. This effect promotes the contribution of seed sources from the core
to the colonisation front, with long-distance dispersal further increasing this contribution. As a
consequence, our study reveals a novel impact of the predispersal seed predation-induced Allee
effect, which mitigates the erosion of diversity in expanding populations. We use rearrangement
inequalities to show that masting has a buffering role: it mitigates this seed predation-induced
Allee effect. This study shows that predispersal seed predation, plant reproductive strategies and
seed dispersal patterns can be intermingled drivers of the diversity of seed sources in expanding
plant populations, and opens new perspectives concerning the analysis of more complex models
such as integro-difference or reaction-diffusion equations.
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1 Introduction

Expansion of natural populations in concert with genetic differentiation is a crucial demographic
process shaping the evolutionary potential, resilience and persistence of plant species. How-
ever, contemporary changes in the biotic and abiotic environment related to biological invasions,
emerging diseases, climate and land-use changes are increasingly impacting the ability of species
to colonise and persist in novel territories [8]. Assessing the demographic and genetic impacts of
species’ interactions during population expansion is one major issue for the forecasting of popu-
lation spatio-temporal dynamics and their potential long-term consequences on ecosystems [11].
Those interactions impacting specifically population genetic diversity structures, and therefore
future evolutionary potential, have been poorly investigated so far [21,30,38,39,62]. In key-
stone and long-lived plants such as trees, the ecological processes interfering with expansion are
also related to population adaptive capacity in the context of contemporary changes [33,34,48].
Identifying the processes that shape spatial genetic structure in expanding plant populations is
therefore of high importance. Aside from inherent demographic properties of the plant popu-
lation, external features such as biotic interactions can have a significant effect on the process
of expansion and the resulting diversity pattern. The interactions between plants and insects
that feed on them are well acknowledged drivers of plant population dynamics [29,40], but their
demographic and genetic consequences remain an understudied body of theory.

Range expansions are often associated with a loss of genetic diversity towards expansion
fronts due to successive founder effects that may result from a greater contribution of individuals
located at the leading edge of the population to the expansion area [47,49,58]. In other words, the
diversity of seed sources that effectively contribute to the expansion front is a primary driver of
the genetic diversity in the future expanded population. Such successive founder effects can lead
to a surfing phenomenon when a mutation arising in the front progressively invades the expansion
area [14]. Alternatively, founder effects may be mitigated by propagule dispersal patterns and/or
by decreased fitness of front individuals due to environmental factors. First, local conditions in
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the front may reduce a species’ dispersal ability [1]. Second, a species’ propensity to disperse
propagules at long-distance increases the contribution of the high density of individuals in the
core to the expansion front, thus reducing the founder effect at the front [2,7,15,24,41,42].
Third, population growth rate at the front can be lower than in the core due to unfavourable
environmental conditions [18,50], to stronger interactions with other species (e.g. interspecific
competition, [54]), or to Allee effects, i.e. a decrease in individual fitness at low population density
[9,53]. Predator-prey relationships can be key sources of Allee effects in animal populations [6,
19,32], but similar evidence is yet very limited in annual plants [63] and to our knowledge non-
existent in perennial plants.

Here, we investigate the mechanisms through which the diversity of seed sources in the ex-
pansion front is driven by interference between the foraging strategy of a seed predator insect
and the reproduction strategy of the plant. Interestingly, seed predation by insects is close to
predator-prey relationships because insects immediately kill individuals (i.e. embryos) in the
plant population [3]. We also consider plant demographic features associated with seed produc-
tion and seed dispersal as they are major determinants of seedling recruitment and subsequent
spatial structure and distribution [43]. A first feature refers to the masting and non-masting
strategies, which reflect inter-annual patterns of seed production in perennial plants that can
be highly variable [10,25,26,57] or stable [55,60], respectively. A second feature refers to long-
distance dispersal, which affects spatial genetic structures through more diversified origins of
dispersed seeds far away from the population core [27] and alters the speed at which expansion
occurs [16,31,35].

Recent modelling approaches have used population-scale continuous-time continuous-space
models, such as reaction-diffusion and integro-differential equations, to study the joint effects
of dispersal and growth processes on the dynamics of neutral diversity during an expansion
process, over several generations (e.g. [5,18,21,53]). Here, we develop a simple but analytically
tractable discrete-time continuous-space model over a single reproductive period to assess the
consequences of predispersal seed predation rate, spatial distribution of predators, seed dispersal
and masting on the diversity of seed contributors to the expansion zone. We first analyse the
occurrence of an Allee effect in the plant population depending on the functional relationship
(sublinear or superlinear relationships, corresponding to different foraging strategies) between the
predator density and the plant density. We use Hardy-Littlewood type rearrangement inequalities
to assess the effect of masting on the strength of the Allee effect. Next, we describe seed dispersal
with a convolution kernel to assess the respective contributions of individuals to the expansion,
depending on their position in the population and on the type of dispersal kernel (thin-tailed or
fat-tailed). We assess plant population diversity in the expansion zone through the diversity of
seed sources that contribute to the expansion.

2 Material and methods

The objective of the model is to assess the origin of seeds received at each spatial position in
one year, or averaged over several years in case of fluctuating seed production, under different
patterns of seed production, seed dispersal kernel and spatial distribution of seed predation rates.
To achieve this goal, we use an analytical approach, in a one-dimensional space.

2.1 Seed production

The plant density is represented by a function a(x) > 0, x ∈ R being the position. As we focus
on an expanding population, we assume that the plant density decays away from the center
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Fig. 1 Example of plant density a(x). The region between the dotted lines corresponds to the “core” of the
plant population, (−L,L). In this particular example, L = 10 and the plant density decays exponentially outside
of this region (a(x) = exp(−(|x| − L)/10) for |x| > L).

point 0, which represents the middle of the core of the population. A schematic example that
we used in our numerical computations is given in Fig. 1. In this example, the plant density is
constant in the “core” (−L,L), meaning that plant density has reached the carrying capacity of
the environment, and then decays exponentially.

We always assume that the individual seed production per plant is spatially homogeneous.
Regarding the temporal variations in seed production, we consider two scenarios.

Assumption 1 (Non-masting scenario). The individual seed production is constant, rk = r ≥ 0
seeds per plant per year, independently of the year k.

Assumption 2 (Masting scenario). The individual seed production varies periodically with a
period of T years (T ∈ N∗), i.e. rk+T = rk for any year k ∈ N. The mean individual seed
production over one period of time T is denoted by:

r :=
1

T

T∑
k=1

rk. (1)

For simplicity, we assume that rk > 0 in all of the formulas presented below. Actually, the
occurrence of years with a null seed production does not modify our results. Note that, in the
masting scenario, the plant population density a(x) remains unchanged over the time period
k = 1, . . . , T . This means that the seeds do not contribute to the plant population during this
period, due to a non-reproductive juvenile stage of at least T years (otherwise, competition
between juveniles and between juveniles and adults should be considered, leading to a more
complex and less analytically tractable model). Also, even if there is probably a trade-off between
growth and reproduction that would induce variation in the average number of seeds over the
lifetime of the plant, we do not consider it in our modelling approach.

2.2 Seed predation scenarios

The correlation between seed predator density p(x) and plant density a(x) depends on biological
features that involve the foraging strategy of seed predators. A first foraging strategy includes
seed predators that display a high mobility allowing a rapid diffusion in the landscape without
any influence of plant density. This leads to a spatially homogeneous distribution of the seed
predators within their host population. A second foraging strategy is characterised by a positive
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correlation between seed predator density and plant density, which can result from reduced seed
predator dispersal under higher density of plants (e.g., due to attraction or impaired mobility).

As a reference, we use a null scenario, i.e. without seed predators (no seed predation, p ≡ 0).
According to the seed predator foraging strategies, we then define two seed predation scenarios
(Sublinear and Superlinear) which describe the dependence of the density of predators p(x) with
respect to the plant density a(x), through some positive and differentiable function µ. Namely,

p(x) = µ(a(x)) r (without masting) or pk(x) = µ(a(x))rk−d (with masting). (2)

With masting, the seed production is variable, and the number of seed predators of year k is
proportional to the number of seeds of year k − d, where d ∈ N is the duration of an obligatory
period of larval developmental arrest, namely larval diapause [3], d = 2 years in our computations.
We assume that µ ∈ C1(0,∞), µ ≥ 0 and either Assumption 3 or 4.

Assumption 3 (Sublinear seed predation). In this case, a 7→ µ(a)/a is strictly decreasing on
[0,+∞).

This means that seed predator density does not increase too fast with the plant density. In this
scenario, either the seed predator density tends to decrease as the plant density increases, or
it slowly increases (i.e., sublinearly) with the plant density. This assumption encompasses the
case of decreasing functions µ(a) or slowly increasing functions, e.g., µ(a) =

√
a. An important

subcase corresponds to the homogeneous seed predation scenario, where µ is constant, and p is
spatially constant and proportional to the number of produced seeds p(x) = µ r (µ = 1 in our
computations).

Assumption 4 (Superlinear seed predation). In this case, µ(0) = 0 and a 7→ µ(a)/a is nonde-
creasing (i.e., increasing but not necessarily strictly) on [0,+∞).

Here, the seed predator density increases superlinearly as the plant density increases. This as-
sumption includes the assumption of a proportional seed predation, where µ(a) = µa is propor-
tional to a and µ(a)/a = µ is constant. In this case, the density of seed predators increases
linearly with the plant density: p(x) = µa(x) r (or pk(x) = µa(x) rk−d, with masting).

2.3 Seed predation rate

We assume that the proportion of predated seeds f only depends on the ratio ρ = p/(r a)
between the density of seed predators and the number of available seeds. We then assume a
general increasing function f for the proportion of predated seeds (f ′ > 0, f(0) = 0, f(∞) ≤ 1).
The density of viable seeds s(x) produced at a position x in the absence of masting is equal to
the density of seeds (r a(x)) multiplied by the fraction of viable seeds (1− f):

s(x) = r a(x)

(
1− f

(
p(x)

r a(x)

))
= r a(x)

(
1− f

(
µ(a(x))

a(x)

))
. (3)

In the presence of masting, we compute the average density of viable seeds over one period, i.e.,
we use the same formula as above, averaged over T years:

s(x) =
1

T

T∑
k=1

rk a(x)

(
1− f

(
pk(x)

rk a(x)

))
=

1

T

T∑
k=1

rk a(x)

(
1− f

(
rk−d µ(a(x))

rk a(x)

))
. (4)
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For some results, we need a more explicit form for the function f , such that when the ratio ρ is
very large, the proportion of predated seeds approaches 1, and when ρ is low, it is proportional
to ρ. We considered here one of the simplest relationships satisfying these properties:

f(ρ) =
ρ

(θ−1 + ρ)
, (5)

with a constant θ > 0 (θ = 2 in our computations; f(ρ) ∼ θρ for small ρ). With this form for
the function f , we have:

s(x) = r a(x)

(
1− f

(
p(x)

r a(x)

))
=

(r a(x))2

r a(x) + θp(x)
, (6)

and in the presence of masting:

s(x) =
1

T

T∑
k=1

rk a(x)

(
1− f

(
pk(x)

rk a(x)

))
=

1

T

T∑
k=1

(rk a(x))
2

rk a(x) + θpk(x)
. (7)

2.4 Seed dispersal

The model focuses on the dispersal of seeds that escaped predispersal insect seed predation,
which are referred to as viable seeds. Viable seeds are dispersed according to a symmetrical
kernel J(x). By ‘kernel’, we mean here that J is a positive, measurable, even function of mass 1,
which decays away from 0. The density of seeds received at a position x from a source position
in y is proportional to J(x−y). We compare the relative contribution of different seed sources in
the plant population as follows: considering two source positions xA and xB , given the density
of viable seeds s(xA) and s(xB) produced at xA and xB , the ratio of viable seeds received at x,
from one source position to the other is:

J(x− xA) s(xA)

J(x− xB) s(xB)
. (8)

The first factor J(x−xA)/J(x−xB) and its dependence with respect to the dispersal kernel have
already been well-studied in [27]. Thin-tailed and fat-tailed kernels can be defined by the way
they decay to 0 as x → ±∞. Thin-tailed kernels decay faster than any exponential function, i.e.,
for all η > 0, J(x) eη |x| → 0 as x → ±∞. On the opposite, fat-tailed kernels decay slower than
any exponential function does (e.g., [16,27,31]): for all η > 0, J(x) eη |x| → +∞ as x → ±∞.

In particular, for a spatially-homogeneous individual seed production (s(xA) = s(xB)), fat-
tailed kernels that produce more long-distance dispersal also lead to more mixing than thin-tailed
kernels. More precisely, if xA < xB , [27] showed that for a large class of thin-tailed kernels, only
the more proximal source (xB) contributes to the positions x ≫ xB far away from both sources
(only xA contributes for x ≪ xA):

J(x− xA)/J(x− xB) −→
x→+∞

0 and J(x− xA)/J(x− xB) −→
x→−∞

+∞.

Conversely, both sources contribute to any position with all of the fat-tailed kernels considered in
[27], even far away from the sources, which means that J(x−xA)/J(x−xB) converge to positive
constants as x → ±∞. Their respective contributions depend on the precise shape of the kernel.

For instance, the exponential power kernel (α, β > 0)

J(x) =
β

2αΓ (1/β)
e−(

|x|
α )

β
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Fig. 2 Dispersal kernels. Jt is a thin-tailed Gaussian kernel, Jf1 a fat-tailed exponential power kernel with
power 1/2 and Jf2 a fat-tailed which behaves as Jf1 for large x but is not peaked at 0. The vertical dotted lines

correspond to the mean dispersal distance, d(J) = 12m, common to the three kernels. The parameter values are
given in the text.

is able to move between the two regimes, depending on the power β: when β > 1, J is a thin-
tailed kernel, while it is a fat-tailed kernel when β < 1 [27]. The exact exponential case (β = 1)
is more ambiguous, as it shares some properties of both types of kernels: it leads to a mixing of
propagules [27], but also to a constant speed of expansion [16] (see Appendix 1 for some results
in the particular case β = 1). Here, we use a standard Gaussian kernel (β = 2) to illustrate the
thin-tailed case:

Jt(x) =
1

σ
√
2π

e−
x2

2 σ2 ,

with σ = α/
√
2. For the fat-tailed case, we use a power β = 1/2:

Jf1(x) =
1

4α
e−

√
|x|
α .

Due to its form at 0, this standard fat-tailed kernel tends to disperse a very large amount of
seeds around the origin. To avoid this effect, we also consider another fat-tailed kernel, which
has the same tail as Jf1 , but is smooth and not “peaked” around 0:

Jf2(x) =

 1
γ C

√
2π

e
− x2

2 γ2 for |x| < x0

1
4C αe

−
√

|x|
α for |x| ≥ x0

with x0 > 0 such that Jf2 is continuous and decreasing away from 0 and C > 0 a constant such
that the kernel Jf2 is of integral 1. This kernel is simply a combination of the thin-tailed kernel
Jt around the origin, and of the fat-tailed kernel Jf1 far from the origin. As our objective here
is to understand the effect of long-distance dispersal (i.e. the dispersal tail) independently of the
mean dispersal distance, we fixed the parameters of the kernels such that they share the same
mean dispersal distance:

d(J) :=

∫
R
|x| J(x) dx.

In particular, we have d(Jt) = σ
√

2/π and d(Jf1) = 6α. In our computations, we used a mean
dispersal distance of 12 (e.g., meters, although the exact unit is not important for our study).
This leads to a value σ = 15 for Jt, and α = 2 for Jf1 . For Jf2 , we used α = 2, γ = 9 to get
d(Jf2) = 12m. With these parameter values, we obtain x0 ≈ 18m. We depict in Fig. 2 the three
kernels Jt, Jf1 and Jf2 associated with the above parameter values.
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2.5 Distribution of the seed source locations

The distribution of the positions y of the sources of the viable seeds arrived at x is given by:

mx(y) :=
s(y) J(|x− y|)∫

R J(|x− v|) s(v) dv
, (9)

with s(v) the viable seeds produced at the position v (summed over one period in the presence of
masting). This distribution informs us about the position of the main contributors to population
expansion at each position x. In particular, it tells whether the contributors are close to the
position x or not, and if they are concentrated around some particular location, or more widely
distributed.

2.6 Summary of the model

– The plant density is represented by a function a(x) > 0 which decays away from the center
point 0. The individual plant seed production does not depend on the space, x and is either
a constant r (non-masting scenario, Assumption 1) or varies periodically with a period of T
years, i.e. rk+T = rk (masting scenario, Assumption 1).

– The density of predators is represented by a function p(x). In the absence of predators, p ≡ 0.
Otherwise, p(x) depends on the local plant density, through a function µ(a). This function
µ(a) defines the seed predation scenario (Assumptions 3 and 4). With masting, the density
pk(x) of seed predators of year k depends on the number of seeds of year k − d, where d is
the diapause duration, see (2).

– At each position, before dispersal, a proportion f(p(x)/(ra(x))) of the seeds are predated (or
f(pk(x)/(rka(x))) in the presence of masting), with f a positive increasing and differentiable
function which we may assume to be generic (f ′ > 0, f(0) = 0, f(∞) = 1) for some results
or defined by (5) for other results.

– The density of viable seeds s(x) in the absence of masting is equal to the density of seeds
(r a(x)) multiplied by the fraction of viable seeds (1 − f), see eq. (3). In the presence of
masting, we consider the average density of viable seeds over one period, s(x), see eq. (4).

– These seeds are dispersed according to a dispersal kernel J , which may be thin-tailed or
fat-tailed.

3 Results

3.1 Allee effect induced by seed predation

We begin by analysing whether seed predation induces an Allee effect under our model as-
sumptions. At this stage, we do not need to take dispersal into account, as we only focus on
seed production. Thus, we simply consider the number of viable seeds per plant, i.e., the ratio
s(x)/a(x) and we study how this ratio depends on the plant density a(x). By definition, an Allee
effect occurs if there is a positive dependence between these two quantities, i.e., if s/a is a strictly
increasing function of a.

No seed predation. In the absence of seed predators, the number of viable seeds per plant is
simply the number of seeds s(x)/a(x) = r (or r the average individual seed production, in case of
masting). Thus, viable seed production is independent of population density and no Allee effect
occurs in this case.



9

Sublinear seed predation, without masting. Dividing (3) by a and differentiating with
respect to a, we get:

∂

∂a
(s/a) = −r

∂

∂a

(
µ(a)

a

)
f ′
(
µ(a)

a

)
. (10)

Under this scenario, µ(a)/a is a strictly decreasing function, thus ∂/∂a(µ(a)/(a)) < 0. Since
f ′ > 0, the above quantity is positive. This means that s/a increases with the plant density a:
this scenario induces an Allee effect. In the particular case with a homogeneous seed predation
scenario (p = µ r) and with the predation rate (5), we simply get (see Fig. 3):

s(x)

a(x)
= r

a(x)

a(x) + θ µ
. (11)

Sublinear seed predation, with masting. Dividing (4) by a and differentiating with respect
to a, we get:

∂

∂a
(s/a) = − 1

T

T∑
k=1

rk−d
∂

∂a

(
µ(a)

a

)
f ′
(
rk−d µ(a)

rk a

)
. (12)

As µ(a)/a is a strictly decreasing function in this scenario, eq. (12) shows that s/a is an increasing
function of a. Thus, there is an Allee effect. To analyse the effect of masting on the strength of
the Allee effect, we need another assumption on f (which is satisfied in the particular case of
eq. (5)). The function f is such that the proportion of predated seeds converges to 1 as the ratio
between the density of seed predators and the number of available seeds becomes large, in the
following way: f(ρ) ∼ 1 − C/ρ, for some constant C > 0. At the limit of small plant density
(a ∼ 0), we therefore obtain:

s(x)

a(x)
∼ C a(x)

µ(0)

1

T

T∑
k=1

r2k
rk−d

as a → 0.

Then, we use the following rearrangement inequality (Hardy-Littlewood, see Section 4).

Lemma 1 We have

r ≤ 1

T

T∑
k=1

r2k
rk−d

.

Thus, in the presence of masting, the slope of s/a (seen as a function of a) around a = 0 is
increased compared to a situation without masting, where rk is constant equal to r and therefore
s(x)/a(x) ∼ C a(x)r/µ(0). This means that masting leads to a weaker Allee effect.

In the particular case with a homogeneous seed predation scenario (p = µ r) and with the
function f given by (5), we get

s(x)

a(x)
=

1

T

T∑
k=1

r2k a(x)

rk a(x) + θ µ rk−d
. (13)

We then prove another rearrangement inequality (Section 4) which leads to the following lemma.

Lemma 2 We have

1

T

T∑
k=1

r2k a(x)

rk a(x) + θ µ rk−d
≥ r

a(x)

a(x) + θ µ
.
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Fig. 3 Occurrence of an Allee effect: number of viable seeds per plant, in terms of the plant
density a. We assume here of function f (proportion of predated seeds) of the form (5). We consider the
following scenarios: without predation (s/a = r or s/a = r with masting); with homogeneous seed predation (s/a
is given by (11)); with homogeneous seed predation and masting (s/a is given by (13)); with proportional seed
predation (s/a = r/(1 + θ µ) and s/a = r/(1 + θ µ), with masting). The average seed production over one period
of time is the same in the four scenarios. In the presence of masting, the individual seed production is given by
rk = c (| sin(π k/T )| + ε) (mean value r = c(0.64 + ε)). In the absence of masting, r = r. The parameter values
are T = 7, θ = 1/2, µ = 1 and ε = 0.01. Note that the four curves are proportional to c, which can therefore be
arbitrarily fixed (here, c = 1/0.64).

In other words, the mean number of viable seeds per plant is always larger in the presence
of masting, compared to the non-masting scenario with a constant individual seed production
equal to r (see eq. (11)). This corresponds to a weaker Allee effect compared to scenario of
homogeneous seed predation without masting, see Fig. 3.

Superlinear seed predation. Here, µ(a)/a is increasing (or constant), thus ∂/∂a(µ(a)/(a)) ≥
0. Using the expressions (10) and (12) we observe that s(x)/a(x) (without masting) and s(x)/a(x)
(with masting) are both decreasing functions of the plant density a. Thus, there is no Allee effect
in this case.

3.2 Mixing of seeds from two sources

We now analyse the intertwined effects of the biotic Allee effect and seed dispersal, depending
on the type of dispersal kernel. For simplicity, we make the Assumption (5) on the predation
rate, and we consider two particular seed predation scenarios: the homogeneous seed predation
scenario (subcase of the Assumption 3) and the proportional seed predation scenario (subcase of
the Assumption 4).

We consider two seed source positions 0 ≤ xA < xB , so that a(xA) > a(xB), and we study
their respective contributions to population expansion at any location x. We recall that the ratio
between the viable seeds received at a position x from the two positions xA, xB is given by eq. (8).
To analyse the effects of the predation scenarios and of the occurrence of masting, we first focus
on the ratio between the viable seeds produced by the two sources: s(xA)/s(xB). Note that we
do not need to make any assumption on the shape of the dispersal kernel at this stage, since the
ratio s(xA)/s(xB) is independent of the kernel J .

No seed predation. First, in the absence of seed predators, s(x)/a(x) = r, thus we obtain
s(xA)/s(xB) = a(xA)/a(xB): the ratio of viable seeds produced by the two sources is equal to
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the ratio of the plant densities at each source position. The same formula holds in the presence
of masting.

Homogeneous seed predation without masting. From eq. (11), we get:

s(xA)

s(xB)
=

a(xA)

a(xB)

1 + θ µ/a(xB)

1 + θ µ/a(xA)
>

a(xA)

a(xB)
, (14)

thus, the relative contribution of the position xA, where the seed source density is larger, is
higher than without predation.

Homogeneous seed predation with masting. Similarly, using eq. (13), we obtain the ratio
s(xA)/s(xB)) between the number of viable seeds produced at xA and xB , during a period of
time T .

Lemma 3 We have:

a(xA)

a(xB)
≤ s(xA)

s(xB)
=

a(xA)

a(xB)

1
T

∑T
k=1

r2k
rk+θ µ rk−d/a(xA)

1
T

∑T
k=1

r2k
rk+θ µ rk−d/a(xB)

≤ a(xA)

a(xB)

1 + θ µ/a(xB)

1 + θ µ/a(xA)
. (15)

The left inequality simply follows from a(xA) > a(xB). The right inequality is a consequence
of a rearrangement inequality proved in Section 4. Thus, the relative contribution of the position
xA is still higher than without predation but lower than in the same scenario without masting
(compare with eq. (14)).

Proportional seed predation with or without masting. In this case, we have s(xA)/s(xB) =
s(xA)/s(xB) = a(xA)/a(xB), as with no predation.

To illustrate these results with the three types of dispersal kernels considered, in Fig. 4, we
depict the proportion of seeds from source xA at any position x in the absence of masting,

πA :=
J(x− xA) s(xA)

J(x− xA) s(xA) + J(x− xB) s(xB)
,

or, in the presence of masting,

πA :=
J(x− xA) s(xA)

J(x− xA) s(xA) + J(x− xB) s(xB)
,

with xA = 0 (center of the core of the population) and xB = 20 (inside the decreasing part of
the front, see Fig. 1). Note that the values r and r of the individual seed production have no
effect on the ratio πA.

We observe that, whatever the dispersal kernel, the proportion of viable seeds received from
xA at positions far away from the sources (x ≫ 1) is higher in scenario of homogeneous seed
predation than in scenarios of no seed predation or proportional seed predation. In the presence
of masting, this proportion takes intermediate values. Such observations corroborate the previous
results demonstrated analytically. The source xB is closer to the positions x ≫ 1, but in scenario
of homogeneous seed predation such contribution is compensated by the Allee effect generated
by a higher seed predation rate per plant. This leads to a higher contribution of the source xA in
the core of the population. We previously showed analytically that the Allee effect was weaker in
the presence of masting. Here, it leads to a lower contribution of the source xA. Such contribution
of the source xA is however higher than in scenarios of no seed predation or proportional seed
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Fig. 4 Proportion πA of seeds arriving in x from source xA (at x = 0) compared to source xB (at
x = 20). The vertical dotted lines correspond to the positions xA and xB . Panel A corresponds to a thin-tailed
kernel (Jt), Panel B to the fat-tailed kernel Jf1 and Panel C to the fat-tailed kernel Jf2 . The scenarios are: No
seed predation, homogeneous seed predation with or without masting and proportional seed predation. In the
presence of masting, the individual seed production rk has the same sinusoidal shape as in Fig. 3.

predation. As already known [27], with a thin-tailed kernel (Panel A in Fig. 4), the proportion πA

decays to 0 as the distance from the sources increases. The divergence between the seed predation
scenarios (No predation, Proportional, Homogeneous with or without masting) is increased when
x is not too large (i.e., around xB). By contrast, with fat-tailed kernels, this difference is enhanced
at large x, and the proportion πA does not converge to 0 (Panels B and C in Fig. 4). More
precisely, as x becomes very large, J(x−xA)/J(x−xB) converges to 1 with the fat-tailed kernels
Jf1 and Jf2 . Thus, very far from the two sources, πA converges to s(xA)/(s(xA) + s(xB)). In
scenarios of no seed predation or proportional seed predation, this implies that πA converges to
a(xA)/(a(xA) + a(xB)) ≈ 0.73 with the parameter values of Fig. 4.

With the scenario of homogeneous seed predation, formula (14) implies that:

lim
x→+∞

πA =
a(xA)

a(xA) + a(xB)
1+θµ/a(xA)
1+θµ/a(xB)

,

which is approximately 0.81 with the parameter values of Fig. 4. Similarly, the limit of πA can
be computed explicitly from eq. (15) in scenario of homogeneous seed predation with masting,
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leading to an intermediate value between those obtained in scenarios of no seed predation or
scenario of homogeneous seed predation without masting: with the parameter values of Fig. 4,
we get lim

x→+∞
πA ≈ 0.77. With the fat-tailed kernel Jf1 (Panel B in Fig. 4), the proportion πA is

minimal around xB . This is due to the “peaked” nature of the kernel Jf1 : many seeds from the
source xB are dispersed very close to xB . With the fat-tailed kernel Jf2 (Panel C in Fig. 4), this
effect vanishes, as the seed dispersal is less concentrated around the sources.

3.3 Distribution of seed sources: effect of seed predation, masting and dispersal kernel

We now analyse for each seed predation scenario (no predation, homogeneous and proportional,
same assumptions as in Section 3.2), and for each type of seed dispersal kernel, the distribution
mx(y) (see eq. (9)) of the positions y of the sources of viable seeds arrived at each position x.
This leads to the 2D graph presented in Fig. 5.

With a thin-tailed kernel (Panels A, B, C in Fig. 5), for all scenarios of seed predation with
or without masting, depending on the position x, the main contributors are either seed sources
from the core of the population (y in (−10, 10)) for lower values of x or from the front (y > 10)
for higher values of x. In scenario of homogeneous seed predation, with or without masting, seed
sources from the core remain the main contributors (i.e., a majority of viable seeds received at the
position x come from parents y in (−10, 10)) until positions x which are about twice larger than
in scenarios of no seed predation or proportional seed predation (≈ 60m vs. 30m). At positions
further away from the core, a lag appears between the position x and the position of the main
contributors to the position x (see e.g. the dashed line vs. the mode of the distribution in Fig. 5).
This gap is about twice larger in scenario of homogeneous seed predation without masting than
in scenarios of no seed predation or proportional seed predation (45m vs. 22m), but this effect
of seed predation is largely attenuated in the presence of masting (23m).

With a fat-tailed seed dispersal kernel of type 1 (Panels D, E, F in Fig. 5), the main con-
tributors at a position x are either sources close to this position (the mode of the distribution
remains close to the dotted line, i.e., y ≈ x for small x), or sources from the core of the popula-
tion (y ∈ (−10, 10) for larger x). In this case, the dispersal distance does not limit seed sources’
contributions as viable seeds far away from the core (x ≫ 1) may originate from contributors
located in the core.

The main effect of scenario of homogeneous seed predation is a strong increase in the relative
contribution of the individuals from the core at large x: about 60% of the contributors originate
from the core in this scenario (without masting) vs. about 40% in scenarios of no seed predation
or proportional seed predation. In the presence of masting, the contribution of the core of the
population is about 50%. For large x, the same effect is observed with a fat-tailed kernel of type
2 (Panels G, H, I in Fig. 5), but the local effect of the contribution of seed sources located close
to x is attenuated for smaller x due to the less peaked nature of the kernel.

4 Proofs

Proof of Lemma 1. We recall the Hardy-Littlewood rearrangement inequality (Theorem 368 in
[22]). Consider two finite nonnegative sequences x1, . . . , xn and y1, . . . , yn, arranged by increasing
order, i.e., 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn and 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn. Then, for any permutation
xσ(1), . . . , xσ(n), we have:

x1 yn + x2 yn−1 + . . .+ xn y1 ≤ xσ(1) y1 + . . .+ xσ(n) yn ≤ x1 y1 + . . .+ xn yn.
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Fig. 5 Distribution mx(y) (see (9)) of the positions y of the sources of viable seeds arrived at x.
The vertical axis is the location of the source y, and the horizontal is the location of the descendent seed x. The
dashed line is the “first bisector” for which seed sources and viable seeds are located at the same position. Above
this line, the seed sources positions are located in front of the seeds, while below the bisector the seed sources are
located behind the seeds. Each seed predation scenario is depicted in each panel listed from A to I (in columns
are presented the different scenarios and in rows are presented the three dispersal kernels i.e. thin-tailed kernel Jt
and fat-tailed kernels Jf1 and Jf2 ). For illustrative purposes, we do not show x positions below 0. The densities
of viable seeds produced at a position y, s(y) and s(y) are given by formulas (6) and (7). Colour bars represent
the probability density of mx(y). In the presence of masting, the individual seed production rk has the same
sinusoidal shape as in Fig. 3.
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In other words, the sum of the term-by-term products of the two sequences reaches its maximum
when the sequences are arranged in the same order, and reaches its minimum when the sequences
are arranged in opposite orders. Additionally, the inequalities are strict if the numbers are dif-
ferent (x1 < x2 < . . . < xn and y1 < y2 < . . . < yn) and the permutation is not the identity nor
the reversing-order permutation.

Consider the individual seed production r1, . . . , rn over one period (here, n = T ). Without loss
of generality, we can assume that the values are arranged in ascending order after a permutation
of the indices has been applied. Set x1 = 1/rn, . . . , xn = 1/r1, and y1 = r21, . . . , yn = r2n. Then,
x1 yn+x2 yn−1+. . .+xn y1 = r1+. . .+rn = T r. The Hardy-Littlewood rearrangement inequality
then shows that, for any permutation xσ(1), . . . , xσ(n), we have:

T r ≤
T∑

k=1

r2k
rσ(k)

.

In particular, with σ(k) = k − d, this shows that:

r ≤ 1

T

T∑
k=1

r2k
rk−d

.

Proof of Lemma 2. Now, we prove a less classical inequality, which shows that in Scenario
of homogeneous seed predation with masting, the mean number of healthy seeds per plant is
always greater than (or equal) to that in the absence of masting. Consider again two finite
nonnegative sequences x1, . . . , xn and y1, . . . , yn, arranged by increasing order. We show that for
any permutation xσ(1), . . . , xσ(n), and α > 0:

n∑
k=1

y2k
yk + αxk

≤
n∑

k=1

y2k
yk + αxσ(k)

. (16)

In that respect, assume that the sequence xσ(1), . . . , xσ(n) is not arranged in ascending order.
Then, there are two indices i and j such that yi ≤ yj and xσ(i) > xσ(j). Since

y2i
yi + αxσ(i)

+
y2j

yj + αxσ(j)
−

(
y2i

yi + αxσ(j)
+

y2j
yj + αxσ(i)

)

= α2 (yj − yi)(xσ(i) − xσ(j))(αxσ(i)xσ(j)yi + αxσ(i)xσ(j)yj + xσ(j)yiyj + xσ(i)yiyj)

(αxσ(i) + yi)(αxσ(j) + yj)(αxσ(j) + yi)(αxσ(i) + yj)
≥ 0

we decrease the sum in the right hand side of (16) by exchanging xσ(i) and xσ(j). A finite number
of similar exchanges leads a sequence xσ(k) arranged in ascending order, i.e., σ is the identity.
This shows the rearrangement inequality (16).

Setting α = θµ/a(x), x1 = r1, . . . , xn = rn, y1 = r1, . . . , yn = rn, and n = T , we obtain:

T∑
k=1

r2k a(x)

rk a(x) + θ µ rk
≤

T∑
k=1

r2k a(x)

rk a(x) + θ µ rσ(k)
.

which can be simplified into:

a(x)

a(x) + θ µ

T∑
k=1

rk ≤
T∑

k=1

r2k a(x)

rk a(x) + θ µ rσ(k)
.
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Diving by T , and with σ(k) = k − d we get:

s(x)

a(x)
=

1

T

T∑
k=1

r2k a(x)

rk a(x) + θ µ rk−d
≥ r

a(x)

a(x) + θ µ
. (17)

Proof of Lemma 3. We prove another non-standard result. Consider a finite nonnegative sequence
x1, . . . , xn and a permutation xσ(1), . . . , xσ(n). Then, consider the function:

H(α) = (1 + α)

n∑
k=1

x2
k

xk + αxσ(k)
.

Differentiating H(α) with respect to α > 0, we get:

H ′(α) =

n∑
k=1

x2
k(xk − xσ(k))

(xk + αxσ(k))2
. (18)

Our goal is to show that H ′ ≥ 0. We assume without loss of generality that x1, . . . , xn is arranged
in ascending order. Assume that the permutation xσ(1), . . . , xσ(n) is not arranged in ascending
order. Then, there are two indices i and j such that σ(i) = j, xi ≤ xj and xσ(i) > xσ(j). Set
σ(j) = m and consider the difference between H ′(α) before and after the pairwise permutation
of xσ(i) and xσ(j):

x2
i (xi − xσ(i))

(xi + αxσ(i))2
+

x2
j (xj − xσ(j))

(xj + αxσ(j))2
−

(
x2
i (xi − xσ(j))

(xi + αxσ(j))2
+

x2
j (xj − xσ(i))

(xj + αxσ(i))2

)

=
x2
i (xi − xj)

(xi + αxj)2
+

x2
j (xj − xm)

(xj + αxm)2
− x2

i (xi − xm)

(xi + αxm)2

=
α(xj − xi)(xj − xm)

(xi + αxj)2(xj + αxm)2(xi + αxm)2
F,

with F a polynomial with only positive terms:

F = α3x2
m[x2

i (xj + xm) + x2
j (xi + xj)] + 2α2xixm(x2

ixm + xix
2
j + 2xixjxm + x3

j + x2
jxm)

+ αx2
i (4xixjxm + xix

2
m + x3

j + 5x2
jxm + xjx

2
m) + 2x3

ixj(xj + xm).

As xi ≤ xj and xj = xσ(i) > xσ(j) = xm, the above equation is positive (≥ 0). Thus, the pairwise
permutation of xσ(i) and xσ(j) leads to a decrease of the sum in (18). With a finite number of
such permutations, the sequence xσ(1), . . . , xσ(n) can be rearranged into an increasing sequence,
i.e., the sequence x1, . . . , xn. We conclude that

H ′(α) =

n∑
k=1

x2
k(xk − xσ(k))

(xk + αxσ(k))2
≥

n∑
k=1

x2
k(xk − xk)

(xk + αxk)2
= 0.

Setting αA = θµ/a(xA), αB = θµ/a(xB), x1 = r1, . . . , xn = rn, σ(k) = k − d, and n = T , with
a(xA) > a(xB), we have αA < αB , and since H is increasing, H(αA) ≤ H(αB), which means
that:

(1 + θµ/a(xA))

n∑
k=1

r2k
rk + θµrk−d/a(xA)

≤ (1 + θµ/a(xB))

n∑
k=1

r2k
rk + θµrk−d/a(xB)

,
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which in turns implies that:

1
T

∑T
k=1

r2k
rk+θ µ rk−d/a(xA)

1
T

∑T
k=1

r2k
rk+θ µ rk−d/a(xB)

≤ 1 + θ µ/a(xB)

1 + θ µ/a(xA)
.

5 Discussion

Our study reveals the potential for predispersal seed predation, reproductive strategies (mast-
ing or non-masting) and seed dispersal patterns to jointly drive the diversity of seed sources in
expanding plant populations. We provide theoretical support for possible evolutionary implica-
tions of predispersal seed predation in plant populations as its associated Allee effects in the
colonisation front may lower the erosion of overall genetic diversity by reducing founder effects.
In the presence of an Allee effect, the lower reproductive success of front individuals results in
their lower contribution to the gene pool in the expansion front. It increases the relative contri-
bution of core individuals, which consequently contribute to drive the dynamics of the expansion
process. After several generations, this should enhance the maintenance of the genetic diversity
towards the front as a result of pushed colonisation waves [39,53]. In the absence of an Allee
effect, front individuals are expected to predominantly drive the dynamics of expansion process,
leading to the ‘surfing phenomenon’ [14] associated with pulled colonisation waves [17,53] after
several generations. This progressively leads to a loss of genetic diversity towards the expansion
front due to successive founder effects [47,49,58]. It is worth noting that an Allee effect induced
by predation could potentially co-occur with other factors that can create an Allee effect in the
plant population, such as inbreeding depression [37].

Allee effects induced by predispersal seed predation depends on the foraging strategy. We show
that different spatial patterns of seed predation have contrasted implications on the occurrence
or the absence of seed predator-induced Allee effects in the expanding plant population. Here,
Allee effects occur when there is a positive correlation between plant population density and
plant individual reproductive success, i.e. when seed predation rates are higher at the front,
where plant density is lower, than at the core of the plant population, where plant density is
higher. This occurs in case of a uniform distribution of seed predator density across the expanding
plant population (scenario of homogeneous seed predation), as well as in case of seed predator
aggregation at the expansion front, i.e. in the low plant density area (scenario of sublinear seed
predation). An Allee effect also occurs in case of seed predator aggregation within the core, i.e. in
the high plant density area, but only when the positive correlation between predator and plant
density is ‘mild’ (sublinear). In the latter case, the highest seed predator densities occur in the
core, but the seed predation rate, i.e. the ratio between predator density and seed production,
remains higher in the front, which generates an Allee effect. Conversely, no Allee effect occurs
when considering a linear or a superlinear dependence in seed predator density with plant density.
A linear dependence results in uniform seed predation rates across the plant population, making
the individual plant reproductive success independent of the plant density. Superlinearity results
in higher seed predation rates in the core, which negatively correlates individual reproductive
success to plant density.

Therefore, our results show that the relationship between the densities of insect herbivores
and their host plants determines the occurrence and magnitude of a biotic Allee effect. Various
relationships between plant and insect distributions have been documented in different insect-
plant systems, and our model covers all these situations. Insect attacks may indeed increase as the
density of trees increases [44,51,52,56,59] or decreases [13,28,44,45,64]. Insect attacks may also
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not depend on host density [13]. The Allee effect can be classified as weak or strong depending
on the sign of the per capita growth rate at low plant densities [9]. Our model only considers the
viable seed production rate and does not account for plant mortality, so additional assumptions
are needed to determine the nature of the Allee effect. However, in the case of homogeneous seed
predation, or more generally with Assumption 3, and assuming that µ(a)/a → +∞ as a → 0,
the ratio s/a approaches zero as plant density a decreases. Assuming a constant mortality rate,
this implies that the per capita growth rate will be negative, leading to a strong Allee effect.

Seed dispersal and masting modulate the seed predation-induced Allee effect. We showed that piv-
otal biological traits such as reproductive strategies (masting or non-masting) and seed dispersal
(amount of long-distance dispersal) affect the strength of seed-predation-driven Allee effects .
Based on rearrangement inequalities, we demonstrated that the mean number of viable seeds per
plant was always larger in a masting population compared to a non-masting one in case of a seed
predation scenario that leads to an Allee effect. This is true when the same total number of seeds
is produced by both a masting species and a non-masting species over the same reproductive
period. Thus, masting reduces the strength of the Allee effect due to overall lower predation
rates at the front. From an evolutionary perspective over several generations, our model revealed
that masting counterbalances the impact of seed predators on the founder effects and suggests
an overall reduction of genetic diversity at the expansion front by limiting the contribution of
core seed sources. This result brings new insights on the evolutionary potential of masting for
plant populations, which has been the subject of an abundant literature [25,26,46].

Note that our model assumes a spatially constant seed production per plant r. However, less
favourable conditions at the expanding edge might result in lower seed production, or conversely,
if the plants at the forefront are fitter due to an evolutionary process, they might produce more
seeds. In either case, this would result in a local seed production rate r(x) a(x). Actually, this
spatial variability would not affect our results since it can be artificially incorporated into the
plant density a(x), as long as it remains a decaying function away from x = 0.

Another interesting outcome of our theoretical approach is how seed dispersal patterns affect
seed-predation-driven Allee effects. Examining diverse convolution kernels allowed us to analyse
the relative contributions of core and front individuals along the expansion axis as well as the
spatial origin of the main contributors for every position of dispersed seeds. With a thin-tailed
kernel, the occurrence of an Allee effect sensibly increased the contribution of core seeds to
the seed rain. This was shown by their higher mean propagation distances, which was found
to be approximately twice larger with an Allee effect in our simulations. This is in line with an
Allee-driven pushed wave of colonisation as previously mentioned. However, as thin-tailed kernels
generally allow a relatively limited range of propagule dispersal, front contributors still prevail
at the leading edge of the expansion. This contrasts with the use of a fat-tailed kernel, which
showed an enhancement of the contribution of core seeds to the expansion front in the presence
of an Allee effect, whatever its exact shape (fat-tailed kernels Jf1 and Jf2). Thus, fat-tailed
kernels may reinforce the maintenance of genetic diversity along an expansion. Noteworthy, as
the fat-tailed kernel Jf2 has a less peaked nature than the fat-tailed kernel Jf1 , we observe a
higher proportion of long-distance dispersal with Jf2 than with Jf1 . Long-distance dispersal is
already acknowledged to increase core contributions to expansion fronts [2,7,15,24,41,42], which
was described as pushed waves of neutral genetic diversity during colonisation [4,5]. Here we
show that such pushed wave patterns are increased by the combination of Allee effects driven by
biotic interactions and long-distance dispersal.

Our study sheds new light on evolutionary processes occurring during expansions [18,21,39,
53], implying that the ecological process of biotic interaction may influence expansion success
or failure. The assessment of the evolutionary consequences of such process will likely benefit
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from further broader assessments of spatio-temporal dynamics of populations interacting with
their environments as the alteration of the incidence and strength of biotic interactions by global
change has important effects on the distribution and abundance of species [12]. For instance,
demographic and genetic implications of biotic interactions are still overlooked and largely ne-
glected in forest dynamics models [3,36], mainly because demographic and genetic assessments in
long-lived organisms like trees face substantial experimental constraints in both time and space.

As with any model, our approach makes a number of simplifications, and further work is
required to evaluate the full implications of our result. Here, we considered a short period of time,
i.e. sub-generation time, so that the new seeds do not contribute to the plant population during
this period. Formal testing of the maintenance of genetic diversity over time requires multi-
generational approaches accounting for competition effects between plants, which can involve
partial differential equations [18,23,53], integro-differential equations [5] or their discrete time
counterpart [39] (see Appendix 2 for an example of reaction-diffusion model that mimics some
of the processes described here, but over several generations and with an explicit description of
the movement of seed predators). In this work, the distribution of plants shapes the distribution
of predators. Another possible assumption would be that predator density does not depend on
the spatial distribution of a, but rather on the distribution of seeds previously dispersed from
which the predator emerges. In this case, the predator density p(x) would depend on J ⋆ a, the
convolution between the dispersal kernel J and the plant density a. This assumption, justified
for predators that remain close to their birthplace, would induce a nonlocal dependence of the
production of healthy seeds on a, preventing certain calculations such as those of the differentials
(10) and (12). However, certain aspects would remain unchanged, such as the special case where
µ is constant (homogeneous seed predation). Finally, our model does not include any spatial
environmental variation. Demogenetic processes during expansion interact with local adaptation
processes in a heterogeneous environment [20]. In that context, the contribution of seed sources
from the core has a dual effect: on the one hand, it reduces the founder effects and therefore
maintains the diversity in the front, on the other hand, it brings possibly locally maladapted
genotypes to the front. Regarding dual effects of long-distance dispersal in trees in the context
of climate change, [33] concluded that the positive effects of gene flow dominates the negative
effects of maladaptation. We posit that the assessment of dual demogenetic processes resulting
from biotic interactions in plant populations would deserve further attention.
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Appendix 1: exponential dispersal kernel

As mentioned in the main text, the thin-tailed or fat-tailed nature of exponential dispersal
kernels (exponential power kernel with β = 1) is not completely clear. On the one hand, these
kernels share several properties of thin-tailed kernels, especially when included in continuous-
time integro-differential models of Fisher-KPP type. Contrary to fat-tailed kernels, they do not
lead to accelerating propagation but to travelling waves with a constant speed of expansion

http://doi.wiley.com/10.1111/j.1365-294X.2010.04972.x
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Fig. 6 Proportion πA of seeds arriving in x from source xA (at x = 0) compared to source xB (at

x = 20). Same legend as Fig. 4, but with the exponential dispersal kernel Je(x) = 1
2α

e
−
(

|x|
α

)
, with α = 12

(mean dispersal distance d(Je) = α = 12m).

Fig. 7 Distribution mx(y) (see (9)) of the positions y of the sources of viable seeds arrived at x.

Same legend as Fig. 5, but with the exponential dispersal kernel Je(x) =
1

2α
e
−
(

|x|
α

)
, with α = 12 (mean dispersal

distance d(Je) = α = 12m).

(see [16] and references therein). Additionally, still in the integro-differential framework, they
lead to pulled propagation waves, meaning that they tend to limit the mixing of propagules to
benefit individuals at the front of the wave [5]. On the other hand, with the exponential kernels

Je(x) =
1
2α e−(

|x|
α ), we also observe that Je(x− xA)/Je(x− xB) → e(xA−xB)/α > 0 as x → +∞.

This means that, if we consider a discrete-time case or a single dispersal event, as observed in
[27], and two sources at positions xA < xB , then these kernels lead to a mixing of propagules
from both sources.

Within our framework of a single reproductive period (discrete-time), we expect exponential
kernels to behave like fat-tailed kernels. To clarify what occurs in our specific context, we con-
ducted the same computations as those leading to Figs. 4 and 5. The results clearly resemble the
behaviour obtained with the fat-tailed kernel Jf1 , both for the proportion πA of seeds arriving
in x from source xA (at x = 0) compared to source xB (Fig. 6) and for the distribution mx(y)
(9) of the positions y of the sources of viable seeds that arrived at x (Fig. 7).

Appendix 2: a toy reaction-diffusion model

In this appendix, we propose a reaction-diffusion framework that mimics some of the processes
described in the main text, but over several generations and with an explicit description of the
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movement of seed predators. In this framework, we assume continuous time and continuous space,
with overlapping generations. Our objective is to test whether seed predation can lead to better
maintenance of diversity over several generations, under basic assumptions about the movement
of seed predators, and with other types of mathematical models than those in the main text.

In [53], we proposed a method to study the dynamics of neutral diversity during a coloni-
sation process, with reaction-diffusion models. Our main result is that a standard Fisher-KPP
growth term leads to an erosion of diversity, while the introduction of an Allee effect leads to a
maintenance of diversity.

As in the main text, we denote by a(t, x) the density of plants, here at time t ∈ R and position
x ∈ (−K,K) for some positive constant K (K > L). The density of seed predators is p(t, x). We
describe the plant - seed predator dynamics with the following system:

∂

∂t
a(t, x) = Da

∂2

∂x2
a(t, x) + F (a, p),

∂

∂t
p(t, x) = Dp

∂2

∂x2
p(t, x) +G(a, p),

t > 0, x ∈ (−K,K), (A1)

with Da, Dp the diffusion coefficients, which measures the mobility of the plants and seed preda-
tors, respectively, assuming a random walk movement which is described by the Laplace differ-
ential operator ∂2/∂x2 (see e.g. [61]). Regarding the growth term F , we assume that:

F (a, p) = a(b(a, p)− d)− γ a2, with b(a, p) = b0(1− f(p/a)),

with b ≥ 0 the plant birth rate, d > 0 the plant death rate, and f the proportion of predated
seeds given by (5). In the absence of seed predators, F (a, 0) is a standard logistic (Fisher-KPP)
growth term, with intrinsic growth rate b0 − d and a competition coefficient γ > 0. We then
assume that the growth term associated with the seed predators has the form:

G(a, p) = αa f(p/a)− β1 p− β2 p
2,

with α > 0, so that the growth term is proportional to the local density of predated seeds a f(p/a),
and β1, β2 > 0 which correspond respectively to a death rate and a competition coefficient.

In order to track the dynamics of diversity in the plant population, we view it as the sum
of a population whose ancestors come from the core ac and of a population whose ancestors
come from the forefront af , i.e., a(t, x) = ac(t, x) + af (t, x). At initial time, ac(0, x) = a(0, x)
for |x| ≤ L and ac(0, x) = 0 for |x| > L, and af (0, x) = 0 for |x| ≤ L and af (0, x) = a(0, x) for
|x| > L. We then use the method in [53] to describe the dynamics of ac and af together with p:

∂

∂t
ac(t, x) = Da

∂2

∂x2
ac(t, x) +

ac
a
F (a, p),

∂

∂t
af (t, x) = Da

∂2

∂x2
af (t, x) +

af
a
F (a, p),

∂

∂t
p(t, x) = Dp

∂2

∂x2
p(t, x) +G(a, p),

t > 0, x ∈ (−K,K). (A2)

We note that, as expected, a (= ac + af ) and p satisfy the original system (A1). We as-
sume Neumann (reflecting) boundary conditions at ±K (∂ac/∂x(t,±K) = ∂af/∂x(t,±K) =
∂p/∂x(t,±K) = 0). The initial condition a(0, x) is of the same form as in Fig. 1 (here, a(x) =
exp(−2 (|x| − L)) for |x| > L and a(x) = 1 in (−L,L)). The initial density of seed predators is
p(0, x) = 1 for |x| < L and p(0, x) = 0 for |x| ≥ L (or p(0, x) ≡ 0 in the absence of predation).

In Fig. 8, we depict the proportion of individuals from the core at time t = 40, ac/(ac + af ),
depending on the presence of seed predators, and on the mobility of the seed predators. We
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Fig. 8 Proportion of individuals from the core, with the reaction-diffusion model (A2), at time
t = 40. The parameter values are: K = 100, L = 10, Da = 0.1, Dp = 0.1 (slow predator), Dp = 1 (fast predator),
b0 = 2, d = 1, α = 2, β1 = β2 = 1, θ = 1/2. The Matlab source code used to generate this figure is available at
https://doi.org/10.17605/OSF.IO/KWP4A.

obtained this result by numerical simulation of the system (A2). In the absence of seed predators,
or with slowly moving seed predators (Dp = 0.1), ac/(ac+af ) is close to 0 in the region |x| > L.
On the contrary, when there is a fast seed predator (Dp = 1), the proportion ac/(ac+af ) reaches
significant values even far from the core region (−L,L). These preliminary results indicate that
the presence of a fast enough predator reduces the initial advantage of the plants situated at the
forefront and thereby leads to a better maintenance of plant diversity during the colonisation
process. Interestingly, there appears to be a critical threshold for the rate of predator diffusion
above which ac is maintained during colonisation. Further work is needed to understand the
role of masting (with e.g. delay-differential equations) and of long-distance dispersal (with e.g.
integro-differential models) over several generations.

https://doi.org/10.17605/OSF.IO/KWP4A
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