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1. Introduction 
 

For decision makers and accountants, business performance analyses are primarily based on changes 

in indicators expressed in monetary terms such as turnover, cost, profit, etc. Then, in a second step, the 

decomposition of these indicators variations, as a quantity effect and a price effect, makes it possible 

to refine the analysis of business performance. Regarding their business operations, such a 

decomposition provides crucial information to managers to identify what relates, on the one hand, to a 

better management of input and output quantities and, on the other hand, to a search for better market 

price opportunities by improving prices over time.  

 

We introduce in this paper a new measure for evaluating price performance changes of a Decision 

Making Unit (DMU) considered in its activity environment and further decompose it. This 

complements the existing activity-monitoring toolkit available to decisions makers. We consider that 

DMUs under evaluation operate in non-fully competitive environments. This assumption is in line 

with a growing literature in production economics stating that real-life markets often involve imperfect 

competition: DMUs are not strictly price takers and the input and output prices can depend on many 

factors such as bargaining power (e.g., Cherchye et al., 2002; Camanho and Dyson, 2008; Sahoo and 

Tone, 2013). One can trace back imperfect competition to Cournot (1838) who proposed a theory of 

oligopoly based on quantity competition between a few firms selling a homogeneous product. 

Bertrand (1883) suggested that price choice might well be a more suitable strategy than quantity 

choice which ultimately opened the debate of quantity versus price strategies among economists 

leading to product differentiation frameworks (e.g., Launhardt, 1885; Hotelling, 1929; Chamberlin, 

1933; Lancaster,1966). For Launhardt (1885) for example, the dispersion over space of firms gives 

them some market power over the customers situated in their vicinity, which allows them to 

manipulate their prices to their own advantage. Product differentiation comes nowadays in two distinct 

forms: vertical differentiation and horizontal differentiation. With vertical product differentiation, it is 

the intrinsic quality of the good which is modelled whereas, with horizontal product differentiation, 

the good quality is intrinsically the same across firms, but the services attached to it or the general 

context may differ. In our non-parametric approach, where the production technology is common to all 

firms, vertical differentiation is not considered as such. Therefore, differences in prices come from 

horizontal differentiation. Horizontal product differentiation can have various sources in real life 

settings. It can be “spatial” and modelled through the distance between each vendor and a consumer as 

in Hotelling (1929). It can also come from differences in the access to facilities and infrastructures, 

differences in channels of product valorisation (e.g., retail vs. wholesale), firm-specific advantages, 

such as advertising and/or reputation effects, etc.  
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Within the imperfect market framework, decision makers are also interested in the comparison of their 

prices policy to their peers. Or, traditional measures in the production economics literature, such as 

profit, revenue, cost, or allocative efficiencies are based only on the firm’s own prices, ignoring peers’ 

prices. In this article, we include such a comparison of prices across different firms by elaborating on 

Ayouba et al. (2019) who recently introduced the concept of price advantage based on a comparison of 

prices among peers. This price effect is calculated indirectly by the difference between two different 

inefficiency scores: the first based on data in quantity and the second on data in value. Consequently, 

Ayouba et al. (2019) interpreted the difference as a price advantage if a company’s evaluation is better 

with values rather than quantities; in this case, the company benefits from a better price environment 

for inputs and outputs compared to its peers. The authors have clearly shown that this overall price 

advantage is different from the concept of allocative efficiency, which considers only the evaluated 

business unit’s prices. Moreover, the price advantage measure can be broken down into price effects 

specific to each input and output. In their empirical application concerning French farms in the context 

of the successive common agricultural policy reforms leading to the liberalisation of agricultural prices 

(1992–2013), they have illustrated the operational aspect of this new concept of price advantage.  

 

In the same spirit as in Ayouba et al. (2019), but in an inter-temporal perspective, we define an indirect 

measure of performance change due to prices, the ‘total price performance indicator’ by comparing 

total factor productivity changes based on quantities to variations in overall performance based on 

value data. In addition, we propose a decomposition of value overall performance changes that mirrors 

the traditional breakdown of productivity gains into a variation in efficiency (catching up to the 

frontier) and a technical progress component (shift of frontier). Simultaneously, we show that the time 

evolution of the price advantage measure introduced in Ayouba et al. (2019) measures the gap 

between the value overall inefficiency change and the technical inefficiency change. Finally, we 

propose a decomposition of the total price performance indicator into a price advantage change and a 

price environment change. The latter is obtained as the gap between the shift in the value-based 

benchmark and the shift of the quantity-base benchmark. While the price advantage change measures a 

decision-maker’s efforts to improve their prices compared to its peers, the price environment change 

can be related to an exogenous price shock, which affects all DMUs in the same market, even though 

the capacity to absorb the shock may be different among them.   

 

The original Luenberger indicator introduced by Chambers et al. (Chambers, Chung, & Färe, 1996; 

Chambers, Färe, & Grosskopf, 1996) and Chambers (2002) was constructed to measure total factor 

productivity, using quantity data for estimations. We extend this indicator to value-base data in order 

to estimate an overall performance indicator. Our indicator is well fit to respond to business unit 

managers and decision makers’ quest for improved performance in the short- and mid-run and thus 

keeps the input/output mix almost unchanged. Note that analyses based on profit maximisation 
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approach not only do not use peers’ price information in the evaluation process but furthermore apply 

to long run decisions where the input/output mix is more flexible.    

 

Juo et al. (2015) is one of the few analyses that used a Luenberger framework to disentangle quantities 

and prices effects from a profitability indicator change. They developed a profit-oriented productivity 

indicator and showed that it can be decomposed into changes in technical efficiency, changes in 

allocative efficiency, a shift in technology and a shift in relative inputs/outputs prices. Similarly, Lin et 

al. (2017) developed a cost-oriented productivity indicator based on the directional Russell measure 

that leads to a decomposition of productivity change into four components: technical efficiency 

change, allocative efficiency change, technical change and input price change.  In the same vein, Zhao 

et al. (2019) used a value technology approach to decompose the ratio of revenue to expenses through 

Malmquist type indices, which account for the contribution of allocative efficiency. More specifically, 

their proposed decomposition is given by the product of a Malmquist input-oriented productivity index 

and an allocation Malmquist productivity index, both based on input and output values. However, our 

approach significantly differs from theirs by the fact that we do not consider allocative efficiency but 

compare what they call a value-based productivity to a traditional quantity-base productivity in order 

to deduce a price performance indicator and its economic drivers (efficiency and frontier change). 

Since the proposed indicator is built under the assumption that the evaluated DMU cannot 

significantly modify its input/output mix, we conjecture that it is thus more suitable than the profit 

maximisation approach for short- to mid-run decisions.   

 

In the articles cited above, price effects are measured for allocative efficient DMU, implying a cost-

free adjustment of the size and the input/output mix according to its own relative price structure. This 

makes sense for long-term decisions but not for short- or mid-term ones. Consequently, compared to 

their frameworks, our analysis is positioned in the short term, keeps the size and the mix almost 

unchanged and does not assume any restrictive profit or cost optimisation hypothesis related to the 

producer’s behaviour. Finally, our approach differs from the previous ones in the sense that we 

compare DMUs’ price systems. Indeed, in a traditional profit maximising framework, only prices of 

the evaluated DMU are considered for comparisons to peers. As a result, a profit efficiency analysis 

remains a pure quantity effect by reallocating physical resources and fails to include differences in 

absolute prices among DMUs. Our approach fills this gap by introducing comparisons among DMUs’ 

price systems embedded in the value model we proposed. Therefore, the capacity of DMUs to take 

advantage of their favourable market price environments for their given input/output mix is introduced 

as a price effect.   

 

Another strand of literature which has shown an interest in the decomposition of profitability between 

productivity and price recovery changes is that of traditional empirical indexes or indicators (Fisher, 
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Törnqvist or Bennet). A complete review is developed in Grifell-Tatjé and Lovell (2015), who further 

proposed a direct theoretical price index called Könus price recovery index, which is also based on a 

comparison among peers’ prices. However, the authors mention that, contrary to empirical indexes, a 

theoretical one such as Könus does not decompose the global price recovery change by output and/or 

input variables. Besides, a further decomposition into an individual efficiency effect and a price 

environment shock is not mentioned. Finally, our Färe-Lovell Luenberger (LFL hereafter) indicators 

tackle productivity analysis in a different way from the one developed in the aforementioned 

approaches. First, compared to empirical indexes, our LFL price performance indicator allows a 

decomposition by economic drivers (catching up to the frontier and frontier shift in time). Secondly, 

compared to theoretical Könus price index, a decomposition of the price performance indicator and its 

economic drivers by output and/or input variables can now be computed as the difference between 

their respective value and quantity effects.  

 

The structure of the paper is as follows. Section 2 introduces the methodology used in this paper based 

on Färe-Lovell distance functions. Section 3 presents our main contributions related to the three 

Luenberger productivity indicators based on quantities, values and prices; their respective 

decompositions into economic drivers (efficiency and frontier change); and their further 

decompositions by specific input and output variables. Section 4 illustrates the model and the last 

section concludes. 

 

2. Methodology 

 

This section presents the general setting for our analysis with a specific focus on the Färe-Lovell 

directional distance function (Färe and Lovell, 1978; Briec, 2000).  

 

2.1 Setup 

We consider a set of N DMUs. For each DMU, denote the production vector of physical quantities by 

( , )=Q QI QO , where QI contains all J input quantities and QO all K output quantities. Let 

( , )=P PI PO  be the price vector where PI contains all J input prices and PO all K output prices.  

Denote ( )V= VI,VO  the value vector containing the input cost vector and the output revenue vector 

respectively. For an observed DMU a ( )1, ...,a N= , 
,j a

VI denotes the cost incurred for the input � 

(j=1,...,J), obtained as the product between physical quantity and its price: = ×
, , ,

.
j a j a j a

V QI I IP  
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Furthermore, let ,

1

J

a j a

j

VI VI
=

=∑ be the DMU a total cost. In the same way, 
,k a

VO  denotes the revenue 

from the output � (k=1,...,K), obtained as the product between physical quantity and its price: 

= ×
, , ,k a k a k a
QO POVO . Moreover, let ,

1

K

a k a

k

VO VO
=

=∑ be the DMU a total revenue.  

 

2.2 A Färe-Lovell directional distance function and its economic interpretation 

The production technology Q
T  of DMUs represents the set of all feasible inputs-outputs combinations 

and is defined as follows: 

 

( ){ }, : can produce
J K

QT
+

+= ∈QI QO QI QOR            (1). 

Assumptions regarding technology are standard and are the followings: no free lunch, boundedness, 

closure, free disposability, and convexity (see Banker et al., 1984). In this frame, the Data 

Envelopment Analysis approximation of Q
T from a set of N observed DMUs, under constant returns to 

scale (CRS) is as follows: 

( ) , ,

1 1

, : , 1,..., ; , 1,..., ; 0, 1...
Q

N N

j n j n k n k n n

n n

QI QI j J QO QO k K n Nλ λ λ
= =

≥ ∀ = ≤ ∀ = ≥ ∀ == 
 
 

Ψ ∑ ∑QI QO               (2). 

The constant returns to scale (CRS) assumption regarding the production technology is by no means 

constraining and other assumptions could have been made, i.e., variable returns to scale or even non-

increasing or non-decreasing returns to scale. Traditionally, all that one needs to do is to add a 

constraint on the sum of activity variables in equation (2) above 

1, 1 and 1, respectively
n n n

n n n

λ λ λ= ≤ ≥ 
 
 
∑ ∑ ∑  .  

 

Gaps between observed production plans and the estimated production technology’s boundaries can be 

measured using a directional distance function (see Chambers, Chung, and Färe,1996), denoted 

,
: ( ) ( )

J K J K

Q CCF
D R R R R R+ + + + +× × →×  and defined as follows:  

( ) ( ){ },
; sup : ,

Q Q

Q CCF Q

Q
D

β
β β β+= ∈ − + ∈ΨGQ QI GI QO GOR            (3), 

with ( ),
Q Q Q=G GI GO  a strictly positive vector defining the direction of projection on the frontier, 

and CCF in 
,Q CCF

D  standing for Chambers, Chung, Färe. Properties of directional distance functions 

can be found in Chambers, Chung, et al. (1996). Note that ( )
,

( ; 0)
Q

Q Q CCF
DΨ∈ ⇔ ≥QI GQ,QO . � is a 
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common scalar for all inputs and outputs defining a unique efficiency score for the DMU under 

evaluation. 

 

In this paper, we go beyond this traditional setting to exhaust all input and output slacks, as proposed 

by Färe and Lovell (1978) and extended by Briec (2000). Thus, the measure obtained is fully Pareto 

efficient. Specifically, we make use of a Färe-Lovell directional distance function where 

( ), 0,Q Q Q= ≥β βI βO  a positive vector with specific components for each input and output. The 

resulting directional distance function (in the quantity space) is defined as: 

 

( ) ( )
( )

,
; sup

0, 0, 0, ,

:

0

 

0

, 

Q

Q

Q Q

QQ Q Q Q Q Q

Q

Q Q Q Q Q Q

Q

D



+ + Ψ

=

 − ∈ =  
≥ ≥ ≥ ≥ ≠β

PO G G OβO βI GI βI I βO GO
G

GI

P

G

Q

GO G I ,GO βI

IO
Q

I

β

Q

O

     (4). 

Some interesting relations can be drawn between the distance function presented in equation (4) and 

the usual profit maximisation program (see LPs 3-5, in Appendix A). In terms of similarities, we 

notice that if the direction of the evaluation is the production plan of the evaluated DMU 

( ) ( )( ), ,
Q Q Q= =G GI GO QI QO , the objective function in equation (4) can be interpreted as a 

potential profit improvement resulting from the adoption of efficient input and output quantities for 

given prices. However, despite its interpretation as a means for profit improvement, ( );
Q

Q
D Q G  in 

equation (4) distinguishes itself from a classical profit maximisation measure in several regards.  

Firstly, in a classical profit maximisation program, complete reallocation of inputs and outputs is 

possible: DMUs can always reduce the production of some output if its relative price is deemed 

disadvantageous and increase the use of some input if its relative cost is more advantageous. In our 

setting, DMUs maintain their size and input/output mix almost unchanged.1 In equation (4), by 

imposing positive scores for all inputs and outputs, inputs and outputs reallocations within the optimal 

production plan are of limited impact. For any input j, a DMU cannot use more than its observed input 

quantity QIj,a and likewise, for every output k, a DMU cannot produce less than its observed output 

quantity QOk,a. This assumption seems to fit better with short to mid-run decisions where decision 

makers do not have operational opportunities to modify their input/output mix through significant 

reallocations of their input and output quantities.2 

Secondly, classical profit maximisation analysis is always performed under a variable returns to scale 

assumption. Indeed, with constant returns to scale, DMU’s increase of outputs and inputs is 

                                                           
1 Compared to a radial measure where the input/output mix is constant, the directional distance function 

approach may introduce a change in the DMU’s mix. However, this alteration is limited in our approach where 

the direction is taken as the evaluated DMU production plan.   

2 Recently, Färe et al. (2019) have proposed a Farrell-type measure for profit efficiency that synthesizes all 

previous approaches. However, in their framework too, it is assumed that producers can freely operate all 

necessary changes of input scale and input mix in addition to output changes.  
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unbounded and the solution to the maximisation problem is infinite. In our setting, we deal indirectly 

with this issue by constraining the input/output mix of the evaluated DMU. Indeed, by imposing 

positive input quantity contraction coefficients ( )0
Q ≥βI , DMUs cannot use a greater input quantity 

than the observed one. Therefore, they cannot infinitely increase their outputs. Consequently, the 

DMU size remains unchanged. This represents an advantage of our directional distance function, as it 

can be applied even to constant returns to scale analysis.  

In our analysis, the direction is always defined by the production plan of the evaluated DMU 

( ) ( )( ), ,
Q Q Q= =G GI GO QI QO . Moreover, we divide the directional distance function in equation (4) 

by a scalar, which is the total revenue observed for the evaluated DMU. Therefore, we obtain the 

directional distance function in equation (5): 

( ) ( ) ( )
( )

,
; sup

0, 0, 0

1

, 0

: ,

0,

  

Q

Q Q Q QI Q Q

QOQ

Q Q Q Q Q
Q

QQ

D

 ∈ Ψ =  
 =≥

+ − +

≠≥ ≥ ≥ 
β

βO βI βI g βO GO

G

QO
e VOG

GI GO G GI , O

PO P Q

O β

I QI

I

I

β

QO
Q   (5), 

where e0 is a unitary vector with the output quantity vector dimension. 

Next, we define ( ),V VI VO=α α α  as a vector containing respectively all individual input cost and 

output revenue shares in the total revenue. For DMU a, two general terms in this vector would be 

,

,

a kVO

a k

a

VO

VO
α =  and 

,

,

a jVI

a j

a

VI

VO
α = . Note that while 

, 1VO

a k

k

α =∑ , this is not the case for 
,

VI a
a j

j a

VI

VO
α =∑ , which 

can be interpreted as a cost to revenue ratio for the DMU a. With this notation, the directional distance 

function becomes 

 

( ) ( )
( )

,
; ; sup

0, 0, 0, 0,

: ,

0Q

Q VO Q VI Q Q Q

QQ V

Q Q Q Q

Q

Q Q Q Q
D

 − ∈ Ψ =  
≥ ≥ ≥ ≥ 

+

= ≠ 

+

β

βO α βI α βI GI βO GO
G α

GI GO g GI ,GO

QI

I βO

QO

β
Q                    (6) 

and measures the sum of output quantities increases and input quantity decreases weighed by their 

respective output and input shares. Thus, our directional distance function has a very convenient 

interpretation as a profit margin potential increase due to the adoption of optimal input and output 

quantities by the DMU. 

Note that our directional distance function is different from the directional slacks-based measure 

proposed in Fukuyama and Weber (2009) and further used by Mahlberg and Sahoo (2011) to study 

Luenberger total factor productivity change in several regards. First, as shown above, because our 

directional distance function has a direct economic interpretation and, secondly, by imposing strictly 
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positive scores, we ensure that the input/output mix and the DMU size stay relatively unchanged. 

However, both models share a common feature related to the estimation of individual inputs and 

outputs scores: the possibility to recover specific Luenberger indicators for each of the inputs and 

outputs.  

The directional distance function in equation (6) is obtained using quantity-base data. However, a 

similar measure can be defined based on value data (revenues and costs). In line with Sahoo et al. 

(2014) and Zhao et al. (2019), we assume that the value-based technology satisfies the same standard 

assumptions as the quantity-base technology. Indeed, it is acceptable to consider that: (i) strictly 

positive revenues cannot be obtained from zero costs (no free lunch), (ii) infinite revenues are not 

allowed with a finite cost vector, in other words, there is always an upper bound for each output price 

(boundedness), (iii) the value-based technology is closed, (iv) less output revenues can always be 

obtained with more costs and inversely (free disposability), (v) if two cost vectors can be used to 

obtain two output revenue vectors, then any linear combination of these cost vectors can also be used 

to obtain some linear combination of these value vectors (convexity). 

The resulting distance function is defined below: 

( ) ( ){ }; sup : ,;
V

V VO V

V

VI V VV V V

V

V
D Ψ= + − + ∈

β

βO α βI α βI GI V βOG α O OV VI G       (7), 

with ( )V VV
=G GI ,GO  a strictly positive vector defining the direction of projection on the frontier 

and ( ) 0≥V V V
,β = βI βO  a strictly positive vector.  

Compared to a classic profit optimisation program (see LP 3-5 in Appendix A), this setting ensures 

that a DMU cannot reduce costs or increase revenue by a complete reallocation of the input/output 

mix. In equation (7), for any input j, a DMU cannot spend more than its observed input cost VIj,a, and 

likewise, for every output k, a DMU cannot obtain less than its observed output revenue VOk,a. This 

assumption seems more suitable for short- to mid-run decisions where decision makers do not have 

operational opportunities to modify their mix through significant reallocations of their input and 

output values.  

 

The distance functions defined in (6) and (7) therefore give the profit margin rate if the DMU adopted 

optimal quantities/values, given the technical/value benchmark. It follows that these distance functions 

can be directly interpreted as technical/value inefficiency scores: 

( )
( )

; ;

;;

V

Q

V

Q

V V

TE = D

VE = D V G

Q G α

α

               (8). 
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The following section shows how Luenberger performance indicators can be constructed based on the 

Färe-Lovell directional distance functions presented here.  

3. A Luenberger Färe-Lovell approach of productivity, overall performance and 

prices  
 

In this section, we provide a method for computing Luenberger-inspired productivity, overall 

performance and price performance indicators based on the Färe-Lovell distance functions introduced 

above. Decompositions of each of these indicators into economic drivers (catching up to the frontier 

and frontier shift) is also provided. A further decomposition of all indicators and their respective 

economic drivers along the specific input/output variables is also possible.  

 

3.1 A Luenberger Färe-Lovell approach of productivity change 

Chambers (2002) has defined the Luenberger productivity indicator for a given period t as the 

difference between directional distance functions where technology is fixed in t and the evaluated 

DMU is considered alternatively in periods t and t+1. Using the directional distance function 

expressed in equation (6), we define the LFL productivity indicator for period t as 

 

( ) ( ) ( )1 1
, ; ; ; ; ; ;

t t t t t t t

Q Q
LQ D D

+ += −Q V Q V Q V
Q Q G α Q G α Q G α                (9). 

Note that in Chamber’s notations, while the observed DMU’s production plan is considered at two 

different periods in time, the direction of evaluation (��) is identical in the two terms in the equation 

(9).  

 

In the same way, the Luenberger Färe-Lovell productivity indicator for period t+1 is defined as 

 

( ) ( ) ( )1 1 Q 1 Q 1 1 Q
, ; ; ; ; - ; ;

t t t V t t V t t V

Q Q
LQ D D

+ + + + +=Q Q G α Q G α Q G α  

The LFL productivity indicator change between the two periods � and t+1 is defined as the arithmetic 

mean between the previous two indicators. Hereafter, we drop the arguments in the Luenberger 

productivity indicators for simplicity. 

 

, 1 11

2

t t t t
LQ LQ LQ

+ += +    

A positive value for , 1t t
LQ

+ indicates that the DMU has observed an increase in its total factor 

productivity (TFP) between periods t and t+1. 

As shown initially by Chambers, Färe, and Grosskopf (1996), and later for modified settings by 

Mahlberg and Sahoo (2011), this LFL productivity indicator change may be decomposed additively 
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into quantity-efficiency change ( )LQEC  and quantity-technology change ( )LQTC  generally 

interpreted as the technical change in the spirit of the Malmquist productivity index decomposition in 

Färe et al. (1994): 

 

, 1t t
LQ LQEC LQTC

+ = +            (10), 

with 

( ) ( )Q 1 Q1
; ;; ;

t Vt t

Q

t V

Q
LQEC D D

++= −G α GQ αQ          (11), 

( ) ( )
( ) ( )

11 Q1

1

Q

Q Q

; - ;1

2 ; ;

; ;

; ;-

t V t V

Q Q

V

t t

t t tV t

Q Q

D D
LQTC

D D

+ +

+

+ +
=

    
 
    

G α G α

G

Q

G

Q

QαQ α

       (12). 

A positive value for the Luenberger quantity-efficiency change (LQEC) indicates that the DMU has 

increased its efficiency between periods t and t+1. Likewise, a positive sign for the Luenberger 

quantity-technology change (LQTC) can be interpreted as a sign that the DMU has benefitted from a 

positive upward shift of the production frontier.  

 

3.2 A Luenberger Färe-Lovell indicator for overall performance change  

While the previous Färe-Lovell Luenberger quantity productivity indicator ( )LQ  undeniably offers a 

precise image of the DMU performance based on its quantity information, its field of applicability is, 

nevertheless, restrained. Indeed, in everyday decisions, costs of production factors and output revenues 

are more likely to be considered by decision makers. In what follows, we incorporate output and input 

values to obtain a Färe-Lovell Luenberger indicator for overall performance change.  

Following the quantity-base productivity indicators developed in the previous section, we introduce 

the equivalent inter-period Luenberger value-base indicators: 

 

( ) ( ) ( )1 1; ; ;t t t V t t V V t t V V

V VLV , ; = D ; - D ;
+ +VV V G α V G α V G α  

( ) ( ) ( ); ; ; ;t+1 t t+1 V V t+1 t V V t+1 t+1 V V

V VLV , ; = D - D ;V V G α V G α V G α   

Finally, the change in the LFL overall performance indicator between the two periods � and t+1 is 

defined as follows: 

 

t,t+1 t t+11
LV = LV + LV

2
    
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A positive value for 
t,t+1

LV is interpreted as an increase of the evaluated DMU overall performance (in 

value) between the two periods. Improvements are due to a decrease in the inputs cost and/or an 

increase in the output revenue.3  

 

As with its quantity-base counterpart, the LFL value-based indicator can be shown to decompose as 

the sum between a Luenberger value efficiency change indicator and a Luenberger value-technology 

change indicator.  

 

t,t+1
LV = LVEC+ LVTC            (13). 

The DMU’s efforts to improve its value efficiency are revealed through the value efficiency change 

( )LVEC  which can arise either through an improved technical efficiency, or through a more 

advantageous input-output price system or a mix of both. 

 

( ) ( )1
; ; ;;

V

tt V V t+1 V Vt

V
LVEC = D D

+
V G α V G α-          (14).  

The value-technology change indicator ( )LVTC  measures the shift of the frontier in the value space. 

It can be interpreted as the result of either technical progress and/or an exogenous price shock 

common to all DMUs.  

 

( ) ( )
( ) ( )

; ;

; ;

t+1 V V t V V

V V

V V t V V

V

t+1 t+1

V

t+1 t t

D ; - D ; +1
LVTC =

2 D ; - D ;

    
 
    

V G α V G α

V G α V G α

                   (15). 

 

The next subsection introduces the LFL indicator for total price performance and its decomposition 

into an efficiency component and a global environment change component. 

 

3.3 A Luenberger Färe-Lovell indicator for total price performance and its 

decomposition along the main economic drivers 

Given that both Luenberger indicators (
t,t+1

LV and 
t,t+1

LQ ) are expressed in common units (points of profit 

margin rate change), we can define the Luenberger price performance indicator as the difference 

between the two of them. 

 
t,t+1 t,t+1 t,t+1

LP LV LQ= −               (16). 

                                                           
3 Another possibility is that the cost has decreased more rapidly than the decrease in the output revenue or that the output 

revenue has increased more rapidly than the cost.  



 12

This is an indirect price effect recovered from value-base and quantity-base models as a residual term. 

A positive value for 
t,t+1

LP  indicates that the DMU improves its price performance between the two 

periods.  

 

Next, we show that the Luenberger price performance change indicator defined in equation (16) 

decomposes as the sum between a DMU individual characteristic (price advantage change) and a 

market, exogenous price shock component.  

 

Given the equation of the Luenberger value-efficiency change (LVEC) indicator in equation (14), we 

observe that this measure can be rewritten as: 

 

( ) ( ) ( )
( ) ( ) ( )

; ; ;

; ; ;

t V V t Q V t Q V

V Q Q

t+1 V V t+1 Q V t+1 Q V

t t t

t+1 t+1 t+

Q

1

V Q

LVEC = D ; - D ; + D ;

- D ; - D ; + D ;

 
 

 
 

αV

Q

G G α GQ α

G α G α

Q

V Q G α
     (17). 

Ayouba et al. (2019) introduced the static price advantage measure as the increase in a DMU’s profit 

margin rate resulting from a favourable input or output price environment. In the same spirit, we 

define it as the gap between technical inefficiency scores measured with value data and physical 

quantity data: 

 

( ) ( ); ;; ; Q

t tt V V t Q Vt

VPA D - D= V G α Q G α          (18). 

A positive value for the price advantage measure is interpreted here as the sign that the observed DMU 

suffered from a disadvantageous price environment compared with its peers since the distance to the 

value benchmark is greater than its distance to the quantity benchmark. Thus, given the DMU’s price 

system, its value inefficiency is greater than its technical inefficiency.  

We further define the Luenberger price advantage change as the difference between period t and 

period t+1 price advantage measures: 

 

1t t
LPAC PA PA+= −              (19). 

A positive value for the LPAC is interpreted as an improvement in the price advantage over the two 

periods, while a negative value is interpreted as a deterioration of the price advantage. A null value 

observed for this indicator is a sign that the DMU observed neutral price advantages, in other words, 

that it was technical and value efficient over the two periods (or, that technical and value inefficiency 

scores were equal to one another in both periods). 
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Rearranging terms in equation (17) and using the definitions in equations (11) and (19) for technical 

efficiency change (LQEC) and price advantage change (LPAC), we have, 

 

( ) ( )1 ; ;tt Q V t

Q

t+1 1

t

+

t

Q V

QLVEC = PA - PA + D ; - D ;

LPAC LQEC

+
 
 

= +

G αQ α GQ
                    (20). 

Substituting this decomposition into the Luenberger overall performance change indicator (in equation 

13), we find that the latter can be split as the sum between the Luenberger productivity indicator, the 

price advantage change and a new term that is the difference between the value-technology change and 

quantity-technology change:  

( ) ( )
( )
( )

t,t+1

t,t+1

t,t+1

LV = LPAC + LQEC + LVTC

LPAC + LQEC + LQTC LVTC - LQTC

= LPAC + LQ  LVTC - LQTC

LQ LPAC + LVTC - LQTC

= +

+

= +

           (21). 

Finally, we define the Luenberger price-global environment change (LPGC) as the difference between 

the Luenberger value-technology change and the Luenberger quantity-technology, that is to say, the 

change in the gap between the value-based technology and the quantity-base technology frontiers: 

LPGC = LVTC - LQTC             (22). 

A positive value for LPGC will be interpreted as a positive price environment change affecting all 

DMUs since the shift in the value-based frontier is greater than the shift in the quantity-base 

technology.  

Thus, we obtain a decomposition for the price performance indicator as the sum between price 

advantage change (LPAC) and price-global environment change (LPGC). While the first component 

reflects each DMU’s individual efforts to improve their price advantage, the latter (LPGC) reflects a 

general shock in prices affecting the entire set of DMUs, even though the capacity to absorb this shock 

may be different among the DMUs.  

t,t+1
LP = LPAC+LPGC              (23). 

 

Obviously, the price performance change indicator and its components are fit mainly for situations in 

which DMUs can, for different reasons, set distinct input and output prices. However, nothing 

prevents our indicator from being applied even in a price-taking situation, but in this case, the price 

indicators should be interpreted as arising from the relative system of input and/or output prices. To 

illustrate this point, suppose all DMUs are price takers and thus face the same input and output prices. 
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Obviously, efficient DMUs will obtain neutral price performance indicators, so a non-null price 

indicator can only be observed for inefficient DMUs as a sign that there exists a gap between a 

quantity indicator and its equivalent, value one. Let us suppose that we are dealing with a DMU which 

is both technical and value inefficient in the first period, with the value inefficiency being greater than 

the technical inefficiency. This means that the DMU has experienced a price disadvantage in that 

period. Suppose that, in the next period, the DMU has corrected for some of its technical inefficiency 

while prices remained constant throughout the two periods. Consider a case where we observe that the 

LQEC is positive and greater than the LVEC. We conclude that in the second period, the price 

disadvantage increased, leading to a negative value for the LPAC. How can we account for this event 

knowing that the market prices have been constant throughout the two periods? The answer lies in the 

fact that the DMU’s quantity changes (here, a reduction in the technical inefficiency) are priced 

according to the market prices. Therefore, if the DMU concentrated its efforts towards a specific input 

or output for which the relative price was less advantageous, the increase in the LQEC indicator is 

more important than that of the LVEC indicator, and the final effect on the price advantage change is a 

negative one. In a price-taker context, technically inefficient DMUs’ price indicators reflect the 

advantage or the disadvantage that affects the DMU with regards to the input and/or output system of 

relative prices. Therefore, even in a context of given prices, our indicator can be of help in order to 

target those inputs and/or outputs for which the relative price is more advantageous and seek to 

concentrate all efforts on the reduction of the technical inefficiency related to them.  

 

3.4 Operationalisation of the Färe-Lovell distance functions in an intertemporal 

perspective 

In order to propose a time evolution of productivity and overall performance indicators, distance 

functions must be defined for consecutive periods. In Luenberger’s (1992) original work, the indicator 

is calculated in relation to a basket of commodities, which can be completely disconnected from the 

evaluated DMU. Chambers, Färe, et al. (1996) proposed several measures for their proportional 

(radial) distance function with regards to the direction in which DMUs are evaluated and denoted (gx, 

gy), where x is the input quantity vector, and y is the output quantity vector. Thus, they show that the 

Shephard distance function is only a special case in their model if the direction is taken only in the 

evaluated unit’s output space: (gx, gy) = (0, y). This approach can be generalised to both inputs and 

outputs by considering that (gx, gy) = (x, y), thus retrieving the proportional distance function 

introduced by Briec (1997). The authors also consider a symmetrical approach for inputs and outputs, 

where the direction of evaluation becomes the unit, (gx, gy) = (1, 1), but for this, data needs to be 

mean-deflated. However, it is important to highlight that, in order to ensure commensurability of 

direction functions, especially when they refer to different period technologies, the direction for 

evaluation needs to be identical, as it follows very clearly from Chambers’ (2002) study.  
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In some works published more recently (e.g. Briec & Kerstens (2004); Mahlberg & Sahoo (2011)), the 

direction of evaluation is either symmetric (both inputs and outputs vectors are considered) or 

asymmetric (only one vector is considered), but, more importantly, it is also period specific, which for 

generally stated directions, may lead to serious comparison or interpretation issues.4  

In the present paper, where the goal is to evaluate and compare individual DMU’s performance, it 

seemed natural to consider a direction of evaluation that is symmetric with regards to the DMU’s input 

and output space. From this point, two subsequent questions arose: the first choice of the researcher is 

to decide in which period should the evaluated DMU be observed? Should the direction of the 

evaluation be the evaluated DMU’s production plan observed in period t’? In period t+1? This issue is 

settled by considering both possibilities and then calculating the arithmetic mean of the resulting 

efficiency scores in the vein of a Bennet indicator. The second choice of the researcher or the decision 

maker concerns the weighing system V
α , which allows to aggregate individual input and output 

quantities (or values) and that leads to interpreting the objective function as the optimal profit margin 

rate (equations (6) and (7)). Again, one has to choose between the period t and the period t+1 

weighing system. In order to remain as general as possible, both possibilities are considered, and then 

their arithmetic mean is considered for actual calculations of the final productivity indicators.  

 

Under these considerations, we now introduce the following notations:  

 

- { }' , 1t t t= +  is the time period in which the reference period technology is considered; 

- { }'' , 1t t t= +  is the time period pertaining to the evaluated DMU;  

- { }''' , 1t t t= +  is the time period associated with the direction considered, and finally;  

- { }, 1
iv

t t t= +  is the time period related to the weighting system in the objective function; 

-  { , }m Q V=  is the space (quantity or value) used, and  

- ( ),
m m

Y X  designates the general vector characterising a DMU, depending on whether it is 

evaluated in the quantity space or the value space.  

 

Note that given the different values that can be taken by the different parameters introduced above, a 

total of 5
2 32=  models are obtained that lead to the calculation of the LFL quantity and overall 

performance indicators specified above for each DMU, respectively. Computing time can be 

drastically optimised by solving an aggregate model for all firms together. Thus, whatever the number 

of DMUs, at most, 32 models are solved. This aggregation follows from the fact that each LP is 

                                                           
4 In these works, the authors avoided this trap by using à la Shephard distance functions, which lead to 

proportional indicators with a convenient percentage change interpretation. 
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independent from the others, and thus, constraints can be pooled, and objective functions can be 

summed over.  

 

( )( ), ' , '' , '' , "'

, ,

1 1 1

,

, ,

1

,

, ,

;

max

1,..., ,

ivt

iv ivt t

m t m t m t m t V

N K J
VO VI

a,k a k a, j a j

a k j

N
m,t' m,t'' m t'''

a n n,k a,k a k a,k

n

m,t' m,t'' m t'''

a n n, j a, j a j a

, ; =

βO βI

λ Y Y GO βO a N k = 1,...,K

λ X X GI βI

α α
= = =

=

  
+  

   

≥ + =

≤ −

∑ ∑ ∑

∑

λ,βO,βI

D Y X g α

1

,

1,..., ,

,

N

, j

n

a n

a, j

a,k

a N j = 1,...,J

λ 0 a = 1,...,N, n= 1,...,N

βI 0 a = 1,...,N, j = 1,...,J

βO 0 a = 1,...,N k = 1,...,K

=

=

≥

≥

≥

∑ ,       

{ }
{ }
{ }
{ }
{ }

, ,

' , 1 ,

'' , 1 ,

''' , 1 ,

, 1iv

m Q V

t t t

t t t

t t t

t t t

=

= +

= +

= +

= +

                   

(LP1). 

 

LP1 will always have a feasible solution for contemporaneous evaluated DMUs and technologies (t’ = 

t’’). However, when intertemporal comparisons are made, the traditional Luenberger approach is to 

allow for negative efficiency scores in order to measure technical progress. In this case, the evaluated 

DMU can be outside the production possibility set of the technology, and negative efficiency score 

must be allowed to project the DMU onto the frontier. In our LFL framework, we cannot apply this 

approach since the positivity of the efficiency score is mandatory in the Färe-Lovell approach. 

Fortunately, there is a solution, which consists of reversing the direction instead of allowing negative 

efficiency scores. For intertemporal comparisons, whenever LP1 is infeasible, we use LP2 to get the 

solution. By inverting the direction ( ),GO GI  we can keep the positivity constraint on βO and βI  to 

satisfy the LFL requirement. Obviously, the maximisation is transformed into a minimisation since the 

direction is reversed.  
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(LP2). 

Of course, depending on the research objectives, this very general setting can be simplified. For 

example, if the research objectives impose the direction of evaluation as contemporaneous with the 

technology considered, then it suffices to set ' '''
t t=  in the LPs 1-2 above. Appendix B. gives a 

detailed illustration of how this model applies to obtain all LFL indicators introduced in this section.  

The two linear programs (LP1 and LP2) have been defined under the constant returns to scale 

assumption. Indeed, previous literature states that, for productivity analysis, through Luenberger or 

other productivity indices, the CRS assumption is the accurate assumption as it controls for both 

technical and scale inefficiencies. As emphasized by Grifell-Tatjé and Lovell (1995), measuring 

productivity under variable returns to scale leads to systematic biased measures. Indeed, this idea has 

been shared by many authors who all insist on the fact that constant returns to scale are required for 

productivity measurement (Ray and Desli, 1997; Balk, 2001; Lovell, 2003). Moreover, Balk (2001) 

goes even further and says that independently of the returns to scale assumption behind the production 

technology, the productivity analysis should always be carried under the CRS assumption. This being 

said, it is at least possible to include a decomposition of the productive efficiency component into a 

technical and a scale component by using a variable returns to scale technology for computing the 

former. 

Finally, an important property of this model, relevant for interpretations of the empirical results is that 

one is capable of decomposing the change in the profit margin rate calculated in the objective function 

for each input and output. Indeed, for a DMU a, 
,

iv
tVO

a,k a kβO α  and 
,

iv
tVI

a, j a jβI α are the specific 

contributions of each output k and input j to its profit margin rate. This property is useful for 

decomposing all Luenberger indicators introduced above by specific variables (input and output) 

following the idea introduced by Kapelko et al. (2015).  
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4. Illustration 

 

As mentioned above, the analysis introduced here is mainly fit to characterise situations in which 

DMUs can set their output prices and in which they can have an impact on their input prices. Indeed, 

the best frame for application of our indicators is that of imperfect competition, where prices are not 

homogenous among firms. While this is a frequent observation for commodity markets, different 

reasons can justify this state of facts. Indeed, the less competitive the factors markets and/or the 

produces markets, the higher the chances that firms enjoy different input costs and can set different 

output prices. Thus, the size of the firm, the geographical location, the ability to control key resources 

represent an incentive for firms to seek and depart from a strictly competitive pricing scheme.  

 

In the following, we illustrate the applicability of our method and provide clear economic 

interpretations of the proposed model. To simplify the understanding of the different price-quantity 

interactions that may occur we introduce, starting from a fictitious market setting, different scenarios 

of price/quantity change policies. In a first paragraph we analyse the case where only one firm in the 

market modifies its output quantity, ceteris paribus, then only its price policy (ceteris paribus) and 

finally, both its output price and quantity strategy (ceteris paribus). We show that our proposed 

indicators react to these changes in the expected way. In a second paragraph, all firms in the market 

modify their input and output price and quantity strategies (which is the most likely case that can be 

observed in real markets) and we show how, with the help of the proposed indicators, one can 

synthetise these phenomena in productivity and performance changes for each firm. 

 

The market illustration deals with situations in which DMUs are price makers. For this, we introduce a 

fictitious market setting made up of six DMUs (N=6, named A, B, …, F) producing two outputs (K=2) 

out of two inputs (J=2). Let us assume that in the first period, the six DMUs start with the input and 

output prices and quantities depicted in Table 1. Period 1 profit ( )1Π is defined as the difference 

between total revenue (VO) to total cost (VI) ( )VO VIΠ = − .  

 

Table 1. DMUs’ inputs and outputs quantities and prices for period 1  

DMU A B C D E F 

1

1
QO

 

10 12 8 6 10 8 

1

2
QO

 

10 8 12 10 8 10 

1

1
QI

 

2 4 5 6 8 10 
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1

2
QI

 

12 4 10 6 6 2 

1

1
PO

 

3 3 2.75 3 2,5 2 

1

2
PO

 

4 2 4 3 3 3 

1

1
PI

 

3 2 3 3 2 1 

1

2
PI

 

1 2 1.5 2 1.75 4 

1Π
 

52 36 40 18 22.5 28 

TE1 0% 0% 39% 86% 74% 0% 

VE1 0% 0% 33% 70% 47% 0% 
Legend: 

The superscript ‘1’ stands for the period of analysis. The subscripts 

‘1’ or ‘2’ stand for the type of output/input quantity/price.  

 

4.1 Case figures where only one DMU is affected by prix and/or quantity changes  

In this paragraph, we are analysing the case of only one DMU, here C, under three scenarios. In 

Scenario 1, it is the quantity of the output 1 that increases by 10%, ceteris paribus. This increase 

impacts positively the value performance indicator (LV) by 3 percentage points (pp), an increase that is 

entirely explained by the improvement observed by the productivity indicator (LQ). This evolution is 

illustrated in Figure 1 below. For the other DMUs, since the situation between the two periods has 

remained unchanged, one observes that all their productivity indicators, value and respectively price 

performance indicators are null (see Table 8 in Appendix C.1).   

 

Figure 1. Overall performance, productivity and price performance evolutions for DMU C, under an output 1 

quantity increase, ceteris paribus  

 

 

In Scenario 2, the price of the output 1 produced by DMU C increases by 5%, ceteris paribus. As 

expected, all quantity-related indicators remain unchanged, and the positive effect observed on the 

value performance indicator (LV, increase by 2pp) is fully explained by an increase in the price 

performance indicator (see Figure 2). Moreover, the transmission channel is via an improvement in the 
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efficiency change indicators (LVEC=LPAC). Again, all performance indicators for the remaining 

DMUs are null between the two periods (see Table 9 in the Appendix C.1).   

 

Figure 2. Overall performance, productivity and price performance evolutions for DMU C, under an output 1 

price increase, ceteris paribus 

 

 

In Scenario 3, both the quantity and the price of the output 1 produced by the DMU C increase (by 10 

and respectively 5%), ceteris paribus. In Figure 3, we observe an increase in the total value 

performance (LV) by 5 pp, which is explained by a positive increase in the productivity indicator (LQ, 

by 3pp) and a positive increase in the price performance indicator (LP, by 2pp). Within each global 

indicator, the observed rise in performance is obtained via an improvement in the efficiency change. 

Thus, quantity efficiency change (LQEC) improves by 3pp while the quantity technology change is 

null. Similar evolutions are noticed in the price dimension, where the price advantage change indicator 

(LPAC) increased by 2pp, with the price-global environment change (LPGC) staying null. In this case 

figure too, all performance indicators are null for the rest of the DMUs (see Table 10 in the Appendix 

C.1).   

 

Figure 3. Overall performance, productivity and price performance evolutions for DMU C, under an output 1 

simultaneous quantity and price increases, ceteris paribus 
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 4.2 General case figure where the entire market is affected by price and quantity 

changes 

We adopt here a more general viewpoint where, in period 2 all DMUs’ prices and quantities for inputs 

and outputs change in different proportions. Table 2 shows the resulting input and output quantities 

and prices (for each variable, the inter-period growth rate is calculated beneath). All DMUs’ output 

quantities increased, and all input quantities decreased between the two periods. Similar phenomena 

affected output prices and, respectively, input prices. DMUs’ technical and value inefficiency scores 

for both periods are also given. In the second period inefficiencies observed DMUs C, D in both the 

quantity and the value dimensions deepened. Defined as the gap between value and technical 

inefficiency scores (equation (18)), price advantages appear to be neutral for DMUs A, B and F in both 

periods. However, the price advantage measure is positive for DMUs C, D and E in period 1, meaning 

that these DMUs have a greater latitude to improve profits by absorbing their technical inefficiency 

than by absorbing their value efficiency. However, these three DMUs lost their price advantage from 

the initial period and experienced a price disadvantage in the second period.  

 

Table 2. DMUs’ inputs and outputs quantities and prices for period 2 

DMU A B C D E F 

2

1
QO  

(% change) 

12 13.8 8.8 6.3 11 9.6 

(20%) (15%) (10%) (5%) (10%) (20%) 

2

2
QO

 
(% change)

11.5 9.6 13.2 10.5 8.4 11.5 

(15%) (20%) (10%) (5%) (5%) (15%) 
2

1
Q I  

1.6 3.2 4.75 5.4 7.6 8.5 

(% change) (-20%) (-20%) (-5%) (-10%) (-5%) (-15%) 

2

2
QI

 10.2 3.4 9 5.7 5.7 1.6 

(% change) (-15%) (-15%) (-10%) (-5%) (-5%) (-20%) 

2

1
PO  

(% change) 

3.6 3.45 2.8875 3.3 2.625 2.5 

(20%) (15%) (5%) (10%) (5%) (25%) 
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2

2
PO  

(% change) 

4.6 2.5 4.4 3.15 3.15 3.45 

(15%) (25%) (10%) (5%) (5%) (15%) 
2

1
P I  

(% change) 
2.55 1.7 2.85 2.85 1.8 0.85 

(-15%) (-15%) (-5%) (-5%) (-10%) (-15%) 

2

2
PI  

(% change) 

0.8 1.7 1.425 1.8 1.575 3.2 

(-20%) (-15%) (-5%) (-10%) (-10%) (-20%) 
2Π  

(% change) 

83.86 60.39 57.13 28.21 32.68 51.33 

(61%) (68%) (43%) (57%) (45%) (83%) 

TE1 0% 0% 39% 86% 74% 0% 

VE1 0% 0% 33% 70% 47% 0% 

TE2 0% 0% 75% 138% 123% 0% 

VE2 0% 0% 100% 156% 118% 0% 

 

 

a. Decomposition by economic drivers 

 

Luenberger productivity, overall performance and price performance indicators and their respective 

decompositions can be used to analyse concurrent price and quantity changes affecting DMUs. Table 4 

shows that the changes in quantities and prices have had a positive impact on the overall performance 

change (LV) for all DMUs. For each DMU, we are further able to disentangle the quantity effect from 

the price effect.5  

 

Table 4. Luenberger productivity indicators and their respective decompositions into efficiency change and 

technology change (general case scenario) 

DMU A B C D E F 

LVEC 0% 0% -67% -86% -71% 0% 

LVTC 53% 49% 113% 133% 120% 60% 

LV 53% 49% 45% 47% 49% 60% 

LQEC 0% 0% -36% -52% -49% 0% 

LQTC 23% 23% 68% 73% 66% 24% 

LQ 23% 23% 32% 21% 18% 24% 

LPAC 0% 0% -31% -34% -22% 0% 

LPGC 30% 26% 44% 60% 53% 36% 

LP 30% 26% 13% 26% 31% 36% 

 

The general situation for DMU A is depicted in the Figure 1. One notices that the increase in the 

overall performance by 53 percentage points (pp here after), as measured by LV, can be traced back to 

                                                           

5
 A more comprehensive table is presented in Table 11 in the Appendix C.2 where a scale component is added to 

the quantity effect. This table includes, within the quantity efficiency change dimension (LQEC) a component 

related to the pure technical efficiency change (LQEC pure) and a scale efficiency change indicator (LScEC) 

where the former is obtained with a VRS technology. The latter term is the result of the difference between the 

two LQEC measures obtained with a CRS technology and, a VRS technology respectively. 
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an improvement in its productivity (LQ) by 23 pp and an improvement in its price performance by 30 

pp (LP). The former increase is entirely due to the effect of technical change (LQTC=LQ), while the 

DMU has been technically efficient (LQEC=0) over the two periods. At the same time, the 

improvement in its price performance is due to the positive and exogenous shock on the market prices 

(LPGC=LP, LPAC=0).  
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Figure 4. Overall performance, productivity and price performance evolutions for DMU A (general scenario)  

 

 

For DMU C, as shown in the Figure 5.a, the progression of the overall performance (LV) is 45 pp, with 

a contribution of 32 pp from productivity progression (LQ) and a contribution of 13 pp from the price 

performance (LP). Note that this DMU has enjoyed positive productivity change due to an important 

impact of the technical change (LQTC, by +68 pp), while its technical efficiency has had a negative 

impact (LQEC, -36 pp), as depicted in the Figure 5.b. Furthermore, as mentioned above, this DMU has 

lost its price advantage in the second period, which explains the negative value observed by the price 

advantage change indicator (LPAC, -31 pp) as shown in the Figure 5.c. However, the positive increase 

in the two output prices has materialised in a positive contribution for the price-environment change 

(LPGC) by 44 pp.  

 

Figure 5. General situation for DMU C5 

5.a Overall performance, productivity and price performance evolutions  

 

 

5.b Decomposition of productivity chang into quantity-efficinecy change and quantity-tehcnical change 
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5.c Decomposition of price performance chang into price advantage change and price global environment 

change 

 

 

 

b. Decomposition by input/output specific effects 

 

The analysis can be detailed further by identifying the specific input/output performance indicators 

within their respective scores, weighed by their shares in the total revenue. Thus, decision makers and 

practitioners should be able to draw on these indicators and the relationships established between them 

to come up with meaningful applications where concurrent short- to mid-run price and quantity 

changes lead to very complex situations and where it is of paramount importance to be able to 

disentangle one effect from the other. Table 5 proposes to decompose by the variables of interest 

(input/output) all six performance indicators for DMUs A and C, which is an efficient DMU and an 

inefficient one.6 As one should expect, the sum of all specific input and output indicators always 

amounts to the equivalent indicator calculated at the DMU level and presented in Table 4 above. 

                                                           
6 Obviously, similar decompositions can be obtained for all DMUs. 
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Table 5. Decompositions of the Luenberger productivity indicators and their respective economic drivers by 

specific input and output variables for the DMUs A and C 

 DMU A DMU C 

Indicator Output 

1 

Output 

2 

Input 

1 

Input 

2 
TOTAL, 

DMU A 

Output 

1 

Output 

2 

Input 

1 

Input 

2 

TOTAL, 

DMU C 

LVEC 0% 0% 0% 0% 0% -73% 0% 6% 0% -67% 

LVTC 21% 23% 3% 5% 53% 103% 9% -3% 2% 113% 

LV 21% 23% 3% 5% 53% 30% 9% 4% 2% 45% 

LQEC 0% 0% 0% 0% 0% -19% -17% 0% 0% -36% 

LQTC 9% 10% 2% 0% 23% 40% 27% 1% 0% 68% 

LQ 9% 10% 2% 0% 23% 21% 10% 1% 0% 32% 

LPAC 0% 0% 0% 0% 0% -55% 18% 6% 0% -31% 

LPGC 12% 13% 1% 4% 30% 64% -18% -4% 2% 44% 

LP 12% 13% 1% 4% 30% 9% 0% 2% 2% 13% 

 

5. Conclusions 

 

The main contribution of this paper is to propose a relevant decomposition of price performance 

change into two components: a firm-specific price advantage change and a global price environment 

change. To our knowledge, this decomposition has not been put forward in previous work dealing with 

other theoretical or empirical price indexes. Moreover, our method allows to identify these 

components at the level of each specific input and/or output for which we dispose of the necessary 

price and quantity information. These indicators can prove extremely useful to a practitioner who can 

use them to appraise their own total price performance change and dispatch it by economic drivers 

(individual efforts vs general market changes) for each specific input/output. Thanks to its high degree 

of adaptability to existing data, we anticipate that the present methodology can find a large scope for 

applications.  

These price performance indicators result from the comparison between a productivity indicator based 

on changes in quantities and overall performance indicator based on value data. As a result, we obtain 

an indirect measure of performance change based on prices. More precisely, following the usual 

decomposition of productivity gains into an efficiency change effect (catching up to the frontier) and a 

technical progress component (shift of frontier), an equivalent decomposition of value overall 

performance changes is developed. At the same time, the gap between the value overall inefficiency 

and technical inefficiency changes leads to a measure of the price advantage variation.  

The total price performance indicator is then split into a price advantage change (the time evolution of 

the price effect defined in the vein of Ayouba et al. (2019)), and a global price environment change 

(obtained from the difference between the shift in the value-base benchmark and the shift in the 

quantity-base benchmark). While the first component (price advantage change) is related to the 
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DMU’s efforts to improve its prices compared to its peers, the second one (global price environment 

change) can be associated to an exogenous price shock impacting to a different extent all peers 

evolving in the same market. 

The Färe-Lovell framework enabled us to interpret all previous indicators and their respective 

economic drivers in terms of profit margin rate change and ultimately to trace down their origins by 

specific inputs and outputs. 

An illustration of this methodology has been performed to emphasise its operational side for 

practitioners and decision makers. Their interest can be roused by the complete picture this analysis 

provides of the evolution of business performances in a context of concurrent price and quantity 

effects. While business performance analyses are primarily based on changes in indicators expressed 

in monetary terms such as turnover, cost, profit, etc., their respective decompositions into specific 

input and/or output quantity and price effects represents a noteworthy refinement. Such a 

decomposition can prove to be crucial in order to identify what relates, on the one hand, to a better 

management of input and output quantities and, on the other hand, to a search for better market price 

opportunities by improving prices over time. While the quantity effects and their variations can lead to 

an improved process management, the price effects and their changes over time are likely to reveal the 

improvement or the deterioration of the competitive advantages of the firm compared to its peers.  
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7. Appendix  
 

A. Classical profit maximisation program 
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One can define profit efficiency as the gap between the potential profit and the observed profit,

�
aa a

∆Π = Π −Π . The profit gap can be directly computed from a slack-based program as in LP4. For 

this, we consider that the optimal output is the sum between the observed quantity output and its 

potential increase � ( ), ,, a k a ka kQO QO so= + + � ( ), ,, a j a ja jQI QI si= +
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The above program (LP4) is the equivalent to (LP5) below, where Färe-Lovell distance functions are 

used instead of slacks. 
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                 (LP5). 

B. LFL indicators operationalisation 

 

Concerning the quantity-related productivity model ( ),  in 1 2m Q LP= − , we derive 24=16 distance 

functions. The first eight distances (D1-D8) have in common that the technology considered is 

observed in period 1, whereas for the remaining ones, (D9-D16) the technology considered is observed 

in period 2 ( )' 2, in 1 2 .t LP= − Besides that, the distance functions obtained and detailed in Table 6 

represent all possible combinations for the remaining parameters 

{ } { } { }( )'' '''1, 2 , 1, 2  and 1, 2 iniv
t t t LP= = = .   

 
Table 6. Distance functions obtained from the quantity-base model (m=Q in LP1-2) 

 Distance functions based on the period 1 

technology 

( )' 1,int LP=  

Distance functions based on the period 2 

technology 

( )' 2,int LP=  

( )1,1 1 1

1 ;Q V
D ;= D Q Q α  ( )1,2 1 1

9 ;Q V
D ;= D Q Q α  

( )2,1 1 1

2 ;Q V
D ;= D Q Q α  ( )2,2 1 1

10 ;Q V
D ;= D Q Q α  

( )1,1 1 2

3 ;Q V
D ;= D Q Q α  ( )1,2 1 2

11 ;Q V
D ;= D Q Q α  

( )2,1 1 2

4 ;Q V
D ;= D Q Q α  ( )2,2 1 2

12 ;Q V
D ;= D Q Q α  

( )1,1 2 1

5 ;Q V
D ;= D Q Q α  ( )1,2 2 1

13 ;Q V
D ;= D Q Q α  

( )2,1 2 1

6 ;Q V
D ;= D Q Q α  ( )2,2 2 1

14 ;Q V
D ;= D Q Q α  

( )1,1 2 2

7 ;Q V
D ;= D Q Q α  ( )1,2 2 2

15 ;Q V
D ;= D Q Q α  

( )2,1 2 2

8 ;Q V
D ;= D Q Q α  ( )2,2 2 2

16 ;Q V
D ;= D Q Q α  

Legend:  

i) Superscript notation indicates that the distance is calculated in the quantity space, and it is based on either the period 1 

technology (superscript Q,1) or the period 2 technology (superscript Q,2).  
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ii) The first argument of D refers to the evaluated production plan which is the quantity production plan of the evaluated 

DMU in either period 1 ( )( )1 1 1
,=Q QI QO  or in period 2 ( )( )2 2 2

,=Q QI QO .  

iii) The second argument refers to the direction of evaluation G, which is the evaluated DMU’s production plan in either 

period 1 ( )( )1 1 1
,

Q = =G Q QI QO  or in period 2 ( )( )2 2 2
,

Q = =G Q QI QO .  

iv) The last argument refers to the period for which the weighing system (input cost shares and output revenue shares in the 

total revenue) is considered and which can be either the first period system ( )1
V
α or the second period system ( )2

V
α . 

 

Under this general frame, all DMU’s quantity-related indicators are computed with the help of the 

distance functions in Table 6. For example, period 1 technical inefficiency is the arithmetic mean 

between scores obtained with distance functions D1-D4, which have in common their calculation with 

quantity-base data (the technology and evaluated production plan are considered for the same period), 

whereas all possible combinations between the period for the direction of evaluation and the period of 

the weighing system are taken into account. In this perspective, the period 1 technical inefficiency 

score is interpreted as the potential increase in the DMU’s profit margin rate by adopting input and 

output optimal quantities, DMU’s respective prices, mix and scale held ‘almost’ constant. Likewise, 

technical inefficiency score in period 2 is calculated as the arithmetic mean of scores obtained with 

distance functions D13-D16.  

 

( )

( )

1 1 2 3 4

2 13 14 15 16

1

4

1

4

TE D D D D

TE D D D D

= + + +

= + + +
                      (24). 

In the same way, the corresponding distance functions for the value models are given in Table 7 below 

where technologies, evaluated production plans and directions are expressed in value data and by 

considering all combinations of periods.  

 

Table 7. Distance functions obtained from the value-based model (m=V in LP1-2) 

 Distance functions based on the period 1 

technology 

( )' 1,int LP=  

Distance functions based on the period 2 

technology 

( )' 2,int LP=  

( )1,1 1 1

17 ;V V
D ;= D V V α  ( )1,2 1 1

25 ;V V
D ;= D V V α  

( )2,1 1 1

18 ;V V
D ;= D V V α  ( )2,2 1 1

26 ;V V
D ;= D V V α  

( )1,1 1 2

19 ;V V
D ;= D V V α  ( )1,2 1 2

27 ;V V
D ;= D V V α  

( )2,1 1 2

20 ;V V
D ;= D V V α  ( )2,2 1 2

28 ;V V
D ;= D V V α  

( )1,1 2 1

21 ;V V
D ;= D V V α  ( )1,2 2 1

29 ;V V
D ;= D V V α  

( )2,1 2 1

22 ;V V
D ;= D V V α  ( )2,2 2 1

30 ;V V
D ;= D V V α  
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( )1,1 2 2

23 ;V V
D ;= D V V α  ( )1,2 2 2

31 ;V V
D ;= D V V α  

( )2,1 2 2

24 ;V V
D ;= D V V α  ( )2,2 2 2

32 ;V V
D ;= D V V α  

Legend:  

i) Superscript notation indicates that the distance is calculated in the value space and is based on either the period 1 value 

technology (superscript V,1), or the period 2 value technology (superscript V,2).  

ii) The first argument of D refers to the evaluated production plan, which is the value plan of the evaluated DMU in either 

period 1 ( )( )1 1 1
,=V VI VO  or in period 2 ( )( )2 2 2

,=V VI VO  .  

iii) The second argument refers to the direction of evaluation G, which is the evaluated DMU’s production plan in either 

period 1 ( )( )1 1 1
,

V = =G V VI VO  or in period 2 ( )( )2 2 2
,

V = =G V VI VO . 

iv) The last argument refers to the period for which the weighing system (input cost shares and output revenue 

shares in the total revenue) is considered and which can be either the first period system ( )1V
α or the second 

period system ( )2V
α . 

In this setting, a DMU’s value inefficiency score for period 1 is computed as the mean of the scores 

obtained with distance functions D17-D20 which share a number of common features (they are based on 

value data, the technology and evaluated production plan are considered for the same period), while 

they spin over all possible combinations between the period for the direction of evaluation and the 

period of the weighing system. The resulting mean value inefficiency score is interpreted as the 

potential increase in the DMU’s profit margin ratio by adopting optimal values, DMU’s respective 

mix and scale held ‘almost’ constant. The value efficiency score in period 2 is computed as the mean 

of scores obtained with functions D29-D32. 

( )

( )

1 17 18 19 20

2 29 30 31 32

1

4

1

4

VE D D D D

VE D D D D

= + + +

= + + +
          (25). 

 

We now apply the directional distance functions introduced in Table 6 above, to determine the 

Luenberger indicator in base period t ( )1
LQ . According to its definition in the equation (9), this 

indicator is obtained as the difference between two direction functions computed with reference to the 

technology observed in period 1, where the evaluated production plan is observed first in period 1 and 

then in period 2, holding the direction of evaluation constant. Given that the direction of evaluation is 

alternatively considered either in period 1 or in period 2, and that additionally, the weighing system is 

also a parameter in our model, we obtain that the period 1 Luenberger productivity is the arithmetic 

mean of four differences in distance functions as follows: 

( ) ( ) ( ) ( )[ ]1

1 5 2 6 3 7 4 8

1

4
LQ D D D D D D D D= − + − + − + − . 

In the same way, the Luenberger Färe-Lovell productivity indicator for period 2 is defined as 
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( ) ( ) ( ) ( )[ ]2

9 13 10 14 11 15 12 16

1

4
LQ D D D D D D D D= − + − + − + −  

With our notations, we are now able to express the Luenberger quantity productivity indicator which 

becomes:  

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]

1 5 9 13 2 6 10 141,2

3 7 11 15 4 8 12 16

1

8

D D D D D D D D
LQ

D D D D D D D D

− + − + − + − +
=

− + − + − + −

  
 
  

. 

LQEC takes into account all possible combinations between the direction and weighing system, which 

leads to four possibilities for which we calculate the arithmetic mean. We also verify that this 

formulation corresponds to the traditional definition as the difference between periods 1 and 2 

technical inefficiency scores defined in equation (24).  

 
( ) ( ) ( ) ( )[ ]1 13 2 14 3 15 4 16

1 2

1

4

.

LQEC D D D D D D D D

TE TE

= − + − + − + −

= −
 

At the same time, once we consider all possibilities for the direction of the evaluation and weighting 

system, LQTC becomes equal to the following: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

9 1 10 2 11 3 12 4

13 5 14 6 15 7 16 8

1

8

D D D D D D D D
LQTC

D D D D D D D D

− + − + − + − +
=

− + − + − + −

 
 
 

. 

Following the notations in Table 6, the overall performance indicator 
1,2,LV  which is obtained as the 

average between period 1 and period 2 Luenberger value overall performance levels, corresponds to: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

17 21 25 29 18 22 26 301,2

19 23 27 31 20 24 28 32

1

8

D D D D D D D D
LV

D D D D D D D D

− + − + − + − +
=

− + − + − + −

 
 
 

 

Its two components (the overall efficiency change and the overall technology change) can be obtained 

as follows: 

( ) ( ) ( ) ( )[ ]17 29 18 30 19 31 20 32

1

1

4

t t

LVEC D D D D D D D D

VE VE +

= − + − + − + −

= −
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

25 17 26 18 27 19 28 20

29 21 30 22 31 23 32 24

1

8

D D D D D D D D
LVTC

D D D D D D D D

− + − + − + − +
=

− + − + − + −

 
 
 

. 

Turning now to the price advantage measure for each period, we have 

( ) ( ) ( )1

1 1 17 18 19 20 1 2 3 4

1

4
PA VE TE D D D D D D D D= − = + + + − + + +   ,  

( ) ( ) ( )29 30 31 32 12 3 14 152 6

2

1

1

4
P T D D D D D D DA VE E D= − =   + + + − + + + . 

Obviously, the LPAC is obtained as 
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Finally, the Luenberger price global environment change is obtained as residue as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 17 26 18 27 19 28 20

29 21 30 22 31 23 32 24

9 1 10 2 11 3 12 4

13 5 14 6 15 7 16 8

1,2

1

8

D D D D D D D D

D D D D D D D D
LPGC

D D D D D D D D

D D D D D D D D

LVTC LQTC

LP LPAC

− + − + − + − +
−

− + − + − + −
=

− + − + − + − +

− + − + − + −

= −

= −

  
  
  
 
  
  
  

 

C. Illustration- additional results 

 

C.1. Scenarios 1-3 
Table 8. Luenberger productivity indicators and their respective decompositions into efficiency change and 

technology change (Scenario 1) 

DMU A B C D E F 

LVEC 0% 0% 3% 0% 0% 0% 

LVTC 0% 0% 0% 0% 0% 0% 

LV 0% 0% 3% 0% 0% 0% 

LQEC 0% 0% 3% 0% 0% 0% 

LQTC 0% 0% 0% 0% 0% 0% 

LQ 0% 0% 3% 0% 0% 0% 

LPAC 0% 0% 0% 0% 0% 0% 

LPGC 0% 0% 0% 0% 0% 0% 

LP 0% 0% 0% 0% 0% 0% 

 

Table 9. Luenberger productivity indicators and their respective decompositions into efficiency change and 

technology change (Scenario 2) 

DMU A B C D E F 

LVEC 0% 0% 2% 0% 0% 0% 

LVTC 0% 0% 0% 0% 0% 0% 

LV 0% 0% 2% 0% 0% 0% 

LQEC 0% 0% 0% 0% 0% 0% 

LQTC 0% 0% 0% 0% 0% 0% 

LQ 0% 0% 0% 0% 0% 0% 

LPAC 0% 0% 2% 0% 0% 0% 

LPGC 0% 0% 0% 0% 0% 0% 

LP 0% 0% 2% 0% 0% 0% 

 

Table 10. Luenberger productivity indicators and their respective decompositions into efficiency change and 

technology change (Scenario 3) 

( ) ( )
( ) ( )3

17 18 19 2

1

0 1

29 0 3 32 13

4

1

2

4 15

3

1 2

16

1

4

D D D D D D D D
LPAC

PA PA

LVEC LQEC

D D D D D D D D+ + + + +

+ + + − + + +

+
=

−

= −

= −

+

 
 
 
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DMU A B C D E F 

LVEC 0% 0% 5% 0% 0% 0% 

LVTC 0% 0% 0% 0% 0% 0% 

LV 0% 0% 5% 0% 0% 0% 

LQEC 0% 0% 3% 0% 0% 0% 

LQTC 0% 0% 0% 0% 0% 0% 

LQ 0% 0% 3% 0% 0% 0% 

LPAC 0% 0% 2% 0% 0% 0% 

LPGC 0% 0% 0% 0% 0% 0% 

LP 0% 0% 2% 0% 0% 0% 

 

C.2. General case scenario, with the consideration of a scale component 

In our general presentation, the productivity indicator LQ was obtained using a CRS 

specification in LPs 1-2 (for m=Q) and therefore includes, besides a pure quantity component, 

a scale component as well. If one wishes to distinguish between the two, then LPs 1-2 (with 

m=Q) can be estimated with a VRS technology by adding a constraint on the sum of activity 

variables 
1

1
N

n

n

λ
=

 = 
 
∑  . Thus, all indicators obtained with the VRS technology correspond to a 

“pure” quantity effect whereas scale-related indicators (noted Sc) can be obtained as the 

difference between the CRS-technology indicator and its VRS-technology indicator as 

follows 

CRS VRS
LScEC LQEC LQEC= −    

The following Table 11 presents the complete decomposition in the general case scenario. We 

notice in this case figure that the quantity effect (LQEC) is shared between a pure technical 

effect (LQEC pure) and a scale effect (LScEC) for DMUs D and E, whereas, for DMU C, its 

quantity inefficiency change indicator (LQEC) is entirely explained by its scale inefficiency 

(LScEC), with LQEC pure=0.  

Table 11. Luenberger productivity indicators including a scale dimension and their respective decompositions 

into efficiency change and technology change (general case scenario) 

DMU A B C D E F 

LVEC 0% 0% -67% -86% -71% 0% 

LVTC 53% 49% 113% 133% 120% 60% 

LV 53% 49% 45% 47% 49% 60% 

LQEC 

(pure) 0% 0% 0% -29% -13% 0% 

LScEC 0% 0% -36% -23% -35% 0% 

LQTC 23% 23% 68% 73% 66% 24% 

LQ 23% 23% 32% 21% 18% 24% 
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LPAC 0% 0% -31% -34% -22% 0% 

LPGC 30% 26% 44% 60% 53% 36% 

LP 30% 26% 13% 26% 31% 36% 

 




