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The COVID-19 pandemic remains a global public health 
emergency. The virus causing the pandemic (SARS-CoV-2) was 
identified in late 2019, after an outbreak of respiratory disease 
in Wuhan, China.87 Early sequencing aligned SARS-CoV-2 
with the previously detected RaBtCoV/4991.13,20 SARS-CoV-2 
was then further sequenced to yield the full genome (reported 
as RaTG1395), defining SARV-CoV-2 as being a probable bat-
origin zoonotic coronavirus. Severe acute respiratory syndrome 
coronavirus (SARS-CoV), which emerged in 2002, and Middle 
East respiratory syndrome coronavirus (MERS-CoV), which 
emerged in 2012, are also considered to be of bat origin.46,51,71 
At least 2 other commonly circulating coronaviruses in humans 
also likely originated in bats: HCoV-229E and HCoV-NL63.15,33 
However, the human coronaviruses (HCoV) OC43 and HKU1 
have alternatively been suggested to have emerged from rodents 
via cattle and from rodents via an unknown intermediate, re-
spectively.47,73 Swine acute diarrhea syndrome coronavirus, a 
cause of significant mortality in piglets, emerged in 2016 in the 
Guangdong province of China from the bat virus Rhinolophus 
bat HKU2.22,59,94 The swine enteric coronavirus porcine epi-
demic diarrhea virus is also considered to have bat origins.31 
Numerous other viral diseases of human concern, including 
Nipah and Hendra viruses and ebolavirus, moved into human 
populations from bats.14,25,41 Bats are also a common reservoir 
for the lethal rabies virus.9,64 The ability of bats to harbor and 

spread these viruses continues to be an active area of study, 
integrating surveillance, ecology, disease forecasting, and basic 
virology to protect human and animal populations.

Coronaviruses and Bats
The family Coronaviridae includes a range of single-stranded, 

positive-sense, RNA viruses from the order Nidovirales.40 They 
are one of the largest RNA viruses with a genome size of approx-
imately 30 kb.37 The coronaviruses are divided into 4 genera: 
Alpha-, Beta-, Gamma-, and Deltacoronavirus.60 The alpha- and 
betacoronaviruses are primarily associated with mammalian 
infections, including human coronaviruses HCoV-NL63, HCoV-
229E, and HCoV-OC43; feline coronavirus; canine coronavirus; 
bovine coronavirus; and equine coronavirus; however, these 
genera are highly diverse, and classification is challenging.80 
The deltacoronaviruses are primarily avian-associated, with a 
primary exception being porcine deltacoronavirus.82 Likewise, 
the gammacoronaviruses are mainly found in avian species but 
include viruses found in beluga whales and bottlenose dol-
phins.56,82,83 Surveillance studies have identified a wide range 
of alpha- and betacoronaviruses in bat species.81 Phylogenetic 
analysis places SARS-CoV-2 in the Sarbecovirus subgenus (or 
lineage B) of Betacoronavirus in Coronaviridae, divergent from 
SARS-CoV.51

Coronavirus virions contain a prominent spike protein, which 
is a major factor in viral pathogenesis; this protein mediates 
both receptor binding and membrane fusion and is the notable 
antigenic component (Figure 1). The clinical disease spectrum 
is vast across coronaviruses, but typically comprises respiratory 
or gastrointestinal infection. In some cases, systemic infections 
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occur—feline coronavirus (FCoV), for instance, can result in 
mild to inapparent gastrointestinal disease or a lethal, systemic 
infection known as feline infectious peritonitis.38

The large genome and inherent replication mechanisms of 
coronaviruses make them error-prone, thus enabling mutations 
and recombination events between coronaviruses, despite proof-
reading ability due to RNA-dependent RNA polymerase and 
exoribonuclease activity from the nonstructural protein exoN 
(nsp14).18 This error-prone nature is one component in under-
standing the bat origin of numerous human coronaviruses, 
including SARS-CoV-2. Recombination occurs during replica-
tion, increasing viral diversity.68 Interviral family recombination 
events can also occur; for example, the Rousettus bat coronavi-
rus GCCDC1 (Ro-BatCoV GCCDC1) contains a functional p10 
gene that it potentially gained through recombination with a 
bat orthoreovirus.30

Bats belong to the order Chiroptera, the second largest order 
of mammals after rodents which comprises about a fifth of all 
known mammalian species. The order Chiroptera is highly 
diverse—encompassing more than 1300 species—but is united 
by member species’ ability for sustained flight. Bats and bat-
associated coronaviruses share an extensive global geographical 
distribution and exist on all continents except Antarctica.81 Tra-
ditionally, bats were divided into 2 suborders— Microchiroptera 
(microbats) and Megachiroptera (megabats)—but more recently, 
a new scheme includes Yangochiroptera and Yinpterochiroptera, 
which are defined according to molecular and echolocation dif-
ferences.69 Despite being a source of numerous human viruses, 
including highly pathogenic coronaviruses, bats provide numer-
ous ecologic benefits, including consuming insect pests, such as 
mosquitoes and those that affect agricultural crops, and carrying 
out pollination.36 In addition, bat guano farms recycle nutrients; 
however, nearly 75% of samples harvested from insectivorous 
bats on a guano farm harbored a coronavirus.32 The role that 
bats may play in disease emergence involves numerous species-
dependent factors, including migration, dietary, and roosting 
patterns.27 Despite the tendency of many to blame bats, disease 
emergence is also affected by anthropogenic activity, includ-
ing deforestation.1 Furthermore, although bats frequently are 
asymptomatic reservoirs of numerous viruses,48 they are not 
exempt from succumbing to infectious diseases. For example, 
little brown bats (Myotis lucifugus) developed disease symp-
toms after inoculation with the gammacoronavirus infectious 
bronchitis virus, and tissue homogenates from the infected bats 

induced disease in chicks.62 In another report, horseshoe bats 
(Rhinolophus spp.) harboring SARS-Rh-BatCoV tended to have 
lower body weights compared with those harboring Rh-BatCoV 
HKU2.43 Passage of a betacoronavirus in Lechenault’s rousette 
fruit bats (Rousettus leschenaultii) did not result in clinical dis-
ease, although virus was detected in feces and intestines after 
infection.77 In contrast, Egyptian fruit bats (Rousettus aegyptiacus) 
inoculated with SARS-CoV-2 developed rhinitis, and viral RNA 
was detected in both upper and lower respiratory tissues.65

Ultimately, protecting human and animal populations from 
disease threats requires a ‘One Health’ approach. The concept of 
One Health recognizes the interconnectedness of human health, 
animal health, and the environment. Protecting bat habitats, in-
cluding by minimizing land encroachment, may help to protect 
both bat and human health. Furthermore, the epidemiologic 
triad combines factors from the host, agent, and environment. 
For coronaviruses in bats, this approach requires additional 
investigation of viral isolates circulating in chiropteran species 
as well as assessing unique physiologic and immunologic ad-
aptations in the context of bats’ ecological niches, ranging from 
migration patterns to roosting habitats. The emergence of novel 
viruses, including those with pandemic potential, is multifacto-
rial, but host and viral factors both contribute.

Surveillance for Coronaviruses in Bats
Alpha- and betacoronaviruses are detected frequently in bat 

species, and continual surveillance is ongoing. Surveillance 
in the Yunnan province of China has found coronaviruses in 
numerous bat species, including Rhinolophus sinicus, R. affinis, 
Hipposideros pomona, Miniopterus schreibersii, M. fuliginosus, and 
M. fuscus.20 During this surveillance, both HKU2 and a SARS-
related virus designated as RaBtCoV/4991 were frequently 
detected in R. affinis.20 Bat-CoV-2-HKU2 was first described in 
R. sinicus during surveillance that also found bat-SARS-CoV in 
more than 17% (21 of 118) of R. sinicus bats that were sampled.84 
SARS-like viruses have also been identified in other bat species, 
including Rhinolophus pusillus and Chaerophon plicata.89 These 
surveillance efforts have helped to provide a comprehensive 
picture of coronavirus circulation in bat species. Despite a focus 
on the Rhinolophidae as a primary source of SARS-like viruses, 
the Hipposideridae may also be an important contributor to 
the emergence of these viruses.23 A recent study conducted in 
China confirmed that both Rhinolophidae and Hipposideridae 
contributed to the evolution of betacoronaviruses.42 The authors 
noted that Rhinolophidae bat species shared roosts with other 
genera of bats, implying potentially enhanced transmission of 
coronaviruses among various bat species. Another study dem-
onstrated on a macroevolutionary level that the basal phylogeny 
of betacoronaviruses paralleled the phylogenetic relationships 
between their hosts, with a clear demarcation between Yinptero-
chiroptera and Yangochiroptera.42 The initial sequencing of 
SARS-CoV-2 revealed its close relationships with the bat virus 
RaTG13, which shares 96% sequence identity with SARS-CoV,95 
the novel bat coronavirus designated RmYN02 (93% genomic 
nucleotide identity) and several other bat coronaviruses, includ-
ing bat-SL-CoVZC45 and bat-SL-CoVZXC21, with increasing 
evidence for recombination events as key contributors to viral 
evolution.50,52,53,91,92

The Coronavirus Spike Protein
The coronavirus spike protein is the primary driver of viral 

tropism and pathogenesis.49,77 Early investigation demonstrated 
angiotensin converting enzyme 2 as the primary receptor for 
SARS-CoV-2.29 SARS-CoV-2 can naturally and experimentally 

Figure 1. (A) The major structural components of a typical  
coronavirus. The virus is comprised of prominent spike (S), membrane 
(M), envelope (E), and nucleocapsid (N) proteins complexed with a 
positive-sense RNA strand. Some coronaviruses in the Embecovirus 
subgenus contain an additional surface glycoprotein (hemagglutinin–
esterase, HE), which is involved in receptor binding (not shown). (B) 
Major domains of a typical coronavirus spike protein. The S1 (recep-
tor-binding) domain contains the receptor-binding domain (RBD), 
and the S2 (fusion) domain contains the conserved S2′ cleavage site 
and fusion peptide. Some spike proteins contain an additional cleav-
age site (S1–S2) between the receptor-binding and fusion domains.
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infect numerous other species,11,58,67 and in vitro work and 
modeling efforts have delineated the potential for the virus to 
bind the angiotensin converting enzyme 2 of numerous spe-
cies.17 In addition to receptor binding, proteolytic cleavage of 
the spike protein is important in determining viral tropism,57 
with the presence of an acceptable protease being considered 
important in zoonotic coronavirus spillovers and the ability of 
various proteases to minimize the barriers to crossing species.55 
The spike protein contains 2 domains, with S1 contributing 
to receptor binding and S2 contributing to membrane fusion 
(Figure 1). For SARS-CoV-2, an indel mutation in the spike gene 
S1–S2 junction creates a cleavage site for a furin-like protease 
that is not found in other sarbecoviruses and that contributes to 
virus transmission.75,76,86 This S1–S2 furin motif indel mutation 
has also been reported in alphacoronaviruses.80 The introduc-
tion of the furin-like cleavage site might have occurred due 
to the ‘breakpoint sequence hypothesis’ and been facilitated 
through recombination events.19 In vitro work has shown that 
the SARS-CoV-2 ΔPRRA mutant virus replicates more efficiently 
than wildtype virus in Vero E6 cells.35 However, replication of 
the ΔPRRA or equivalent mutant viruses was less efficient in 
other cells lines, including Calu3 and human airway epithelial 
cells, paralleling observations in 2 rodent models and a ferret 
model.35,61 Beyond furin, other proteases, including trypsin, 
matriptase, and cathepsins B and L, contribute to spike protein 
activation at the S1–S2 site.34,70 Like the S1–S2 cleavage site, the 
S2 domain is proteolytically activated at the S2′ site,57 and the 
protease TMPRSS-2 is particularly important for SARS-CoV-2 
spike activation at the S2′ site under laboratory conditions.8,29 
Common proteases functioning in spike protein activation 
include furin and furin-like enzymes, TMPRSS-2, other type 
II transmembrane serine proteases, and cathepsins, important 
for the initiation of membrane fusion and thus cellular entry.28 
The combined complexity and plasticity of spike cleavage 
activation is likely a powerful force in the emergence of novel 
coronaviruses.79

Zoonotic coronaviruses are likely to originate through 
recombination. One possibility is that ancestral viruses that 
have a robust furin cleavage site but cannot bind human 
receptors undergo downregulation of furin cleavage, open-
ing the path for human infection, similar to MERS-CoV. In 
the Merbecovirus subgenus, the bat viruses BatCoV-HKU4 
and BatCoV-HKU5 are closely related to MERS-CoV,44 with 
NeoCoV subsequently identified as the bat virus with highest 
homology to MERS-CoV.17 BatCoV-HKU4 has previously been 
identified in lesser Bamboo bats, whereas BatCoV-HKU5 is 
associated with Japanese pipistrelles.84 The MERS-CoV spike 
protein is unusual in that it can be proteolytically activated 
by furin at both S1–S2 and S2′.57 Although the MERS-CoV 
spike is genetically more similar to BatCoV-HKU4,44 BatCoV-
HKU5 is predicted to be efficiently cleaved by furin, even 
more so than MERS-CoV. However, BatCoV-HKU5 cannot 
bind human dipeptidyl peptidase 4, the receptor for MERS-
CoV, whereas BatCoV-HKU4 has retained that ability.89 This 
difference raises the question of whether the furin activation 
sites across zoonotic coronaviruses are gain-of-function or 
loss-of-function mutations or whether they instead are due 
to unsampled coronaviruses that are circulating in bats but 
are yet to be identified, given that evolutionary analysis sup-
ports the historical circulation of a SARS-like coronavirus 
in bat species.11 The coronaviruses BatCoV-RmYN02 and 
BatCoV-RacCS203 contain a defined S1–S2 cleavage loop, 
although they lack a furin cleavage site,74,91 thus suggesting 

these or equivalent viruses may have contributed to SARS-
CoV-2 emergence.

Ultimately, improved understanding of SARS-CoV-2 
pathogenesis requires both in vitro and in vivo investigation. 
SARS-CoV-2 can replicate in cell lines derived from R. sinicus 
(brain and lung) and P. abramus (kidney) although viral loads 
in Vero E6 cells were notably higher.45 SARS-CoV-2 has been 
isolated successfully by using R. sinicus small intestinal orga-
noids,93 which may provide a tool for use in future studies. 
However, isolation of other naturally occurring coronaviruses 
using primary cells from Leschenault’s rousette bats, Myotis 
kidney cells, various cell lines (including BKT-1, Tb-1 Lu, Vero-
E6, MDCK, and A549) and other common, established cell lines) 
is frequently unsuccessful.30,77,85

Host Responses in Bats
The host response to coronavirus infection contributes to 

disease outcome.63 Probing the differences across the human 
and chiropteran immune systems and metabolic processes 
may improve our understanding of the potential for zoonotic 
transfer and the ability of bats to serve as a primary reservoir 
for coronaviruses with pandemic potential. Despite the need for 
improved understanding of bat immunology, the diversity of 
bats poses challenges for reagent development and for drawing 
broad conclusions. In a significant contribution to the field, one 
group recently showed that bats mount dampened inflamma-
tory responses during infection with several viruses, including 
MERS-CoV.2 Specifically, the study demonstrated reduced 
activation of NLRP3 (inflammasome sensor NLR family pyrin 
domain containing 3) in bat primary cells as compared with cells 
derived from mice or humans, a finding that has implications 
for understanding the mechanisms behind some of the unique 
immunologic and physiologic characteristics of bats, includ-
ing their lifespan and metabolism. This study underscores the 
distinct ability that bats have evolved to tolerate viral infections 
while minimizing overt disease manifestations and excessive 
inflammation.26 In addition, mutations in STING (stimulator of 
interferon genes) that diminish the type I IFN response provide 
evidence of the unique chiropteran ability to manage aberrant 
DNA from either a DNA virus infection or the effects of meta-
bolic stress,88 whereas the loss of absent in melanoma 2 (AIM2) 
has been associated with decreased inflammasome activation.21 
Although bat cells can mount antiviral responses, the expres-
sion of proinflammatory cytokines, such as TNF, is typically 
restricted.6 Numerous other distinctions between human and 
chiropteran immunology have been noted, including differences 
in TLR8, inflammatory pathways, the type III IFN response, and 
antibody responses including affinity maturation, constitutive 
IFN activation and features of NK cells and the Treg response 
in bats.5,66 The unique immunologic features of bats contribute 
to their ability to serve as viral reservoirs.66

Despite initial infection in the respiratory tract, COVID-19 also 
causes endotheliitis and vasculitis, resulting in disease mani-
festations across numerous organ systems,24,72 not too unlike 
feline infectious peritonitis.4 Bats have unique cardiovascular 
and respiratory adaptations, reflecting their capacity for flight 
and ability to remain inverted while roosting. For example, in 
addition to a thin barrier for blood–gas exchange, lung volume 
and heart size in bats are greater than those of other mammals 
of similar size.12,54 In addition, at least one chiropteran species, 
straw-colored fruit bats (Eidolon helvum), appears susceptible to 
cardiac injury after periods of inverted roosting but may have 
a unique ability for cardiac myocyte repair and regeneration.3 
Whether these adaptations influence the ability of chiropterans 
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to harbor coronaviruses remains unknown, and questions also 
remain with regard to endothelial disruption by SARS-CoV-2.7 
One group drew a parallel with Nipah virus, noting that they 

would not expect robust viral replication in primary pteropid 
endothelial cells, although hamster endothelial cells can be 
infected.66 Further understanding of these adaptations and of 

Figure 2. Phylogenetic analysis of coronavirus spike protein sequences. The amino acid sequences of 50 coronavirus spike proteins were aligned 
by using MUSCLE, and a maximum-likelihood (ML, LG model) phylogenetic tree was generated by using MEGA X. The tree is drawn to scale, 
with branch lengths measured in the number of substitutions per site. Bootstrap values above 70% are shown at branch nodes and were calcu-
lated from 1000 replicates. The lack of strong bootstrap support for a number of branches in lineage B Sarbecovirus is likely a result of the nu-
merous reported recombination events occurring in spike among members of this lineage. Human coronaviruses are in bold text, with recently 
emerged and highly pathogenic viruses in red. Bat coronaviruses are indicated in purple, and their over-representation among members of the 
Betacoronavirus genus is due to the choice of sequences used in the analysis and does not reflect natural abundance and diversity. Asterisks (*) 
denote that although SADS-CoV and BatCoV HKU2 are classified in the genus Alphacoronavirus, their spike proteins are more closely related to 
that of betacoronaviruses. The accession numbers of the sequences used in the analysis are in Table 1. Greek letters refer to the 4 genera of coro-
naviruses. IBV, infectious bronchitis virus; CCoV, canine coronavirus; FCoV, feline coronavirus; TGEV, transmissible gastroenteritis virus; PEDV, 
porcine epidemic coronavirus; BatCoV, bat coronavirus; HCoV, human coronavirus; SADS-CoV, swine acute diarrhea syndrome coronavirus; 
MHV, murine hepatitis virus; BCoV, bovine coronavirus; MERS-CoV, Middle East respiratory syndrome coronavirus; SARS-CoV, severe acute 
respiratory syndrome coronavirus, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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coagulation in bats may help to provide insight into the devas-
tating effects of SARS-CoV-2 in human patients with COVID-19.

Coagulation after vascular injury, including from viral infec-
tion, is a concern in COVID-19 patients.39 In species that undergo 
hibernation or torpor, including some chiropterans, blood sta-
sis does not result in thromboses; this feature also may guide 
further understanding. Virchow’s triad involves 3 factors—in-
cluding blood stasis— that contribute to thromboses. However, 
hibernating animals, including bats, are able physiologically 
to tolerate blood stasis, and comparative studies may help to 
elucidate mechanisms to prevent thromboses in human patients.

Relationships between the Spike Proteins of 
Bat Coronaviruses and Other Members of  

Coronaviridae
As noted earlier, the coronavirus spike protein (S) is a major 

factor in viral pathogenesis, and comparative studies reveal 
that spike sequences obtained from bats are found across the 
Coronaviridae. A summary of coronaviruses, including those 
described herein, can be illustrated as a phylogenetic tree of 
spike protein sequences (Figure 2). Bat viruses are widespread 
in both the Alphacoronavirus and Betacoronavirus genera, with the 
representation of the Betacoronavirus genus reflecting the amount 
of research performed and not necessarily the abundance in bat 
reservoirs; as such, Figure 2 is not a complete representation of 
natural abundance and diversity. Instead, Figure 2 is based on 
the spike protein sequence; consequently, the relative similarity 
depicted there may differ from that of conventional phyloge-
netic trees that are based on whole genomes or more conserved 
viral proteins, such as the RNA-dependent RNA polymerase 
that is typically used for taxonomic organization. Notably, bat 
coronaviruses are absent from the Gammacoronavirus and Delta-
coronavirus genera and Betacoronavirus lineage A (Embecovirus).

Conclusions and Perspectives
Understanding zoonotic disease emergence requires consid-

eration of the viral features that allow movement across species 
and an understanding of host factors that may differ across 
species. Chiroptera is a diverse order, with species found across 
the globe in many ecological niches, and although bats are often 
collectively grouped together, adaptations of one particular 
species of bat may be different in other species. Nonetheless, 
unique physiologic and metabolic adaptations of bats allow 
them to withstand infection by coronaviruses without develop-
ing obvious disease, thus positioning them as reservoir hosts for 
spread of coronaviruses to humans. Along with other potential 
reservoir hosts in small terrestrial mammals such as the Roden-
tia and Eulipotyphla, wildlife surveillance and experimental 
studies will continue to be critical components in our responses 
to zoonotic disease threats in years to come.
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