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Root osmotic sensing from local perception 
to systemic responses
Lucille Gorgues†  , Xuelian Li†  , Christophe Maurel  , Alexandre Martinière* and Philippe Nacry*   

Abstract 

Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have 
therefore developed numerous mechanisms to cope with environmental stress conditions. One striking exam-
ple is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other 
responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize 
water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordi-
nately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots 
must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic per-
ception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic 
plasticity of roots and plant development.
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Introduction
Like some prokaryotic and most fungal cells, plant cells 
are wall-encapsulated. Although it provides important 
advantages such as a robust exoskeleton and a protec-
tion of cells from adverse abiotic or biotic factors, the 
wall creates a direct restriction for cellular expansion. 
This important constraint can be overcome by intracel-
lular turgor that in response to cell wall loosening allows 
growth. The cell turgor, that can be up to 10 bars in cer-
tain cell types, is actually built from the osmotic gradi-
ent between cell interior and the external media. This 
gradient triggers a flux of water into the cell that leads 
to a compensatory hydrostatic pressure, called tur-
gor. Any change in the osmotic gradient by for instance 
an increase/decrease in water potential in the external 

media or changes in the internal solute concentration, 
leads to a direct change in turgor that can modify cell 
volume and tissue rigidity. To allow localized expansion 
growth or prevent wilting, cells have therefore to main-
tain a constant dialog between cell wall mechanical prop-
erties, solute concentration and turgor.

Whereas plant aerial parts are protected from air dry-
ing by specialized waxes deposited on their surface, the 
root system is in direct contact with its surrounding 
environment and therefore has to cope with dramatic 
changes in water potential. Soil is a complex porous 
medium with marked differences in its composition and 
structure e.g. air pockets and hydrated soil particles. 
Thus, root systems are continuously facing contrasted 
water availabilities during soil exploration. In addition 
to a local perception of water availability, followed by 
signal transduction and responses at cellular level, long-
distance signals are produced. These so-called systemic 
signals coordinate responses at the multicellular scale, to 
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modulate integrative traits, such as root system architec-
ture (RSA).

In this review, we will focus on recent advances in 
the field of plant osmotic perception and early signal-
ing in roots. We will also underline how systemic sign-
aling can integrate local signals to modulate RSA.

Local perception and early signaling
Although being searched for many years, the exact nature 
of the signals that allow plants to perceive changes in 
water availability is not clearly defined yet. At the cel-
lular level, mechanics e.g. cell wall/membrane tension, 
but also cell or subcellular volumes are directly impacted 
by changes in external osmolarity (Fig.  1A and B). His-
torically, comparison between different kingdoms has 
permitted the identification of some molecular players. 
Since osmotic perception is mandatory all along the plant 
life cycle, it is likely that many molecular mechanisms are 
actually superimposed in cells (Fig. 1C). New approaches, 
especially genetic screens, have recently allowed a strik-
ing expansion of knowledge on plant osmotic perception, 

which is summarized and updated in the present 
paragraph.

Molecular mechanisms of perception
Histidine kinases (AtHK1)
Historically, the first osmosensing pathway has been 
uncovered in unicellular organisms. In Saccharomyces 
cerevisiae, perception is made by a two-component his-
tidine kinase system, where recognition of the stimulus 
leads to kinase activation and phosphorylation of a his-
tidine residue (Brewster and Gustin 1994). The Synthetic 
Lethal of N-end rule 1 (SLN1) changes its phosphoryla-
tion activity in response to osmotic signal and activates 
via several phosphorelays the High Osmolarity Gycerol 
(HOG1) MAP kinase (Ota and Varshavsky 1993; Maeda 
et  al. 1995). In turn, HOG1 controls the expression of 
osmotic responsive genes including those involved in the 
biosynthesis of compatible osmolytes like glycerol.

Plants also show a conserved gene family of histidine 
kinases (HK) with members involved in hormonal signal-
ing such as ethylene (Gamble et al. 2002) or cytokinins. 
The Arabidopsis genome contains 11 genes coding 

Fig. 1 Nature of the osmotic signal and suspected sensing mechanisms. A Drawing of the relation between osmotic, water fluxes and cellular 
volume regulation. A reduced (hypotonic) or increased (hypertonic) external osmolarity results in an influx or efflux of water, respectively. 
Depending on cell wall elasticity, these fluxes lead to changes in cellular volume. B Relative variations of cell turgor and volume in response to 
an increase of external osmolarity. In the absence of cellular osmoregulation, the turgor tends to decrease linearly with increasing osmolarity. In 
contrast, the cellular volume is expected to decrease in a two-phase mode, a quasi-linear mode as long as turgor is maintained in the cell, followed 
by a hyperbolic decay when turgor is absent. C Based on the literature 3 classes of perception mechanism can sense the osmotic signal. Osmotic 
signal may be perceived at the membrane from either a local osmotic imbalance (e.g. AtHK1) or a change in membrane tension (e.g. MSL) or from a 
perturbation of cell wall integrity (e.g. CrRLK)
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for Histidine kinase like protein (Hutchison and  Kie-
ber 2002). In addition to its role in hormone signaling, 
Arabidopsis AtHK1 was shown to act as an osmosensor 
by complementing yeast sln1 mutation (Urao et al. 1999) 
(Figs.  1C and 2). Localized to the plasma membrane, 
AtHK1 is a positive regulator of salt stress, drought and 
ABA signaling (Tran et  al. 2007; Wohlbach et  al. 2008). 
For instance, overexpression AtHK1 in plants increases 
the drought tolerance and results in the induction of 
genes involved in drought signaling including proline 
and sucrose biosynthesis (Tran et  al. 2007). However, 
the role of AtHK1 as a main plant osmosensor has been 
questioned. Indeed, in several loss-of-function alleles of 
athk1, no hyperosmotic signaling-related phenotypes 

such as ABA, or osmolyte accumulation were found 
(Kumar et al. 2013).

Mechanosensitive channels (MSL, OSCA1, Piezo, …)
Due to its molecular anchors with the wall and the 
absence of folding, the plant plasma membrane of tur-
gid cells is potentially under tension, especially during 
cell expansion and osmotic volume adjustment. Changes 
in membrane tension due to an osmotic challenge can 
therefore be perceived by cells through membrane 
mechanosensitive channels (Fig.  1C). The first mecha-
nosensors involved in osmoregulation were molecularly 
identified from Escherichia coli spheroplasts (Martinac 
et al. 1987; Levina 1999). Several studies have solved the 

Fig. 2 Summary of currently known osmotic perception mechanisms in plants. Changes in membrane tension induced by osmolarity imbalance 
can be perceived by membrane mechanosensors such as OSCA1, MSLs, MCA1, PIEZO, ECA1/MIZ1. By transporting cations or anions, these sensors 
initiate cell calcium signaling by as yet unknown mechanisms. Receptor-like kinases belonging to the CrRLK family (e.g. FER, THE) perceive the cell 
wall status and their activation eventually leads to cell wall reinforcement. Whereas their exact role as osmotic sensors has yet to be established, 
these receptors definitely fine tune signaling of hormones such as ABA, auxin and jasmonate that are known to regulate plant development and 
physiological acclimation to osmotic stress. At the cell membrane, a partial integration of signals can be observed. For instance, LRR kinase MIK2, 
a receptor for phytocytokines that controls plant immunity, genetically interacts with THE, pointing to a link between osmotic and pathogen 
signaling. By similarity to the yeast system, the AtHK1 two component histidine kinase may also participate in osmotic signaling by modulating ABA 
signaling. In addition to hormones and calcium signaling, Reactive Oxygen Species (ROS) are also participating in early cell responses to osmotic 
stimuli. Cellular accumulation of ROS is dependent on NADPH oxidases (RBOHD and F) and iron reduction processes. Upon cell stimulation, ROP6 
forms nanodomains together with the superoxide producing enzyme RBOHD/F. As a consequence, superoxide can be dismutated to hydrogen 
peroxide  (H2O2) by apoplastic SOD (Superoxide dismutase).  H2O2 transport through the cell membrane is in turn facilitated by aquaporins
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crystal structure of these low-conductance mechanosen-
sors. They highlighted 3 common transmembrane heli-
ces that would serve as sensors of the membrane tension 
(Bass et al. 2002; Steinbacher et al. 2007; Lai et al. 2013). 
In addition, two recent cryomicroscopy studies have 
shown that E. coli MscS channels (MscS) association with 
lipids is an important determinant for the stabilization of 
the closed conformation and therefore plays a key role in 
channel sensitivity to tension (Flegler et al. 2021; Zhang 
et al. 2021b). The gating of E. coli MscS channels is con-
ditioned by a pocket containing lipids. The anisotropic 
forces of the membrane created by tension could free 
this pocket of lipids or/and change the number of lipid 
acyl chains in it, causing a structural rearrangement and 
leading to pore opening (Pliotas et al. 2015; Flegler et al. 
2021).

In plants, members of the MscS-like (MSL) gene fam-
ily represent the closest homologs of bacterial MscS 
(Sukharev et  al. 1994). MSLs are non-selective anion 
channels whose activity is regulated by voltage or 
mechanical stimulation of the membrane (Haswell 2007). 
Ten MSL have been described in Arabidopsis (Haswell 
2007). In a landmark study, MSL9 and 10 were shown to 
control mechanosensitive activity of anion channels in 
the plasma membrane of root protoplasts (Haswell et al. 
2008) (Fig.  2). Because neither the double msl9/10 nor 
the quintuple msl4/5/6/9/10 mutant showed alteration 
of their response under a variety of stimuli, e.g. osmotic, 
salt, mechanical or dehydration, the exact integrated 
function of these channels has remained enigmatic (Has-
well et al. 2008). Whereas, MSL10 was demonstrated to 
be a true mechanosensitive channel after heterologous 
expression (Maksaev and Haswell 2012), its function 
has been recently uncovered using an elegant experi-
mental strategy. By playing both with cell wall inhibi-
tor that loose the cell wall and osmoticum to modulate 
cell turgor, Maksaev and co-authors show that MSL10 
potentiate cell responses to swelling (Basu et  al. 2020). 
Hypoosmotic shock induced several responses including 
cytoplasmic calcium increases, ROS accumulation and 
transcriptional regulation that are under the control of 
MSL10 (Basu et al. 2020). In addition, this channel deter-
mines the induction of programmed cell death (PCD) 
in response to a hypo-osmotic challenge. This response 
is dependent on the phosphorylation of MSL10 N-ter-
minus (Veley et al. 2014; Basu et al. 2020; Basu and Has-
well  2020). In a recent preprint, MSL10 was found to 
localize and function at ER-plasma membrane contact 
sites (EPCSs) (Codjoe et al. 2022). In plants, EPCSs reg-
ulate lipid homeostasis between compartment and cell 
integrity (Schapire et  al. 2008; Ruiz-Lopez et  al. 2021). 
Those results suggest an interesting connection between 
mechanosensitive channel and regulation of cell volumes. 

MSLs are also important for regulation of organelle vol-
ume within cells. MSL2 and MSL3 that localize to plastid 
membranes, modulate their division, shape and size (Lee 
et  al. 2019; Wilson et  al. 2016). Because msl2/3 plants 
develop a mass callus tissue at their shoot apical meris-
tem, MSLs create a link between plastid osmoregulation 
and cell differentiation. MSLs were also associated with 
specific cell types like pollen tubes (Hamilton et al. 2015). 
MSL8 was shown to prevent cell bursting during pollen 
rehydration processes and membrane integrity during 
tip growth; highlighting again the role of MSLs during 
hypoosmotic choc. However, a recent preprint suggests 
that MSL8 effect on pollen tube hydration is not due to a 
simple tension-gated osmoregulator. MSL8 would rather 
regulate ions fluxes that are needed for cell wall modifica-
tion during pollen hydratation (Miller et al. 2022).

Other types of mechanosensitive channels have been 
identified in Arabidopsis. Mid1-Complementing Activity 
(MCA1) was cloned by complementing the lethal muta-
tion of mid1 yeast lacking the putative  Ca2+ permeable 
stretch-activated channel component (Nakagawa et  al. 
2007 PNAS). MCA1 and its Arabidopsis paralog, MCA2, 
exhibited a  Ca2+ permeable mechanosensitive channel 
activity in Xenopus (Furuichi et  al. 2012 PSB). Interest-
ingly, MCAs consist of single pass transmembrane pro-
teins (Kamano et  al. 2015). Their first 200 amino acids 
contain both the TM and the EF domains that are suf-
ficient for channel activity under membrane stretching 
(Yoshimura et  al. 2021). MCA loss of function mutants 
show root growth defects in media with high concentra-
tion of agar and a hypersensitivity to cold stress (Naka-
gawa et  al. 2007; Mori et  al. 2018) (Fig.  2). However, 
mca1 mca2 showed no alteration in calcium influx after 
osmotic stimulation, questioning the role of the two 
channels in the osmosensing pathway (Stephan et  al. 
2016).

Members of the PIEZO gene family, from the Greek 
“pι’esi” which means pressure, are plasma membrane 
localized cation channels involved in mechanosensory 
processes and necessary for light touch perception, com-
pressive force proprioception, among other processes. 
Their discovery was recognized by the 2021’s Nobel prize 
award. Arabidopsis genome encode for unique PIEZO 
homolog. at the AtPIEZO channel was first identified 
as a regulator of virus spreading and of root cap mecha-
notransduction (Mousavi et al. 2021; Zhang et al. 2019b). 
However, AtPIEZO1 seems to also act in tip growing 
cells. The two homologues encoded by the moss Phy-
scomitrella patens genome are localized in the tonoplast 
and control cell growth and cytoplasmic calcium oscil-
lation (Radin et  al. 2021). Analysis of loss and gain of 
function mutants showed that moss PIEZOs act on the 
vacuole membrane through tubulation, internalization 
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or fission (Radin et  al. 2021). AtPIEZO is also localized 
in the tonoplast and acts on vacuole morphology of pol-
len tube; showing that PIEZO function on tip growing 
cells is conserved among land plants (Radin et al. 2021). 
These observations shade light onto the role of the plant 
vacuole in mechanoperception and maybe osmosensing 
(Fig. 2).

In addition to searching in the plant genome for 
homologs of prokaryotic or eukaryotic mechanosensors, 
direct genetic screens have been realized to identify plant 
osmosensors. Calcium influx in the cytoplasm is probably 
one of the fastest cell responses to osmotic stimulation. 
Following a calcium imaging screen, the gene REDUCED 
HYPEROSMOLALITY-INDUCED  [CA2+] INCREASE 
1/ (OSCA1.1) was therefore identified from an EMS 
mutagenized population. OSCA1.1 encodes for a hyper-
osmolality-gated calcium-permeable channel, which is 
responsible for calcium signaling, but also regulation 
of root growth, stomata closure and transpiration upon 
osmotic stimulation (Yuan et al. 2014) (Fig. 2). Interest-
ingly, OSCA1 is not required for ABA- or  H2O2-induced 
calcium cellular influxes suggesting a strong specificity 
of the channel for osmotic signaling. Arabidopsis Cal-
cium-permeable Stress-gated cation Channel 1 (AtCSC1/
OSAC1.2), a close homolog of OSCA1, is also responsible 
for osmotic-dependent calcium influx when expressed in 
Chinese hamster ovary (CHO) cells (Hou et al. 2014).

Atomic structure and cryo-microscopy analyses have 
shown that OSCA1.2 is composed of 11 transmembrane 
helices forming homodimers. This channel has a cytosolic 
domain with RNA recognition motifs and 2 alpha-helices 
anchoring the protein in membrane lipids (Jojoa-Cruz 
et al. 2018; Liu et al. 2018). The two additive helices are 
cytosolic and might serve as a lateral sensor for ten-
sion within the inner plasma membrane leaflet (Maity 
et  al. 2019). Except for the OSCA4.1 isoform belonging 
to clade 4, the mechanosensitive channel activity seems 
to be conserved among the OSCA gene family when 
expressed in HEK cells or in proteoliposomes (Murthy 
et  al. 2018). However, the isoforms present distinct ion 
conductances and sensitivities to pressure (Murthy et al. 
2018). Knowledge on the role of OSCAs in planta has 
recently been expanding. For instance, OSCA1.3 behaves 
as a  Ca2+ permeable channel in yeast and contributes, 
with its close homologue OSCA1.7, to pattern-triggered 
immunity (PTI)-dependent stomatal closure (Thor et al. 
2020). Thus, OSCA function in plants is not strictly 
restricted to mechano or osmoperception.

Cell wall sensing (CrRLKs, WAKs, …)
Since the cell wall is way stiffer than the membrane, 
most of the tensile stress induced by turgor is borne by 
the wall. Recently, knowledge of biological processes 

that perceive the cell wall status has rapidly expanded. 
A number of transmembrane receptor like kinases 
(RLKs) such as Catharanthus roseus RLK1-Like kinases 
(CrRLK), Wall Associated Kinases (WAK), Lectin Recep-
tor-Kinase (LRK), Proline-rich Extensin-like Receptor 
Kinases (PERKs), and formins have been shown to inter-
act with the cell wall (Wolf et al. 2012). Some of these are 
known to act as sensors of the cell wall status. Histori-
cally, the THESEUS (THE) CrRLK was isolated from a 
genetic screen for suppression of the short hypocotyl and 
ectopic lignin phenotype of the cell wall synthase mutant 
cesa6prc1–1 (Hématy et  al. 2007). Indeed, the retarded 
growth induced by inhibition of cellulose synthesis is 
not the direct result of structural changes in the cell 
wall linked to reduce cellulose content. It rather involves 
active inhibition of growth through receptor kinases like 
THE (Hématy et  al. 2007). In addition to its role as a 
wall integrity sensor, THE acts on lateral root initiation 
through perception of its ligand, RALF34 (Gonneau et al. 
2018). THE1 signaling is also needed to control ABA 
accumulation after osmotic stress (Bacete et  al. 2022) 
(Fig. 2). These results illustrate the intricacy between wall 
integrity sensors, the maintenance of cell mechanics and 
ABA signaling as a typical osmotic signaling marker.

Interestingly, THE also controls some salt-induced 
related phenotypes, like root skewing. This response 
also needs MALE DISCOVERER 1-INTERACTING 
RECEPTOR-LIKE KINASE 2 (MIK2). This LRR kinase 
was identified from a reverse genetic screen for impaired 
ectopic lignin deposition under treatment with isoxaben, 
an inhibitor of cellulose deposition (Van der Does et al. 
2017). Allelic variation in MIK2 has been associated with 
changes in rosette dry weight in response to mild salt 
(Julkowska et  al. 2016) (Fig.  2). MIK2 binds to SERINE 
RICH ENDOGENOUS PEPTIDE12 (SCOOP12), a phy-
tocytokine that is secreted and regulates immunity in 
plants (Hou et al. 2021; Rhodes et al. 2021). These obser-
vations suggest an interaction between cell wall sensing 
pathways, including response to osmotic stimulation, and 
plant immune responses.

FERONIA (FER) is another CrRLK that participates in 
cell wall sensing. Loss-of-function studies have revealed 
that FER is involved in many processes such as cell elon-
gation, root hair development, responses to hormones, 
nutrition and plant defense (Li et  al. 2016). In addition, 
loss-of-function studies of FER have shown defects in 
responses to mechanical stimuli e.g. inability to pen-
etrate hard layers of agar (Shih et al. 2014). FER has also 
a tight link to ABA signaling and loss of function plants 
show a resistant phenotype to osmotic stress and a hyper 
sensitivity to salt stress, although salt stress also results 
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in osmotic stress (Chen et al. 2016 PNAS) (Fig. 2). Feng 
and co-authors also highlighted the specific role of FER 
in response to salt stress (Feng et al. 2018). FER induces 
relatively late calcium influx in the cell that is needed to 
sustain cell wall reinforcement. It was proposed that FER 
would sense the impact of sodium ions on pectin fila-
ment organization, rather than directly sensing turgor or 
plasmolysis (Feng et al. 2018).

Molecular mechanisms of early signaling
Calcium
Calcium is a secondary messenger that allows the trans-
mission of many biotic and abiotic stimuli and converts 
them into cellular signals. Intracellular calcium homeo-
stasis is modulated by channels, pumps and transport-
ers. The calcium signal is transmitted by calcium-binding 
proteins that subsequently feed into signaling cascades 
(Dodd et  al. 2010; Kudla et  al. 2010). Fluorescent  Ca2+ 
probes have been actively used to identify quantitative 
characteristics like amplitude or frequency of calcium 
responses; revealing the concept of calcium signatures 
for specific signals (Monshausen 2012). According to 
this, a pure osmotic stimulus induces intracellular cal-
cium signals that are different from those induced by 
stimuli like cold or salt, that are only partially composed 
of an osmotic component (Tracy et al. 2008; Huang et al. 
2017a). In addition,  Ca2+ varies also in space within the 
cell, with the nucleus and cytoplasm responding dif-
ferently to osmotic stimulation probably through inde-
pendent molecular mechanisms (Huang et al. 2017a; Luo 
et al. 2020). Whereas OSCA1 appears as a crucial actor 
of osmotically driven calcium influx, the exact role of 
other mechanosensitive channels like MSLs or MCAs 
remains debated (Yuan et al. 2014; Stephan et al. 2016). 
Interestingly, intracellular compartments also play criti-
cal roles in controlling calcium signaling in response to 
osmotic signals. The  K+ exchange antiporters (KEAs), 
which perform plastid localized potassium antiport, are 
needed to maintain plastid ion homeostasis. In corre-
sponding loss of function plants, plastids were swollen 
and had impaired calcium influx after osmotic stimula-
tion (Stephan et al. 2016). Nevertheless, the link between 
plastid ion homeostasis and calcium signaling remains 
to be explored. In addition, calcium signal decoding 
processes in response to osmotic signals remain largely 
uncharacterized.

At the root tissue level, imaging approaches have iden-
tified calcium movements according to water poten-
tial gradient (Shkolnik et  al. 2018). The calcium flux 
propagates along the phloem until it reaches the root 
elongation zone to control hydrotropic responses, i.e. 
directed root growth towards higher soil water potentials 
(Shkolnik et  al. 2018). Both the osmotic stress-induced 

calcium increase and hydrotropic response need func-
tional ECA1, an endoplasmic reticulum  Ca2+ pump, and 
MIZU-KUSSEI1 (MIZ1) (Fig.  2). The latter gene was 
originally identified from a forward genetic screen based 
on hydrotropic response (Kobayashi et  al. 2007). These 
data suggest that calcium participates as a secondary 
messenger at the cellular level but also at distances allow-
ing hydrotropism.

ROS
In addition to calcium, reactive oxygen species (ROS) 
accumulate minutes after cell stimulation (Leshem and 
Levine 2007; Martinière et al. 2019). Superoxide, hydro-
gen peroxide, but also other ROS are generated from 
both cellular metabolism and through specific generator 
systems. Indeed, ROS not only represent stress-induced 
damaging components, but also serve as genuine cell sec-
ondary messengers (Devireddy et al. 2021; Fichman and 
Mittler 2020). Upon an osmotic signal, ROS was linked 
to root hydrotropic responses. Indeed, inhibition of per-
oxidases and Respiratory Burst Oxidase Homolog family 
(RBOHs), which are classical ROS consumer and pro-
ducer respectively, induce altered root curvature when 
plants are grown on plate containing a water potential 
gradient (Krieger et al. 2016; Jiménez-Nopala et al. 2018). 
In fact, it was found that ROS accumulation in the elon-
gation zone participate to root gravitropic response, 
maybe through regulation of autophagy and amyloplast 
degradation (Nakayama et al. 2012; Krieger et al. 2016). 
This agravitropic phenotype leads to a stronger hydro-
tropic response. Then, ROS function in tuning root tropic 
responses by promoting gravitropism and therefore 
negatively regulating hydrotropism response. Strikingly, 
the RBOHD and F can only partially account for the 
osmotically-induced ROS production. Indeed, upon sig-
nal, the cytoplasmic reducing power is transferred to the 
apoplasm, leading to ascorbate accumulation. Ascorbate 
is further used to reduce iron that reacts with di-oxygen 
to generate superoxide (Martinière et  al. 2019). In cells, 
the ROS generated by RBOHs or the ascorbate/iron pair 
end up with different responses (Fig.  2). Whereas the 
two ROS generating pathways are needed for membrane 
internalization, RBOH-dependent ROS induces the inter-
nalization of specific cargo proteins such as the PIP2;1 
aquaporin (Martinière et  al. 2019). Interestingly, certain 
ROS species have the particularity of being able to travel 
through cell compartments. For instance, membrane 
transport of hydrogen peroxide  (H2O2) is facilitated by 
certain aquaporins localized at the PM (PIP1–4) (Tian 
et  al. 2016), PIP2;1 (Rodrigues et  al. 2017) or the tono-
plast e.g. TIP1;1 and TIP1;2 (Bienert et al. 2007) (Fig. 2). 
Therefore,  H2O2 might itself regulate its own membrane 
permeability by acting on aquaporin cycling.
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Recently, Rho of Plant6 (ROP6) was found to be nec-
essary and sufficient to induce osmotically-induced 
ROS production (Smokvarska et al. 2020). Rho-GTPases 
(RAC/ROP) are involved in cell responses to various 
stimuli such as auxin, ABA orchitin elicitation (Feiguel-
man et  al. 2018). ROPs are molecules that switch from 
an inactive to an active form by binding to GDP or GTP, 
respectively (Feiguelman et  al. 2018). Models linking 
ROPs and NADPH oxidase have been described for root 
hair or pollen growth and immune response (Duan et al. 
2010; Boisson-dernier et al. 2013). After osmotic stimula-
tion, ROP6 is activated and recruited in PM domains of 
nanometric size, together with RBOHD and F (Fig.  2). 
Interestingly, the co-recruitment of RBOHs within nano-
domains seems to be specific for the osmotic signal. To 
convey auxin signaling, ROP6 has also to form nanodo-
mains, which however are exempt of RBOHs. As a result, 
no ROS accumulates in cells under auxin treatment (Pla-
tre et  al. 2019; Smokvarska et  al. 2020). These observa-
tions suggest that the ROP6 activation mechanism can 
itself control the specificity of the downstream response.

Osmotically-induced ROS are associated with numer-
ous downstream cellular and physiological responses 
such as a decrease in root hydraulic conductivity or accu-
mulation of compatible osmolytes like proline (Boursiac 
et al. 2008; Ben Rejeb et al. 2015). Detoxification mech-
anisms through specific enzymes like superoxide dis-
mutases (SOD), ascorbate peroxidases (APX), catalases 
(CAT), glutathione peroxidases (GPX) and peroxiredox-
ins (PRX) (Mittler et al. 2004) are needed. For instance, 
AtGPX3/GPXL3 was linked to drought stress and ABA 
signaling. Atgpx3/gpxl3 plants showed enhanced water 
losses under drought stress (Miao et  al. 2006). In  vitro 
phosphorylation assays showed that oxidized AtGPX3/
GPXL3 acts on phosphatase activity of ABA INSENSI-
TIVE2 (ABI2) (Miao et al. 2006). Consistently, AtGPX3/
GPXL3 links ABA signaling, ROS and osmotic signaling. 
Because the AtGPX3/GPXL3 catalytic domain is facing 
the lumen of the secretory pathway, it remains muddled 
how AtGPX3/GPXL3 oxidation is mechanistically associ-
ated to ABI2 (Attacha et al. 2017).

Systemic signaling and developmental responses
To cope with their complex and fluctuating environ-
ment, plants have to constantly sense the surround-
ing fluctuations and integrate all this local information 
into coordinated whole plant responses. This is accom-
plished through a complex systemic communication 
network involving a wide spectrum of physical, chemi-
cal and molecular components. The following section 
will explore the molecular bases of long distance osmotic 
signaling in plants from 3 types of signals, which are 
hydraulic, electric and chemical in nature. We will focus 

on inter organ signaling and more specifically on the root 
to shoot and shoot to root signals. Long distance com-
munication has long been proposed to use the mass flow 
of sap within the vascular system. Accordingly, many 
molecules have been identified as traveling from root to 
shoots through the xylem vessels or from shoots to roots 
through phloem (reviewed in Ham and Lucas 2017; Win-
ter and Kragler 2018).

Molecular bases of long distance signaling
Hydraulic signal
Water absorbed by roots is axially transported along the 
xylem towards shoots down the plant water potential 
gradient. Leaf water potential, which is the lowest in the 
plant, induces a tension in the vessels. Thus, any physi-
cal damage or disturbance that breaks the integrity of the 
water column present in the xylem vessels can release 
this tension, thereby inducing a pressure change that will 
almost instantly be transmitted through the vasculature. 
This physical signaling named hydraulic signaling has 
been proposed several decades ago to be involved in the 
fast response to leaf wounding (Houwink 1935) (Fig. 3B). 
The pressure wave generated through this process may 
be involved in the propagation of chemicals from the 
wounded tissue or directly trigger mechanical systemic 
signals in sensitive tissues (Farmer et al. 2014; Evans and 
Morris 2017). However, wounding experiments suggest 
that the hydraulic signal is moving up to 10,000 times 
faster than the observed propagation of the  Ca2+ in tis-
sues, thereby challenging the idea of a chemical propaga-
tion (Evans and Morris 2017). Nevertheless, more recent 
work suggests that change in hydraulic pressure induced 
by wounding is abolished in rbohD (NADPH oxidase) 
and glr3.3 glr3.6 (glutamate receptor-like protein) (Fich-
man and Mittler 2021). This suggests that hydraulic 
signal is not solely determine as a physical signal. In 
response to water deficit, the turgor pressure of leaf cells 
rapidly declines when roots experience water short-
age. A drop in soil local water potential can also modify 
root turgor pressure and ultimately xylem tension. These 
changes can propagate from root to shoots as a so-called 
hydraulic signal (Christmann et  al. 2007; Christmann 
et al. 2013). Alterations in root turgor pressure were also 
found to induce local accumulation and signaling of the 
well characterized water stress hormone Abscisic Acid 
(ABA) both in root and shoots (Christmann et al. 2007) 
indicating that hydraulic signaling may somehow be cor-
related to ABA signaling. However, a rapid response of 
stomata to water deficit was also observed in the ABA 
biosynthesis mutant (aba2) or signaling mutant (abi1) 
indicating an ABA independent signal (Christmann 
et  al. 2013). In addition, grass stomata have subsidiary 
cells coupling osmotic and turgor adjustment to fasten 
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stomatal movements (Franks and Farquhar 2007; Rais-
sig et al. 2017). The action of hydraulic signals transmit-
ted through the plant vasculature to the stomata thereby 
represents a rapid signaling mechanism well correlated 
to plant architecture and anatomy. However, whether 
the putative hydraulic signal is translated locally into 
chemical signals like ABA or acts locally through as yet 
unknown leaf structures remains an experimental chal-
lenge and a matter of vivid debate (Evans and Morris 
2017; Farmer et al. 2020).

Electrical signal
Electrical signals have initially been identified in the fold-
ing of leaflets and petiole movements of Mimosa pudica 
in response to mechanical and other physical stimuli. 
These movements are driven by a turgor-powered motor 
and the rapid signaling involved appears linked to propa-
gation of electrical signals that are moving through the 
sieve tube (recently reviewed by Johns et al. 2021). Plants 
maintain a -200 mV electrical potential difference across 
their plasma membrane through the action of ion chan-
nels, pumps (including H + -ATPases) and transport-
ers. Transient depolarization and repolarization events 

with set amplitude, velocity and duration or variation of 
potential can convey key information about the strength 
and distance of the stimulus that triggered such electri-
cal signals, within and between plant organs. These sig-
nals rely on fluxes of ions including  K+,  Cl−,  H+ or  Ca2+, 
the latter being the most documented. Electrical signal-
ing has been reported to be involved in the response to 
heat, cold, touch, salt, flooding, hypoxia, osmotic stress, 
and drought (reviewed by Wilkins et al. 2016; Kudla et al. 
2018). To explain such wide range of responses, it was 
hypothesized that the  Ca2+-permeable channels con-
trolling cell influx contain a stress-specific fingerprint 
that varies in amplitude, timing, and frequency and can 
be formed by the activation of different  Ca2+ channels 
depending on the different stresses (Wang et  al. 2019). 
In the case of drought,  Ca2+ has been reported to move 
up in the transpiration stream and may couple  Ca2+ sup-
plied from the roots to stomatal response in the leaves 
(Han et al. 2003) (Fig. 3B). Storti et al. (2018) also meas-
ured  Ca2+ waves propagation in response to osmotic 
stress in the non-vascular moss Physcomitrella patens. 
The lower propagation rate compared to the one meas-
ured in Arabidopsis confirms the cell-to-cell and vascular 

Fig. 3 Long-distance and developmental response to homogeneous or local water deficit. A Soil water is absorbed by roots and moves through 
xylem vessels to the leaves where it is eliminated via transpiration (blue arrow). B When plants experience water shortage, they first dramatically 
reduce transpiration and modify root and shoot growth according to water availability. Roots, which perceive locally the osmotic stress as described 
in Fig. 2, activate long-distance signaling (orange arrow) conveyed by hydraulic signals or a wide range of molecules, including calcium  (Ca2+), 
Reactive Oxygen Species (ROS), phytohormones (Abscisic Acid (ABA), Strigolactones (SL), etc), non-coding RNA (ncRNA) and peptides. In return, 
water deficit induces a shoot-to-root signaling (violet arrow) that relies on a set of molecules including sugars, ABA, ncRNA and micro RNA (miRNA). 
C When plants encounter a local water deficit also named partial root zone drying (PRD) in agronomy, the transpiration rate is reduced but not as 
severely as under a uniform water deficit. As a consequence, shoot development can be maintained or has a limited reduction depending on the 
intensity and duration of the local water deficit or on the plant developmental stage. Root growth in the drying part is strongly repressed whereas 
it is maintained or stimulated in the wet part through a compensatory growth stimulation. It was proposed that, during PRD, roots are sensing 
the local low water potential in the drying soil resulting in a reduction in cell turgor, then transmitting the signal to the shoot (arrow 1). In return, 
a shoot-to-root signal (arrow 2) represses root growth. Since root development and water uptake are stimulated in the well-watered part, the 
existence of both a shoot-to-root and a root-to-shoot signaling can be hypothesized (arrows 3 and 4). Besides ABA, the nature of other putative 
signals remains totally unknown
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dependent routes. Such mobile  Ca2+ has recently been 
found to act through a plastid based receptor system 
in the guard cells that itself may further integrate these 
responses with other stimuli as observed during photoac-
climation (Cutolo et al. 2019).

ROS accumulation and calcium production are closely 
interconnected and enhance each other during abiotic 
stress. For instance, superoxide produced by RBOH D 
activates calcium channels, which activate the vacuolar 
calcium channel TWO PORE CHANNEL1 (TPC1). This 
releases  Ca2+ into the cytosol which in turn enhances 
the activation of RBOH protein D (Evans et  al. 2016). 
This calcium/ROS feedback loop is likely instrumental 
for propagation of the ROS and  Ca2+ waves during salt 
stress and a proper acclimation response. However, until 
recently, it remained unknown how ROS are perceived by 
cells to trigger calcium waves. The Leucine-rich-repeated 
receptor kinase (HPCA1) was identified from a forward 
genetic screen for impaired ROS-induced  Ca2+ waves 
(Wu et  al. 2020). Via covalent modification of its extra-
cellular cysteine residues, HPCA1 is autophosphorylated, 
activated calcium influx and is required for stomata clo-
sure after  H2O2 treatment. In a preprint, HPCA1 appear 
to be also necessary for propagation of ROS/Ca waves in 
response to high light signal (Fichman and Mittler 2020). 
Drought and high temperatures both induce calcium and 
ROS waves across the plasma membrane, but no in-depth 
mechanistic analysis on long distance propagation has 
been performed yet. The many different origins of ROS 
and corresponding  Ca2+ waves suggest sophisticated 
signaling mechanisms. Thus, integrative studies are still 
needed to sort between the common and specific ROS-
calcium signaling pathways that contribute to the speci-
ficity of plant responses to different stress conditions.

Sugars and long distance signaling
Drought, high salinity or temperature dramatically 
modify the metabolic profiles of plants (Urano et  al. 
2010; Cramer et  al. 2011). It has long been proposed 
that uncharged metabolites such as proline or glycine-
betaine, accumulate to promote water retention in the 
plant tissues without interfering with normal metabo-
lism (Verslues and Sharma 2010). They, in concert with 
other specialized/secondary metabolites, also act as free 
radical scavengers removing excess ROS and reestablish-
ing a cellular redox balance (reviewed by Takahashi et al. 
2020). Sucrose, glucose, and fructose also highly accumu-
late in roots upon exposure to drought suggesting they 
can replace other osmolytes as major compatible solutes 
(reviewed by Takahashi et al. 2020). More recently, sugars 
have emerged as key players during shoot to root com-
munication in response to water stress (Fig. 3B). In Arabi-
dopsis, phloem transport of sucrose is mainly achieved 

through the activity of sugar transporters. Phloem load-
ing of sucrose from photosynthetic leaf mesophyll cells is 
mediated first by the vasculature-localized sugar trans-
porters SWEET11 and 12. They move sucrose from 
parenchyma cells into the apoplast where it is loaded 
into phloem companion cells by SUC2 (Chen et al. 2012). 
In the root, sucrose is unloaded either through an apo-
plastic pathway (via SUC/SWEET sugar transporters) or 
through a symplastic pathway (via the hydrostatic pres-
sure) (Milne et al. 2018). Very recently Chen et al. (2022) 
showed that both SWEET11 and 12 are phosphorylated 
by drought or ABA activated SNF1-RELATED PROTEIN 
KINASE 2 (SnRK2) protein kinases, which enhance 
sucrose export to roots. This increased allocation is 
modulated by ABA signaling, promotes root develop-
ment and increases foraging. The putative link between 
this sucrose dependent root growth stimulation and 
the SnRK1–target of rapamycin (TOR) energy signaling 
pathway remains to be elucidated. Indeed, sucrose accu-
mulation may release the TOR1 dependent repression of 
transcription factors such as bZIP1, bZIP11 and bZIP53 
or local auxin accumulation in primary root tip thereby 
promoting root growth (Hartmann et  al. 2015; Weiste 
et al. 2017). Under drought stress, ABA activated SnRK2 
can however phosphorylate TOR, thereby modulating 
the tradeoff between plant growth and drought response 
stress (Wang et al. 2018). A similar role for TOR can also 
be considered for primordia initiation through the regu-
lation of WOX7, a sucrose dependent repressor of the 
cell cycle gene CYCD6 (Kong et al. 2016).

ABA also induces trehalose accumulation which in 
turns inhibits root growth (Wang et al. 2020). Finally, tre-
halose 6-phosphate (Tre6P) has also been demonstrated 
as a key regulator of source-sink relationships (Figueroa 
and Lunn 2016). In Arabidopsis, Tre6P is produced in 
the phloem and stomatal guard cells (Fichtner and Lunn 
2021). Tre6P synthase (TPS), the enzyme that synthesizes 
Tre6P, plays a key role in the nexus between sucrose and 
Tre6P, operating in the phloem loading zone of leaves. 
Tre6P has a dual function as a signal molecule and home-
ostatic regulator of sucrose levels in plants in response to 
abiotic stresses such as drought. Most flowering plants 
contain barely detectable amounts of trehalose compared 
to sucrose. Despite the low amount of Tre6P, overexpres-
sion of TPS and TPP enzymes led to severe growth and 
developmental defects suggesting that changes in the 
level of Tre6P, the intermediate in the pathway, rather 
than in the level of trehalose itself, were responsible for 
the phenotypes. The concept that Tre6P functions pri-
marily as a signal and regulator of sucrose levels in plants 
supports the existence of systemic signals for source-sink 
coordination (Fichtner et  al. 2020; Fichtner and Lunn 
2021). In growing sink organs, Tre6P would regulate the 
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utilization of sucrose for growth and the accumulation 
of storage reserves, in part via complex interactions with 
TOR (Figueroa and Lunn 2016).

Taken together, shoot-originated sucrose and its under-
lying signaling network involving ABA and other phyto-
hormones, SnRK2, TOR and potentially Tre6P seems to 
be involved in the fine tuning of root development under 
drought. Yet, further exploration is needed to better 
characterize the complex interactions shaping these sign-
aling networks.

Hormones
Several hormones have been identified both in xylem 
and phloem sap and have been proposed to play a key 
role in the coordination of systemic stress response 
(Fig. 3B). Among these, ABA has been identified for long 
as a master regulator of plant responses to drought-, 
salt-, osmotic-, and freezing-based water limitations. 
ABA mediates drought stress response and resistance by 
regulating stomatal closure and stress responsive gene 
expression (Cutler et al. 2010). The involvement of ABA 
in drought responses has been extensively documented 
(recently reviewed by Kuromori et al. 2022) and will not 
be detailed here. In response to drought stress, ABA 
accumulates in all plant tissues but its accumulation is 
dramatically enhanced in leaves and more specifically in 
the vasculature of leaves as most of the ABA biosynthesis 
genes are expressed in this tissue (Kuromori et al. 2018). 
In addition, several ABA transporters are predominantly 
expressed in vascular tissues. Thus, long distance trans-
port of ABA can occur through both xylem (Davies and 
Zhang 1991; Schachtman and Goodger 2008; Jiang and 
Hartung 2008) and phloem (Zhong et  al. 1996), with 
reports of both root and shoot derived pools during water 
stress (Hartung et al. 2002; Manzi et al. 2015). Although 
the vasculature and apoplastic areas are described as the 
typical routes for systemic signaling, it is not completely 
understood how ABA movement from tissue to tissue is 
regulated. Recent studies have suggested that signaling 
peptides could be involved in the ABA dependent long 
distance signaling (see below).

Strigolactones (SL) form the most recently discovered 
class of phytohormones. ABA and strigolactones share a 
carotenoid precursor, from which strigolactone synthe-
sis proceeds through a partially known series of enzymes 
to produce bioactive strigolactones (reviewed by Waters 
et  al. 2017). Strigolactones have been shown to modu-
late several aspects of root and shoot development and 
interactions with rhizosphere organisms (Al-Babili and 
Bouwmeester 2015; Lanfranco et al. 2018). They also are 
thought to be involved in nutritional and abiotic stresses 
(Mostofa et al. 2018). Several dicot plants with defective 
strigolactone synthesis or signaling are hypersensitive to 

drought, salt and osmotic stress while exogenous appli-
cation of SL reinforce drought tolerance in many species 
(Cardinale et  al. 2018). In Arabidopsis, Lotus japonicus 
and tomato, SL positively control stomatal movements. 
Indeed, mutants in SL biosynthesis exhibited reduced 
stomatal closure (Ha et al. 2014; Liu et al. 2015; Visentin 
et al. 2016) whereas enhanced closure and drought toler-
ance was observed in plants treated with exogenous SL 
or over producing SL (Lv et al. 2018; Visentin et al. 2016; 
Zhang et al. 2018). Using grafting experiments in tomato, 
Visentin et  al. (2016) confirmed that drought results in 
reduced SL accumulation in roots and over accumulation 
in shoots. Their experiments demonstrated that under-
accumulation of SL in roots is responsible for its over 
accumulation in shoots. Thus, SL was identified as a long 
distance signal for drought dependent stomatal closure. 
SL acts on stomatal closure both in an ABA dependent 
and an ABA independent manner. The ABA-depend-
ent pathway relies, at least in part, on ABA synthesis, 
transport and/or sensitivity. Accordingly, SL depletion 
decreases sensitivity to exogenous ABA in several species 
(Lv et al. 2018; Visentin et al. 2016). On the other hand, 
treatment with the synthetic SL analogue GR24 increases 
sensitivity to ABA in tomatoes (Visentin et  al. 2016). 
Recently, Visentin et al. (2020) identified SL as a molecu-
lar component linking drought to miR156 accumulation 
and integrated miR156 in a model that links SL and ABA 
in tomato.

Also, it should be noted that the above-described 
model may be dependent on drought stress intensity and 
may be restricted to dicot plants. In rice, for instance, 
most SL biosynthetic mutants produce more ABA than 
the wild-type and thus are more resistant to drought 
(Haider et al. 2018). Finally, the local and systemic effects 
of drought-dependent under accumulation of SL in roots 
remain poorly documented.

Besides ABA and SL, several other hormones that 
have been identified in xylem and phloem sap (reviewed 
by Koenig and Hoffmann-Benning 2020) have been 
proposed to participate in plant adaptive responses to 
water deficit. For example, Brassinosteroids and Auxin 
are involved in the regulation of root and shoot growth 
under drought (reviewed by Gupta et  al. 2020). Cyto-
kinins were reported to mitigate water deficit growth 
limitation and stabilize yield (Hai et  al. 2020). Finally, 
methyl jasmonate, that is well known for mediating long 
distance signaling in response to wounding or biotic 
stresses induces stomatal closure similar to ABA (Huang 
et al. 2017b). Jasmonoyl-isoleucine (JA-Ile) was also asso-
ciated with osmotic signals, since it accumulates in cells 
under hypo-osmotic condition and conversely is reduced 
under hyperosmotic stress (Mielke et  al. 2021, Sci-
ence advances). The involvement of multiple hormonal 
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pathways in different plant tissues emphasizes the com-
plexity of plant hormonal responses to drought (reviewed 
by Hai et al. (2020); Sirko et al. (2021) and Kuromori et al. 
(2022)) and their role in long distance signaling of water 
deficit most often remains to be established.

Nucleic acids
Nucleic acids, more specifically RNA species, are among 
the most well studied long distance signaling molecules. 
In their extensive recent review Gelaw and Sanan-Mishra 
(2021) collected a large panel of non coding RNA that are 
differentially expressed in response to drought suggest-
ing a central role in signaling (Fig. 3B). Representatives of 
all types of RNA, such as mRNA, micro RNA (miRNA), 
small interfering RNA (siRNA), and other non-coding 
RNA (ncRNA) have been identified in the sap of many 
plant species including Arabidopsis, rice, barley, maize, 
pumpkin and many others (Kehr and Kragler 2018; Liu 
and Chen 2018; Guo et al. 2013; Westwood 2015). As sys-
temic signals, mobile RNAs are regulatory elements by 
which plants respond to dynamic changes in the environ-
ment. Breakthroughs studies on the regulatory mecha-
nisms of long-distance RNA transport have been made in 
recent years. For detailed reviews of RNA trafficking see 
the publications of Ham and Lucas (2017); Kehr and Kra-
gler (2018); Liu and Chen (2018) or Zhang et al. (2021a, 
b). While the existence of mRNAs and ncRNAs in the 
vascular system hints at their mobility and possible role, 
identification alone does not conclusively prove move-
ment or physiological function. By using homo (intra 
species) and hetero (inter species) grafting, many stud-
ies in model plants, crops and woody plants have pro-
vided evidence for mobile mRNAs (Notaguchi et al. 2015, 
Thieme et al. 2015, Liu et  al. (2020) and lnRNA (Zhang 
et  al. 2009; Zhang et  al. 2021a, b). Similar results were 
also reported for miRNAs (Pagliarani et al. 2017; Tolstyko 
et al. 2019). Data suggest that environmental conditions, 
including water deficit, may affect transcript mobility, 
independent of changes in gene expression (Thieme et al. 
2015; Zhang et al. 2016; Tolstyko et al. 2019). In line with 
these results, Zhang et  al. (2016) demonstrated that the 
transmissibility of mobile mRNAs is related to tRNA-
like structural elements (TLs). TLs can modulate mRNA 
transport and are necessary for mediation of mRNA 
movement across the grafting junction. Recent studies 
by Yang et al. (2019) have shown that RNAs can contain 
5-methylcytosine (M5C) and that this methylation can 
regulate long distance mRNA transport. Other studies 
have identified additional selective mechanisms includ-
ing specific sequence motifs. For instance, untranslated 
regions or cis acting elements at 5′ end appear to influ-
ence transcript stability for transport, impact delivery to 

distal tissues and translation level (Banerjee et al. 2009; Li 
et al. 2009). Using a long stem hetero grafting system, Xia 
et al. (2018) showed that the abundance and the structure 
of mRNAs were degraded during the trafficking, suggest-
ing putative modulation to stress response. Furthermore, 
using an elegant triple hetero grafting approach with a 
potato and a Nicotiana benthamiana scions grafted onto 
a tomato root stock, it was shown that mRNA transferred 
from the scion to the stock can be transported back to 
the scion after being transported again to shoots in a 
“shoot-root-shoot” cycling process (Xia et al. 2018; Wang 
et al. 2021). Taken together, the wide range of molecules, 
transport regulation and processing steps point to an 
extremely complex regulation network of long distance 
signaling.

Proteins and peptides
Several proteomic studies have identified up to thousands 
of proteins and peptides both in the xylem and phloem 
sap (Rodriguez-Medina et  al. 2011; Carella et  al. 2016). 
Recent analyses have elucidated the molecular mecha-
nisms involving the long distance regulatory protein 
Flowering Locus T (FT). This 20 kDa protein is phloem 
mobile from leaves to shoot apical meristem where it acts 
as a florigen signal inducing flowering transition (Putterill 
and Varkonyi-Gasic 2016). Besides this well documented 
example very little is known about protein signaling 
functions. Nevertheless, mobile peptides form an impor-
tant class of molecules possibly involved in long distance 
signaling in response to abiotic stress. Over 7000 small 
open reading frames (ORF) can be expressed in response 
to a wide range of environments in Arabidopsis suggest-
ing a multitudes of functions (Hanada et al. 2007; Hanada 
et al. 2013; Ren et al. 2021) (Fig. 3B). A recent study has 
shown that the CLAVATA3/EMBRYO-SURROUNDING 
REGION- related25 (CLE25) peptide is a mobile, long-
distance signaling molecule originating from roots and 
sensed in leaves where its perception induces ABA bio-
synthesis and stomatal closure (Takahashi et  al. 2018). 
CLE25 was found to be produced in root vasculature 
and moves from root to shoots through the vascular 
system. In leaves, it is recognized by the BARELY ANY 
MERISTEM1 (BAM1) and BAM3 receptors that induce 
NINE-CIS-EPOXYCAROTENOID DIOXY- GENASE3 
(NCED3) expression to enhance ABA accumulation 
in leaves. This, in turn, regulates stomatal aperture in 
response to dehydration stress thereby reducing water 
losses (Takahashi et al. 2018). Although the mechanisms 
involved in regulating CLE25 production, loading and 
unloading, and CLE25–BAM ABA production remain 
to be elucidated, these results identify the CLE25–BAM 
long-distance signaling system as a key component 
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of drought stress response. Interestingly, other CLE 
peptides (CLE 9/10) were found to be involved more 
locally in stomatal development and regulation (Qian 
et  al. 2018). CLE9 has also a role in stomatal closure in 
response to drought in a ABA dependent manner (Zhang 
et al. 2018). While this peptide-dependent mechanism is 
definitely slower than hydraulic signaling, it may be an 
important component during mid-term and long-term 
dehydration stress responses. It may also be involved in 
the response to gradual soil drying as generally observed 
under natural conditions. One can also expect that the 
CLE-BAM long distance signaling mechanism plays a 
crucial role under heterogeneous water supply to the 
roots, when part of the root system experiences water 
deficit while other parts are well-watered. Interestingly, a 
similar mechanism has also been reported in response to 
nitrogen deficiency. Local root nitrate deficiency induces 
production of C-TERMINALLY ENCODED peptides 
(CEP) that are translocated to shoots where they are 
recognized by the CEP Receptor (CEPR). This in turn 
induces the local accumulation and transport to roots of 
the CEP DOWNSTREAM1 and 2 (CEPD1 and 2) poly-
peptides (Ohkubo et  al. 2017). Thus, the CEP–CEPR–
CEPD system mediates long-distance signaling from 
roots to shoots to roots in order to transmit the nitrogen 
deficit signal throughout the whole plant. Interestingly, a 
similar roots-to-shoots-to-roots signaling has also been 
documented during the control of nodule formation in 
the legume plant Lotus Japonicus. This systemic regula-
tion that involves cytokinins connects nutritional sta-
tus, development and hormonal signalization (reviewed 
by Okamoto et  al. 2016; Ferguson et  al. 2019). Similar 
mechanisms have not yet been reported in response to 
drought but several works identified CEPs which expres-
sion is induced by water deficit (Smith et  al. 2020) sug-
gesting they could also exist to adjust and coordinate 
development and water homeostasis.

Physiological and developmental response to soil water 
heterogeneity
Heterogeneity of water availability around plant roots 
is a widespread phenomenon, occurring both in natural 
and agricultural environments (Fig. 3C). At macro-scale, 
when rainfall or irrigation are limited, the upper soil lay-
ers typically dry faster as they are exposed to evaporation 
and water uptake by plant roots where their density is the 
highest. This results in an uneven vertical distribution of 
soil moisture with depth (Beff et al. 2013; Mohanty 2013; 
Zhang and Davies 1989). Water availability can also be 
horizontally heterogeneous, because of plant competition 
and local soil water retention (Ivanov et  al. 2010). Due 
to the high heterogeneity in structure and composition 
of soil, water can also be heterogeneously distributed at 

the local or micro scale. One of the most striking exam-
ples is the presence of macropores that locally induce an 
extreme water deficit (see extensive reviews by Beven 
and Germann 1982 and Jarvis 2007). Recent studies have 
identified the molecular mechanisms that allow roots to 
locally sense moisture gradients and direct their growth 
or formation of new lateral roots towards increased 
water availability. These local adaptations to water avail-
ability are referred to as hydrotropic response (Dietrich 
et al. 2017) and hydro-patterning (Bao et al. 2014; Orosa-
Puente et al. 2018), respectively. Similarly, Orman-Ligeza 
et  al. (2018) described a process called xerobranching 
which accounts for the repression of lateral root for-
mation when a root grows through a large air-filled soil 
macropore. In all cases, root tip growth and root branch-
ing are positioned towards regions of higher water 
availability. While many mechanistic details are being 
uncovered from laboratory experiments, it will be fasci-
nating and critical to understand how these growth and 
development adjustments mutually interact and operate 
during growth of roots in real, drying soils and how they 
allow optimizing soil foraging and water uptake at the 
whole plant level.

As an illustration, irrigation strategies have been 
introduced in agriculture to deliberately create a het-
erogeneous distribution of soil water, both spatially and 
temporally. One of these techniques called partial root 
zone drying (PRD), aims at locally irrigating a limited 
part of the root system while the other part of the root 
system faces water deficit (Dbara et  al. 2016; Fu et  al. 
2017; Puértolas et al. 2015; Stoll et al. 2000). In agricul-
tural production, PRD usually requires a regular per-
mutation of watered and unwatered sides, to ensure the 
survival of the entire root system, thus forming a cycle 
of root drying and wetting. This technique was found to 
improve water use efficiency (WUE) compared to irriga-
tion at field capacity in many greenhouse and field tri-
als (Iqbal et  al. 2020). For several crops, such as cotton 
(Du et  al. 2008; Tang et  al. 2005), tomato (Kirda et  al. 
2004; Zegbe et  al. 2006), hot pepper (Kang et  al. 2001; 
Shao et al. 2008), grape (De la Hera et al. 2007), and pear 
(Kang et al. 2002), PRD improved WUE without signifi-
cant effect on yield compared to fully irrigated plants. 
However, studies in other crops showed more contrasted 
results. In maize for instance, some studies showed 
improved WUE with no reduction or even increase of 
grain yield (Fu et  al. 2017; Kang et  al. 2000; Sepaskhah 
and Khajehabdollahi 2005; Sepaskhah and Parand 2006) 
whereas another showed a lowered grain yield (Hakeem 
et al. 2016).
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It is proposed that, during PRD, the drying roots sense 
the locally low water potential resulting in a reduction in 
cell turgor and thereby inducing a systemic partial stoma-
tal closure and reduced leaf expansion. Concomitantly, 
roots in wet parts of the soil absorb large amounts of 
soil water to maintain elevated water content in shoots, 
consequently increasing water use efficiency (Kang and 
Zhang 2004; Christmann et  al. 2013). Alteration of leaf 
growth and development and changes in metabolism can 
hinder the use of carbon, energy, and allocation of the 
plant’s photoassimilates, which are then preferentially 
reallocated to roots enhancing root expansion in the irri-
gated part (Taiz and Zeiger 2006). Yet, the nature of the 
local and systemic signals involved in responses of the 
whole root system remains unknown. At the functional 
and molecular level, temporal PRD study in a riparian 
Melaleuca species showed the root hydraulic conduct-
ance and aquaporin abundance to be rapidly increased 
in the wet side (within 24 hours) after local dehydration 
of the root system (McLean et al. 2011), suggesting a sys-
temic compensation and regulation of water uptake dur-
ing PRD.

Several investigations have been carried out using a 
split-root system to mimic PRD and explore the local 
and systemic signaling governing PRD. ABA is the most 
studied non-hydraulic signal that may regulate and coor-
dinate the underlying developmental and functional 
responses. Early studies have shown that tomatoes under 
root-zone water deficit had a lower stomatal conductance 
and greater root hydraulic conductivity due to overpro-
duction of ABA (Thompson et  al. 2007). However, Liu 
et  al. (2008) noted that PRD plants had a lower stoma-
tal conductance and similar photosynthesis compared 
to fully irrigated plants. Yet, the xylem sap ABA concen-
tration of PRD plants was not higher than fully irrigated 
plants in the first day of PRD, making ABA questionable 
as the root to shoot signal in the early stage of PRD.

The different effects of water heterogeneity within the 
root zone have also been explored in pot experiments 
(Puértolas et  al. 2013; Puértolas et  al. 2015). In a set of 
experiments using beans (Puértolas et al. 2013) or pota-
toes (Puértolas et  al. 2015) grown in soil columns that 
received different irrigation treatments to induce dis-
tinct vertical soil moisture gradients, it was observed that 
root ABA concentration and root water potential were 
homogeneous within the different root parts. On the 
contrary, horizontal heterogeneous soil moisture induced 
much higher ABA accumulation in the roots (Puértolas 
et al. 2015). These results and others on barley (Martin-
Vertedor and Dodd 2011) challenge a direct correlation 
between local water deficit and ABA signaling. Many 
molecules including sugar, proline and other metabolites 

(Abdallah et al. 2019; Iqbal et al. 2019; Raza et al. 2017) or 
proteins (Sadak et al. 2019; Sadak et al. 2020) were found 
to be produced and over accumulate under PRD irriga-
tion conditions (Fig. 3C). However, there is no direct evi-
dence yet to prove a possible role in systemic signaling. 
Furthermore, the role during PRD of other putative sig-
nals such as small RNA, microRNA, ncRNA and peptides 
has not been explored yet (Fig. 3C).

Conclusion and prospects
In recent years, much progress has been made in deci-
phering the mechanisms for sensing and signaling water 
deficit. The identification of several sensing molecules 
exemplify the central role of osmosensing in plant. But, 
how these molecules interconnect remains mostly unex-
plored. They might act in parallel pathway reflecting 
the diversity of osmotic signal that cells have to face. 
Alternatively, they could share some redundancy in the 
perception machinery or in triggering the downstream 
signaling. Unfortunately, our current knowledge remains 
too fragmented to assess the proper kinetic of events. 
Interestingly, most of the molecular actors described so 
far are localized to the plasma membrane, as it is sus-
pected to be the ideal place for water sensing. Never-
theless, we realize that changes in cell volume or turgor 
could be perceived in subcellular compartments or struc-
tures deprived of membranes. For instance, liquid-liquid 
phase separation (LLPS) is a process where two liquids 
can be separated into non-miscible phases depending on 
concentration and which can be modulated by physico 
chemical alterations of the system (Cuevas-Velazquez 
and Dinneny 2018; Korkmazhan et  al. 2021). LLPS can 
happen at many cell locations including contacts with 
a membrane but also in the cytoplasm or nucleoplasm, 
where it was originally discovered (Nucleolus, Cajal 
bodies, nuclear speckles). In animal cells, processing 
bodies (PBs) containing mRNA-decapping enzyme 1A 
(DCP1A) are examples of subcellular compartments that 
are deprived of membranes and rapidly phase separate 
under hyperosmotic stress while dissolving back upon 
isotonic rescue (Jalihal et al. 2020). These PBs sequestrate 
pre-mRNA cleavage factors from actively transcribing 
genome loci (Jalihal et al. 2020). This example provides a 
mechanical framework for gene regulation under hyper-
osmotic stimulation. Similarly, the apoptosis signal-reg-
ulating kinase 3 (ASK3) is inhibited by phase separation 
under hyperosmotic stress (Watanabe et  al. 2021). In 
plants, phase separation can be associated to many pro-
cesses like regulation of flowering time, temperature 
sensing, and auxin or SA signaling, (Fang et  al. 2019; 
Powers et al. 2019; Zavaliev et al. 2020; Jung et al. 2020). 
Regarding water sensing, FLOE1, a prion like structured 
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protein, undergoes phase separation in  vitro and dur-
ing seed imbibition (Dorone et al. 2021). The biophysical 
state of FLOE1 modulates its biological activity in sup-
pressing seed germination under unfavorable environ-
ments. Moreover, it was found that natural variation in 
the coding sequence of FLOE1 is associated with adap-
tive germination strategies in natural populations (Dor-
one et al. 2021). These findings on significance of LLPS in 
biology open new avenues to re-investigate the molecular 
mechanisms of plant osmotic sensing.

Like for osmotic perception, a large and ever increasing 
number of molecules have been proposed to act in local 
and long distance signaling of water availability. Strik-
ingly enough, most of these signaling molecules and their 
corresponding receptors are likely to possess more func-
tions than those that were originally assigned, revealing a 
complex array of interactions and interplays. Moreover, 
these molecular mechanisms have been identified in a 
limited number of model plants cultivated under highly 
controlled and often artificial growth conditions. In con-
trast, responses at the whole plant level have been mostly 
investigated in crops or understudied species. This is 
particularly striking for PRD where researches were con-
ducted in crops/trees grown in a wide range of stresses 
(localization intensity, duration). Thus, it is difficult to 
integrate all available information to build a systemic sig-
nal network for plant response to heterogeneous water 
distribution. Furthermore, many of the signal molecules 
and mechanisms identified under homogeneous water 
deficit condition have not been or very partially investi-
gated under heterogeneous water distribution.

Accordingly, little is known about the nature, the tem-
porality and the function of sensing and local and sys-
temic responses to heterogeneous water availability. We 
believe that studying rapid and long term responses to 
local water deficit in model species and under controlled 
conditions should lead to breakthroughs in the identifica-
tion of the molecules and of their interactions that trigger 
plant acclimation responses. Identifying the main actors 
that trigger, prime or coordinate plant responses to water 
availability will provide a first step toward improving 
the efficiency and coordination of these responses. In 
the long term, these studies will allow identifying novel 
breeding targets to enhance crop tolerance to drought 
and develop new varieties that are well adapted to water 
saving irrigation strategies.
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