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Abstract

Background: Phenomic prediction has been defined as an alternative to genomic prediction by using spectra
instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a
tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture
genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far
about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits,
mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine,
using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related

to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and
phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which
condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability.

Results: For the first time, we showed that the similarity between spectra and genomic relationship matrices was
stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and
half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability,
while using spectra collected on wood or leaves from one year or another had less impact. Differences between
populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diver-
sity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits
between predictive ability of genomic and phenomic predictions.

Conclusion: NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such
as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment
interactions and confirms that phenomic prediction can rely only on genetics.
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Background
Viticulture has to face two major threats in the next dec-
ades, diseases and climate change, which impact both
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of the long juvenile period and cumbersomeness of
field trials. Indeed, phenotyping requires 6 to 7 years in
grapevine, and breeding cycles traditionnally last at least
15 years. Genomic prediction (GP), first proposed by
Bernardo et al. [2] and Meuwissen et al. [18] is a prom-
ising tool to speed up breeding programs and increase
selection accuracy, by using genomic information to
predict breeding values of candidates to selection. Even
though genotyping costs have decreased drastically dur-
ing the last decades, they can still be prohibitive when
hundreds of selection candidates have to be genotyped.
That is why Rincent et al. [24] proposed to switch from
genomic markers to near-infrared spectra (NIRS) meas-
ured on plant tissues, in a new concept called phenomic
prediction (PP). The relationship matrix based on NIRS
is indeed expected to share similarities with the genomic
relationship matrix, because a reflectance spectrum is
determined by the biochemical composition of the ana-
lyzed sample (Beer-Lambert law), which in turn is deter-
mined by genetic and environmental factors. As PP uses
endophenotypes such as NIRS, it may better account for
non-additive genetic effects. In addition, besides being
cheaper, NIR measurements are high-throughput, which
is required for screening the large populations typically
evaluated in breeding programs. One step further, Rob-
ert et al. [26] proposed a definition of genomic-like omics
based (GLOB) prediction, which encompasses both phe-
nomic and other omics-based prediction as in Schrag
et al. [28]. GLOB is a particular configuration where
NIRS (or other omics) used for model training and pre-
diction come from different environments.

Rincent et al. [24] found that phenomic predictive abil-
ity could be higher than genomic predictive ability with
wheat grain NIRS and equivalent predictive ability (PA)
with poplar wood NIRS for some traits. In wheat, when
predicting across environments, PP was still more accu-
rate than GP for most traits.

Other studies, such as Lane et al. [16] in maize reported
PA for PP, but in this study, GP was not implemented for
comparison. Krause et al. [15] applied PP in wheat in a
single environment with hyperspectral imaging from dif-
ferent phenological stages, they found higher PA with PP
than with GP for most time-points studied. Indeed, this
might be explained thanks to genotype-by-environment
(G x E) interactions, because NIRS on training set (TS)
and validation set (VS) were measured in a single envi-
ronment, and spectra and traits were collected the same
years. Several studies also reported an increase in PA
when combining genomic and phenomic matrices in a
single prediction model [6, 12]. Nevertheless, PP is still
in its infancy, as it has been mostly applied to cereals with
grain and leaves as tissues. Many issues remain, in par-
ticular which could be the best way to implement PP in
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breeding programs. In the case of perennial species, such
as grapevine, year effect is known to strongly affect phe-
notype, and how behaves PP in this context remains to be
studied. Also, in the case of woody perennial, wood mat-
ter offers another kind of material for collecting spectra
which could be complementary to leaves. Rincent et al.
[24] found in wheat that combining NIRS collected on
leaves and grains could enhance the PA for some cases.
More work is thus required to devise a strategy for imple-
menting PP in breeding programs.

In grapevine, GS has been already implemented and
gave promising results on different populations [3, 4, 9,
10]. However, so far to our knowledge only one study has
evaluated PP in woody perennials (in poplar [24]) and
consequently none on grapevine.

The aim of this study was to understand under which
configuration PP could be implemented in grapevine
breeding programs. For that, we used spectra and phe-
notypes collected different years appart, in order to
minimize G X E interaction effects, which are typically
captured by spectra. It allows us to disconnect phenomic
prediction from G x E. We first provided a thorough
characterization of the genetic signal in spectra. Spe-
cifically, we performed a co-inertia analysis [7] to assess
the covariation between genotyping and NIRS matri-
ces. This methodology was already used in ecology and
multi-omics studies but has never been applied in this
context [17, 19]. It consists in maximizing the covariance
between eigenvectors of matrices. By using co-inertia
analysis, we wanted to assess to what extent spectra pro-
vide similar information as molecular markers, in terms
of genetic relationship.

Then, we compared multiple configurations for per-
forming PP, such as using raw NIRS vs. derived BLUPs
over a single or two years and over a single or two tissues.
Finally, three distinct questions were answered: what is
the best configuration for performing PP? How do phe-
nomic PA performs compared to genomic PA? Can add-
ing NIRS to genotypic data increase PA?

Material and methods

Plant material

Our plant material is composed of a diversity panel
reflecting the whole genetic diversity of Vitis vinifera [22]
and a half-diallel [29], more similar to the populations
used in breeding programs.

The diversity panel is composed of 279 varieties, with
an equal proportion of individuals from each of the three
gene pools: Wine West (WW), Wine East (WE) and Table
East (TE) [22]. This panel was overgrafted on Marselan
in 2009, itself grafted on Fercal. Field location is in the
Domaine du Chapitre experimental vineyard of Institut
Agro | Montpellier SupAgro in Villeneuve-lés-Maguelone
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(South of France). The panel is replicated in five rand-
omized complete blocks, each variety being represented
by one plot of a single vine in each block.

The half-diallel is composed of 676 individuals from
ten bi-parental populations (hereafter named crosses) in
a half-diallel mating design between five parents: Syrah
(S), Grenache (G), Cabernet-Sauvignon (CS), Terret
Noir (TN) and Pinot Noir (PN) [29]. All of them, except
Grenache, belong to the WW gene pool [4]. Each cross
comprises between 64 and 70 offspring. This population
was planted in 2005 and grafted on Richter 110. Field
location is the same experimental vineyard, a few kilom-
eters away from the diversity panel field trial. The half-
diallel is replicated in two randomized complete blocks,
each offspring being represented by one plot of two con-
secutives vines in each block.

Phenotyping

We studied the same 15 traits in both trials (diversity
panel and half-diallel). Phenotypic data were collected in
2011 and 2012 for the diversity panel and between 2013
and 2017 for the half-diallel. Traits were related to (i)
berry composition at harvest, with malic acid (mal.ripe),
tartaric acid (tar.ripe), shikimic acid (shik.ripe) concen-
trations, and shikimic to tartaric acid (shiktar.ripe) and
malic to tartaric acid (maltar.ripe) ratios, (ii) berry and
cluster morphological traits, with mean berry weight
(mbw), mean cluster weight (mcw), mean cluster length
(mcl), mean cluster width (mcwi) and cluster compact-
ness (clucomp), (iii) phenology traits, with véraison date
(onset of ripening, verday), harvest date (samplday) and
the interval between véraison and harvest (vermatu),
(iv) vigor (vigour). Details about phenotypic measure-
ments, statistical processing and heritability can be found
in Brault et al. [4]. For prediction, we used the Best Lin-
ear Unbiased Predictors (BLUP) of genotypic values
from Flutre et al. [9] in the diversity panel and Brault
et al. [4] in the half-diallel. Briefly, a mixed linear model
was fitted for eliminating experimental confounding
effects and in order to extract BLUPs of genotypic values.
In the following, only BLUPs of genotypic values were
used for the diversity panel, whereas the sum of geno-
typic and cross BLUPs were used for the half-diallel.

SNP genotyping

We used a set of 32,894 SNP markers common to both
populations, coming from genotyping-by-sequencing
technology (ApeKI) [8], using [llumina Hi-seq sequenc-
ing. Details about genotyping and marker processing are
given in Tello et al. [29] for the half-diallel and in Flutre
et al. [9] for the diversity panel. The selection of common
SNPs was done in Brault [4]. 622 out of 676 individuals
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were successfully genotyped in the half-diallel, and 277
out of 279 individuals in the diversity panel.

Spectra measurements

Spectra were measured in both trials on dried wood and
leaves collected during two consecutive years (2020 and
2021). For wood tissue, two shoots were cut per plot, on
two vines in the half-diallel and one in the diversity panel.
These wood shoots were approximately 3 cm long. Wood
was harvested on January 277 in 2020 and January 144
in 2021. For leaf tissue, four discs were sampled per plot,
on two adult leaves per vine for two different vines in
the half-diallel and on four leaves per vine in the diver-
sity panel. Leaf disks had diameters of circa 1 cm and 0.5
cm in 2020 and 2021, respectively. Leaf tissue harvest
occurred on July 1% 2020 and June 16 2021. Two blocks
were used in both trials, leading to a total of four wood
shoots and eight leaf discs per genotype. After harvest,
shoots and leaves were dried at 60°C until the weight
stopped decreasing, and then stored in a cold chamber
until measurements. For each tissue, spectra measure-
ments for both populations lasted a few weeks.

For spectra gathering, a reflectance probe plugged to
a visible-infrared spectrometer was used (LabSpec 2500
Portable Vis/Nir spectrometer device ; Analytical Spec-
tral Devices, Inc., Boulder, CO, US) with its associated
software IndicoPro 6.5. A reference spectrum was taken
twice a day, using Spectralon ®. For each wood shoot,
two scans were taken, one on each end of the shoot. For
each leaf disc, one scan was taken, on the adaxial surface.
Thus, for each tissue, four scans were produced per plot
(i.e., per genotype x block combination). Wavelengths
ranged from 350 to 2,500 nm, with a 1 nm step. For each
scan, the spectrometer takes 10 spectra which are auto-
matically averaged to make one spectrum record. In total
around 1800 and 5400 scans were collected on the diver-
sity panel and the half-diallel populations for each year
and tissue, respectively.

Spectra pre-processing

Spectra were processed separately within each trial. The
first 50 wavelengths (visible range) were cut, because
of instabilities. The average of the four spectra per plot
were then carried out over the 2101 remaining wave-
lengths. From these averaged raw spectra (raw), five
pre-processing were then applied: smoothing (smooth)
using Savitzky-Golay [27] procedure, normalization or
standard normal variate (snv) which consists in center-
ing and scaling [1], detrend (dt) for removing baseline
[1], and first and second derivative on normalized spectra
(derland der2, respectively), also for removing baseline
and exacerbate some parts of the signal.
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Table 1 Mixed model fitted, depending on the model combination
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Wood + leaves

Wood Leaves
2020 1 1
2021 1 1
2020 4 2021 1+geno : year + cross : year 14geno : year + cross : year

1 +geno : tissue + cross : tissue
1 +geno : tissue + cross : tissue
1 4geno : tissue + cross : tissue + geno : year + cross : year

cross effect is replaced by subpop for the diversity panel. 1 corresponds to the mixed model specified in Eq. 1

On each of these six spectra matrices (raw, smooth,
snv, dt, derl and der2), we applied a mixed model over
the reflectance at each wavelength, to compute variance
components and derive NIRS genotypic BLUPs for each
possible combination of three models at the tissue level
times three models at the year level (Table 1).

The mixed model was:

rijk = | + geno; + cross/subpop; + block; + x + y + €

(1)

With r the reflectance at a given wavelength, u the inter-

cept, geno the random genotypic effect, cross/subpop

the random effect for cross (10 levels in the half-diallel)

or subpopulation (3 levels in the diversity panel) effect,

block the fixed effect of block, x and y the random effects
for plot coordinates, and ¢ the residuals.

Factors could then be added to this base model,
depending on the model combination (Table 1).

NIRS BLUPs used further were the sum of genotypic
and cross or subpopulation BLUPs. For comparison, we
also computed genotypic BLUPs from models without
cross or subpopulation effects.

For comparison purpose and to evaluate the benefit of
fitting a mixed model per wavelength to extract a geno-
typic BLUP (i.e. BLUP spectra), we also computed for
each of the 6 spectra matrices (raw, smooth, snv, dt,
derl and der2) the averaged spectra per genotype, this
configuration was called base spectra.

Variance components and co-inertia

Variance components from mixed models were extracted
at each wavelength and compared between model combi-
nations and populations.

We also compared relationship matrices obtained
independently from SNPs (that is, the genomic relation-
ship matrix) and NIRS BLUPs (that could be called the
phenomic relationship matrix), using co-inertia analysis
[7]. Briefly, the co-inertia between two matrices X and Y
(from SNP and wood NIRS for example) is computed as:

coinertia(X,Y) = trace(XQxXTDYQyYTD), with Qx
and Qy the weights associated with X and Y columns
(SNP markers and reflectances), which were set to 1, and

D the weights associated with X and Y rows (individuals),
which were set to 1/n with n the number of individuals.
Then, a measure of correlation between X and Y can be

computed as the RV coefficient [25]:
RV = coinertia(X,Y)
— Jcoinertia(X,X)/coinertia(Y,Y)
We applied co-inertia analysis to SNPs, wood and leaf
NIRS BLUPs, in order to estimate pairwise RV coeffi-

cients between these matrices.

Heritability assessment

Heritability values of phenotypic data were assessed for
both populations in Flutre et al. [9] for the diversity panel
and in Brault et al. [4] for the half-diallel. Broad-sense
heritability values ranged between 0.53 and 0.91 for the
half-dialle] and between 0.72 and 0.97 for the diversity
panel.

Heritability values were also assessed for reflectance
data at each wavelength, after mixed model fitting. As for
phenotypic data, heritability formula was calculated on
an entry-mean basis, as described in Piepho et al. [23]:

[ +o, .
H2 — geno cross W lth th e

2 2 2,2, .27
Ogenoyear tOCross:year | Ox +0y +0&

Nyear

variance components previously estimated in the mixed
model, #,ep yeqr the mean number of replicates per year,
and 71y, the number of year (one or two, depending on
the model).

2 2
ageno+ocross+ Hrep X Nyear

Phenomic and genomic prediction models

Three methods were compared for the implementation
of PP and GP, based on two models. Models were fitted
separately for each population and trait.

rrBLUP vs GBLUP model type

o In rrBLUP, we fitted the following model:
y =X + ¢, with y the vector of genotypic BLUPs
from phenotypic data, X the matrix for marker geno-
types (additively coded as in Brault et al. [4]) or wave-
length data (from NIRS BLUPs for each of the nine
above-mentioned model combinations), 8 the marker
or wavelength effects and € the residual effects. This
model was fitted using R/glmnet package version
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4.1-2 [11]. In rrBLUP, marker or wavelength effects
are shrunk towards zero, according to a regulariza-
tion parameter, chosen by an inner cross-validation
(CV).

+ In GBLUP model (using the NIRS or the genomic
relationship matrix), we fitted the following model:
y=u+¢€, with y the vector of genotypic BLUPs
from phenotypic data, u# the random effects for
genomic or phenomic estimated breeding value, with

u~ N, 031( ), K being the relationship matrix from

markers or spectra, o2 the genetic variance, and € the

random residual effect, € ~ N (0, ‘731 ), I being the
X XTI

nb of Xyc columns’

ously described X matrix scaled on allelic frequencies

or wavelength reflectances. This model was fitted
using R/Ime4GS package version 0.1 [5].

identity matrix. K = Xsc the previ-

Multi-matrix model fitting

Using R/lme4GS allowed us to fit a single model involv-
ing several variance-covariance matrices, such as:
y = Z}I:l uj + €, with u; ~ N(0, aj21<j), and K; the rela-
tionship matrix from SNPs, wood NIRS or leaf NIRS
previously described. We fitted this multi-matrix model
using two or three variance-covariance matrices: SNPs +
wood NIRS, SNPs + leaf NIRS, wood NIRS + leaf NIRS
and SNPs + wood NIRS + leaf NIRS.

Cross-validation

PP and GP models were assessed within each popula-
tion and for each trait using CV. In order to egalize the
TS size between populations, a 10-fold CV was applied
in the half-diallel, while a 5-fold CV was applied in the
diversity panel. CV was repeated 10 times. For each CV
replicate, predicted values from all folds were combined
and compared with observed genotypic BLUPs. We com-
puted predictive ability (PA) as Pearson’s correlation
between the observed and predicted genotypic values. In
the half-diallel, PA was calculated within each cross, as it
was done in Brault et al. [4]. Predicted genotypic values
were separated per cross and predictive ability was calcu-
lated for each of the ten crosses.

Results

Characterization of genetic signal in spectra

Variance components

Variance components for the nine model combinations
studied in each population are shown in Fig. 1 for derl
pre-processing, the pre-process with the highest herit-
ability (Additional file 1: Fig. S1). In both populations,
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Fig. 1 Variance components from the mixed models applied to NIRS
after der1 pre-process. A in the diversity panel population, B in the
half-diallel population. x and y correspond to field plot coordinates

genotypic variance was maximized in single-year and
single-tissue analyses. The genotypic variance had the
same magnitude between years (2020 and 2021) and
between tissues (leaf and wood). In multi-tissue analyses,
genotypic variance drastically decreased and was mostly
replaced by the geno:tissue interaction variance, while in
multi-year analyses, genotypic variance was only partly
replaced by the geno:year interaction variance. A strong
x effect (row effect) was observed, while barely no y effect
was present.

Comparing populations, the cross variance in the half-
diallel was larger than the subpop variance in the diver-
sity panel. The variance of interactions between cross or
subpop and year or tissue remained low. The geno:year
interaction was more important in the diversity panel
than in the half-diallel for leaf tissue, and comparable for
wood tissue.
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A Diversity panel B Half-diallel

snp snp

RV value

wood.2y wood.2y

leaves.2y leaves.2y

snp wood.2y leaves.2y snp wood.2y leaves.2y

Fig. 2 Rho-vector (RV) coefficient between the genomic
relationship matrix (“snp”) and the relationship matrices

derived from wood and leaf NIRS BLUPs of genotype + cross or
subpopulation effects with both years included in the mixed model
("wood.2y’, “leaves.2y’, respectively). A in the diversity panel, B in the
half-diallel. RV: rho-vector

Heritability

Genotypic variance results were consistent with herit-
ability values calculated for each wavelength (distri-
butions of heritability values for each pre-process are
given in Additional file 1: Fig. S1).

When comparing raw and pre-processed spectra, it
was clear that the lowest heritability values generally
corresponded to raw and smooth spectra. Heritability
values for other pre-processes were close to each other,
derl yielding the highest heritability values overall
(Additional file 1: Fig. S1).

Including both wood and leaf NIRS in the mixed
model resulted in very low heritability values (Addi-
tional file 1: Fig. S2), hence we excluded this model
in the following analyses. The analysis wavelength by
wavelength has showed that NIRS carry some genetic
variance, with a moderate magnitude. To further char-
acterize this genetic signal over the entire spectral
range, we then carried out a co-inertia analysis between
NIRS and SNP matrices.

Comparison of matrices from SNPs and NIRS, using co-inertia
analysis
Co-inertia analysis was conducted on single-tissue mod-
els only. Figure 2 shows for each population the relative
co-inertia between three matrices of SNPs, wood and leaf
NIRS BLUPs of genotype + cross or subpopulation effects
for “2 years” models. For both populations, correlation
with SNPs was similar between wood and leaf NIRS.
However, this correlation was nearly twice higher in the
half-diallel than in the diversity panel. It is noteworthy
that in both populations the correlation between the SNP
matrix and NIRS BLUPs matrices (obtained from wood
or leaves) was higher than between the two NIRS BLUPs
matrices obtained on wood and leaves.

We also carried out the co-inertia analysis with matri-
ces derived from NIRS BLUPs of genotype effect for a
model containing either a genotype effect only or both
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genotype and cross or subpopulation effects (Additional
file 1: Fig. S2).

Using such matrices strongly decreased correlation
with the SNP matrix, as compared to using matrices
derived from BLUPs of genotype + cross or subpopulation
effects (Additional file 1: Fig. S2). Therefore, in subse-
quent prediction analyses, we used only the latter matri-
ces including cross or subpopulation effect. Matrices from
multi-year NIRS BLUPs generally displayed a slightly
higher correlation with the SNP matrix than the single-
year BLUPs, and this effect was more pronounced in the
half-diallel (Additional file 1: Fig. S3).

Phenomic prediction using BLUPs vs base spectra

and rrBLUP vs GBLUP

In each population and across both tissues and both
years, using spectra BLUPs instead of base spectra almost
always resulted in higher PA (Fig. 3). However, differ-
ences were observed depending on the method and pop-
ulation. The method yielding the highest PA was GBLUP
(implemented with Ime4GS) in the half-diallel and rrB-
LUP (implemented with glmnet) in the diversity panel.
However, it is worth mentioning that differences between
methods were found to be more pronounced in the half-
diallel than in the diversity panel. The highest differences
between base spectra and BLUPs were observed for the
best method in each population.

Thus, we retained spectra BLUPs in all cases, Ime4GS
in the half-diallel and glmnet in the diversity panel.

We observed higher variance in PA in the half-diallel
than in the diversity panel, because in the half-diallel,
PA distribution was over 10 crosses in addition to the 6
years X tissues model combinations retained (see above).
Average PA for the best method was slightly higher in the
half-diallel (0.31) than in the diversity panel (0.26).

We compared PA for all pre-processes, after selecting
the best method for each population (Additional file 1:
Fig. S4). We found that derl and der2 pre-processes gave
close results, with a slight superiority of derl overall.
Therefore, we kept only this pre-process in subsequent
analyses.

Phenomic prediction using NIRS collected over one or two
years and tissues

We further compared PP models including a single vs.
both NIRS BLUP matrices obtained from wood and
leaves. For each tissue configuration, we used the NIRS
BLUPs derived from the above-described year configu-
rations (2020, 2021 or both). For single tissue configura-
tions, we used the best method selected above in each
population, and one NIRS BLUP matrix was fitted. For
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the wood+leaves configuration in both populations, two For both populations, the nine configurations tested
NIRS BLUP matrices (one for wood and one for leaves)  resulted in close PA distributions (Fig. 4). Yet, “2 years”
were fitted using Ime4GS package. and “wood+leaves” configurations overall gave the best

average PA values. We thus retained only multi-year and
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multi-tissue PP results for subsequent comparison with
GP.

Finally, PA was slightly higher in the half-diallel on
average, with a larger variance originating from differ-
ences between crosses (see hereafter).

If we now turn to details per trait, the results show that,
within the diversity panel, each trait displayed nearly the
same PA for the different tissue configurations, for PA
values above 0.2 (Additional file 1: Fig. S5). In the half-
diallel, there were larger differences between tissue con-
figurations. However, this factor still had far less impact
on PA than cross or trait.

Overall average PA of PP for “2 years” and
“wood+leaves” configuration was 0.27 in the diversity
panel and 0.35 in the half-diallel (Fig. 4). PA values per
trait ranged from -0.04 for shiktar.ripe to 0.59 for mbw
in the diversity panel (Additional file 1: Fig. S5A), and
from 0.09 for mal.ripe to 0.72 for mbw in the half-diallel
(note that in the half diallel, PA values per trait are aver-
aged over the 10 crosses). However, large differences in
PA of PP were observed within a trait at the cross level in
the half-diallel for “2 years” and “wood-leaves” configu-
ration, such as for tar.ripe, from -0.49 for GxCS to 0.74
for TNxS (Fig. 5B and Additional file 1: Fig. S5B). Com-
paratively, differences at the cross level were lower for GP
(Additional file 1: Fig. S6). The best predicted cross with
PP over all traits was GxS (average PA of 0.41) and the
worst one was TNxG (0.29) (Additional file 1: Fig. S7).
For some crosses and traits, PA values could be above 0.8,
the maximum PA for PP being 0.91 for mbw and TNxG
(Additional file 1: Fig. S5B).

Comparison of PP with GP

Before comparing PP with GP, we applied GP on both
populations with the two methods previously compared
for PP (Additional file 1: Fig. S6). We found that Ime4GS
was overall the best method in both populations, hence
we retained this method for the following comparison.
Like this was the case for PP, differences between meth-
ods appeared to be more pronounced in the half-diallel
than in the diversity panel.

The PA reached by PP was generally lower to that of
GP in both populations. Differences between PP and
GP was small for a few traits and for some half-dial-
lel crosses (samplday, vermatu and mbw) (Fig. 5). PP
even in some cases outperformed GP in the half-diallel,
such as for CSxPN, GxCS, GxPN and vigour, or GxCS,
SxPN, TNxPN and clucomp. Differences in PA between
PP and GP were lower in the diversity panel than in the
half-diallel.
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In the diversity panel, PA of PP was significantly higher
(non-overlapping error bar) than PA of GP for one trait
(mcl) and non-significantly different for two other traits
(clucomp and vermatu) (Fig. 5A). In the half-diallel, PA
of PP was significantly higher than PA of GP for 28 trait
x cross combinations out of 150, while this difference
was not significant in 17 other cases (Fig. 5B). In all other
cases, PA of PP was lower than PA of GP.

In Fig. 6, we further compared mean PAs of PP and
GP per trait in each population. In both populations,
the slope of the regression model was close to 1 and the
intercept to — 0.2. This suggests that PA of PP and GP
follow the same ranking, independently of the trait. How-
ever, this regression had a much lower R? in the half-dial-
lel than in the diversity panel.

Enhancing genomic prediction using NIRS

Another possible way of using NIRS is to add it into the
predictive model together with SNPs, in order to increase
PA. We thus implemented multi-BLUP models with
SNPs and NIRS BLUPs and compared them to GP mod-
els in each population.

Overall, for both populations and for all traits, differ-
ences in PA between SNP based model and different
combined GP+PP models were small (Additional file 1:
Fig. S8). In the diversity panel, combining wood NIRS
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with SNPs led to the best PA (0.405), closely followed by
leaves NIRS + SNPs (0.403), wood NIRS + leaves NIRS
+ SNPs (0.402) and SNPs alone (0.400). In the half-dial-
lel, SNPs alone gave the highest PA (0.595), followed by
wood NIRS + leaves NIRS + SNPs (0.587), leaves NIRS
+ SNPs (0.576), and wood NIRS + SNPs (0.569).

Nevertheless, adding NIRS to a predictive model could
lead to minor (non-significant) improvements in PA for
some traits, compared to classic GP. Combining GP +
PP from wood NIRS slightly increased PA over the GP
model for two traits in the diversity panel (clucomp and
mcl) (Additional file 1: Fig. S8A). In the half-diallel, the
difference in average PA with GP was much more vari-
able among traits, with an increase for vigour, clucomp,
vermatu and samplday, and a decrease for mal.ripe, tar.
ripe, shik.ripe, shiktar.ripe, maltar.ripe, nbclu, mcl
and mcwi (Additional file 1: Fig. S8B).

Discussion

So far, PP has only been implemented in a reduced num-
ber of species and traits. This study provides the first use
of PP in grapevine, within two complementary popu-
lations: a diversity panel and a half-diallel. Besides, we
tested PP for 15 traits, belonging to four categories: berry
composition, phenology, morphological traits and vig-
our. We first showed that NIRS variability was partly of
genotypic origin. We then tested several parameters for
PP implementation. We found that pre-processing had a
little impact on NIRS heritability and PA. Nevertheless,
using genotypic values from NIRS resulted in a strong
increase in PA, while tissues and years tested had a rela-
tive small impact on PA. Finally, we found that PP could
yield PA values close to or even higher than GP ones, for
some traits and crosses.

NIRS variance components and co-inertia with SNPs
Genotype and derived interaction variables had a fairly
moderate impact on total variance observed between
spectra (Fig. 1). The genotypic effect was best captured
in single-tissue analyses. This was not surprising, because
the genetic signal at a given wavelength relies on mol-
ecules specific to each tissue. Then, mixing both tissues
into a single model led to no overall genetic effect and
to strong geno:tissue interaction. This tendency was also
observed, to a smaller extent, in the multi-year analyses.
This also suggests that different tissues bring non redun-
dant genetic information. This was confirmed by co-iner-
tia analysis, which evidenced that NIRS matrices from
wood and leaves were more correlated to the SNP matrix
than to each other.

Interestingly, co-inertia analysis showed that multi-year
NIRS BLUP matrices were slightly more correlated with
the genomic relationship matrix than single-year ones,
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despite lower genotypic variance. This implies that the
genotypic part of NIRS estimated by multi-year analysis
could be more related to the genetic signal. Thus, genetic
signal ignoring genotype-by-environment interactions
could be better captured when several years are com-
bined, this was also the case in Galan et al. [13] for which
multi-year spectra resulted in higher PA values.

Comparatively to genotype-related effects, among
non-residual variance components, x effect displayed
a large variance along wavelengths (Fig. 1). This effect
actually corresponds to a row effect and might be due to
the experimental design, which encompass field effects
and spectra collection design, both being confounded.
Indeed, leaf discs and wood shoots were both sampled
and scanned row by row, sometimes several weeks appart
for NIRS collection. However, we cannot determine
whether this x effect comes from the tissue sampling, i.e.,
sampling time (over a day), soil heterogeneity ; or from
the NIRS measurement step, i.e., device calibration, dif-
ferential storage time, air humidity. Our results under-
line the importance of accounting such experimental
effects in order to improve the genetic signal captured
and thus prediction. In further experiments, one could
increase the number of spectra per plot and randomize
NIRS measurements, in order to determine if the x effect
observed here was due to measurement or sampling and
to reduce it. Other studies that fitted a linear model for
each wavelength did not introduce field coordinates as
effects (e.g. [12, 15, 16]). But the first and last studies
were based on hyperspectral images taken with aircraft
flights, that is with an experimental design less prone to
plot location effect, and the second study fitted a linear
model with only block and environmental effects.

Galén et al. [12] found a mean heritability value of 0.73
for wavelength reflectances, which is substantially higher
than the values we observed (Additional file 1: Fig. S1).
However, we did not use the same heritability formula.
Montesinos-Lépez et al. [20] also reported overall higher
heritability values ranging from 0.6 to 0.8 for most time
points, with strong variations depending on the environ-
ment (water availability) and time-point.

We found higher heritability and genetic variance in
the diversity panel than in the half-diallel. Yet, PA were
generally higher in the half-diallel. In Rincent et al. [24],
genetic variance estimates per wavelength between wheat
and poplar were consistent with PA in these species, i.e.,
they evidenced higher PA values in wheat than in poplar.
On the opposite, our results on co-inertia analysis were
consistent with PA values: correlation between SNP and
NIRS BLUPs matrices was higher in the half-diallel than
in the diversity panel (Fig. 2). This suggest that co-iner-
tia analysis is more relevant to compare configurations
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for NIRS BLUP than variance components. The higher
co-inertia observed between SNP and NIRS BLUP in
the diallel with respect to the diversity panel is likely to
be explained by the higher genetic structure in the half-
diallel, or because the half-diallel is in better health than
the diversity panel, which is older and overgrafted. Actu-
ally, it was surprising that NIRS could capture genetic
structure, i.e., in our case the subpopulation effect in
the diversity panel and the cross effect in the half-dial-
lel. Although variance components for subpopulation
and cross remained moderate (Fig. 1), adding the corre-
sponding BLUP effects to genotypic effects led to a sharp
increase in correlation between NIRS and SNP matrices
(Additional file 1: Fig. S2). Further in-depth studies are
required to better understand whether this observation
could be specific to some subpopulations or families.

Optimizing PP

Among the parameters tested, some had substantial
impact on PA, while others had only negligible impact.
Namely, using NIRS via BLUP analysis instead of merely
average spectra per genotype led to a strong increase
in PA (Fig. 3). This was probably associated with the
strong x effect we observed in variance analysis. Such a
difference had never been reported before, as studies
obtained PP results either from base (such as [6, 24]) or
BLUE (such as [15, 16]) spectra, without comparing both
configurations.

Surprisingly, the prediction method also had notable
impact on PA: using rrBLUP or GBLUP models gave differ-
ent PA in the half-diallel, while differences in PA between
methods were lower in the diversity panel (Fig. 3). Yet,
GBLUP and rrBLUP models are expected to perform simi-
larly when the regularization parameter in ridge regression
is equal to 02/ ag2 [14]. In our analysis, this parameter value
was chosen by cross-validation using cv.glmnet function.
The higher relatedness between genotypes within the half-
diallel than within the diversity panel (Brault et al. [4], Fig. 1a)
may boost GBLUP models compared to rrBLUP in this
population. In future investigations, one could use variable
selection method such as LASSO to select the most relevant
wavelengths for computing the relationship matrix from
NIRS BLUP. Such variable selection was performed by Galan
etal. [12] and resulted in higher PA.

On the opposite, using single-year, single tissue, multi-year,
or multi-tissue NIRS BLUPs and all pre-processes except
smooth gave very similar results over all traits and crosses
(Fig. 4), with a slight superiority of multi-year model over-
all. This was consistent with the results of co-inertia analysis
(Additional file 1: Fig. S3). In Rincent et al. [24], the multi-
tissue analysis for wheat with leaf and grain combined gave
similar PA as for single-tissue analysis. As the combination
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of two tissues for PP was only done in one other study [24],
further work needs to be done to assess these conclusions.

For a given trait, both tissues tested gave similar PA for
the diversity panel (Additional file 1: Fig. S5A). For the half-
diallel, more differences were observed between tissues,
and much larger differences were observed between crosses
(Additional file 1: Fig. S5B). However, no cross was con-
sistently well or poorly predicted for all traits, suggesting a
strong cross X trait interaction. These large disparities among
crosses were consistent with the GP results obtained in the
same population by Brault et al. [4].

Comparison between PP and GP

PP is supposed to better account for G x E than GP. How-
ever, it was shown in Rincent et al. [24] that PP could still
reach good PA values when NIRS for TS were taken in an
environment different from the one in which VS was pheno-
typed, i.e., when accounting for G x E was not possible. In
this study, we could not assess whether PP accuracy partly
relied on location-related G x E, because phenotypes and
NIRS came from a single location. Nevertheless, pheno-
types were measured in 2011-2012 and 2013-2017 in the
diversity panel and half-diallel populations, respectively,
whereas NIRS were measured in 2020-2021 in both popula-
tions. Vintage (year) effect is also part of G x E and it is likely
that 2020 or 2021 could display some differences in terms of
weather with phenotyping years. For training and validation
model, we used genotypic BLUPs of both phenotypic data,
thereby removing year and geno:year effects. We found that
PA seemed not to be impacted by NIRS year for all traits
studied, suggesting that vintage has a negligible effect on PA
when genotypic BLUPs are used.

We found that PP could compete with GP for some traits
in both populations, despite moderate genetic variance esti-
mated from NIRS. However, the number of traits for which
PP outperformed GP remained low. These results were close
to those of Rincent et al. [24] on poplar. In our case, one
explanation could be that NIRS came from tissues sampled
in 2020 and 2021, while phenotypes were measured in 2011-
2012 and 2013-2017 in the diversity panel and half-diallel,
respectively. Thus, we couldn't take into account for G x E
from vintage effect. As a perspective, it would be interesting
to compare PA when spectra are measured the same year as
phenotyping or not. In such case, one could explicitly model
vintage effects in spectra to further increase PA.

Implementation of PP in perennial breeding programs
What we tested (spectra and phenotypes collected sev-
eral years apart) is a novelty compared to existing studies
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in phenomic prediction. Indeed, spectra are usually col-
lected the same years as phenotypes. Hence, phenomic
prediction is relying both on genetics and G x E interac-
tions. We intentionally excluded G x E interactions and
maximized the genetic signal in spectra. Thus, we did not
expect that PP could outperform GP, as the genetic signal
in spectra is most likely less precise than genotyping. We
measured the predictive ability of phenomic prediction,
that relies only on genetics. Such measure is crucial for
the implementation of phenomic prediction in breeding
program, especially in perennial species, since we expect
to predict genotypic values several years before pheno-
typing. A further step would be to confirm that spec-
tra from seedlings and mature plants provide the same
amount of genetic information.

Nevertheless, even when PP does not outperform GP, it
may still be interesting in breeding, because of its lower
cost and increased throughput compared to genotyp-
ing. Moreover, when a trait was well-predicted with GP,
we found that it was also well-predicted with PP, with a
global shift of -0.2 in PA (Fig. 6). This suggests that PP
PA truly relies on genetic variability and that PP could be
applied indifferently for all traits. Even though this study
is the first one implementing PP on so many traits (15),
these conclusions remain to be confirmed on other spe-
cies and traits. Based on a simulated breeding program
from Rincent et al. [24] and on the relative GP and PP
reliability that we observed, we are still expecting a posi-
tive genetic gain by switching from GP to PP, under a
constant breeding program budget.

We implemented that setting, in order to test whether
combining NIRS and SNP could increase PA compared
to GP, by taking other genetic effects into account. How-
ever, as we used NIRS BLUPs, we only maximized the
genetic variance part of spectra, we thus intentionally
excluded G x E. Therefore, the fact that adding NIRS to
GP model did not result in any increase in PA is consist-
ent with our spectra processing. Cuevas et al. [6] and
Galén et al. [12] found slight to noticeable improvement
in PA when NIRS was added to the model, compared to
GP model with SNPs only; difference in PA was at most
0.01 in Cuevas et al. [6] and up to 0.1 in Galdn et al. [12].
Both studies are however so different than ours that it is
difficult to explain these different behaviors.

As a conclusion, we provided the first implementation
of PP in grapevine. The number of traits studied allowed
us to put forward a correlation between PA of GP and PP,
suggesting that PP relies on a genetic basis. Such a cor-
relation was never reported before. We expect that the
shift of PA between PP and GP of -0.2 would be reduced
if year of phenotyping and spectra measurement are the
same. Still, PP has shown its interest for breeding over a
wide range of traits.
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