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Constitutive behaviors of granular materials are driven by both particle interactions and geometric arrangements of contact network. To bridge the gap between the grain scale and the sample scale, the mesoscale is of great importance as it corresponds to the smallest scale at which geometrical effect can be accounted for. Meso shear structures (sometimes called microbands) have been observed frequently on incremental strain maps Shear chain concept for granular materials in granular materials under shearing, while the Rudnicki and Rice localization criterion for shear band is not fulfilled yet. These meso structures are thin, quasi-linear and they involve a few grains as well as their surrounding voids. This paper introduces the concept of "incremental shear strain chain" (simply called "shear chain") to provide a specific quantitative definition of such mesostructures. "Shear chains" are defined based on incremental deviatoric strain fields in 2D biaxial simulations. Particular attention is paid to demonstrate that the shear chain orientation is a material scale property, insensitive to boundary conditions, loading paths and sample densities. Since shear chains are shown to be closely related to sliding mechanisms, they can stand for a mesoscale definition of the concept of slip lines as defined in the standard elasto-plasticity theory.

Introduction

Granular materials are found in a great variety of engineering problems and industrial applications. Despite their apparent simplicity, the understanding of their multiscale mechanical behaviors is a fascinating and very active domain of research. Constitutive behaviors of granular materials are complex and involve combined effects of local contact laws [START_REF] Ucgul | Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[END_REF][START_REF] Zhao | Capillary bridges between spherical particles under suction control: Rupture distances and capillary forces[END_REF], particle breakage [START_REF] Daouadji | An enhanced constitutive model for crushable granular materials[END_REF][START_REF] Zhou | Discrete element modeling of particle breakage considering different fragment replacement modes[END_REF], particle size distribution [START_REF] Shi | Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept[END_REF][START_REF] Shi | Analysis of mobilized stress ratio of gapgraded granular materials in direct shear state considering coarse fraction effect[END_REF], fluid impact [START_REF] Xiong | Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils[END_REF][START_REF] Zhou | Microscopic investigation of internal erosion in binary mixtures via the coupled lbm-dem method[END_REF] and contact network topology [START_REF] Papadopoulos | Network analysis of particles and grains[END_REF][START_REF] Walker | Topological evolution in dense granular materials: a complex networks perspective[END_REF][START_REF] Wan | Fabric and connectivity as field descriptors for deformations in granular media[END_REF][START_REF] Liu | Strong contacts, connectivity and fabric anisotropy in granular materials: a 3d perspective[END_REF]. The contact-based and void-based fabric [START_REF] Zhao | The interplay between anisotropy and strain localisation in granular soils: a multiscale insight[END_REF][START_REF] Li | On the stress-force-fabric relationship for granular materials[END_REF][START_REF] Kruyt | Micromechanical study of fabric evolution in quasi-static deformation of granular materials[END_REF], the strong/weak contact subnetworks [START_REF] Liu | Strong contacts, connectivity and fabric anisotropy in granular materials: a 3d perspective[END_REF][START_REF] Radjai | Bimodal character of stress transmission in granular packings[END_REF][START_REF] Guo | The signature of shear-induced anisotropy in granular media[END_REF] and particle kinematics [START_REF] Alshibli | Quantifying void ratio in granular materials using voronoi tessellation[END_REF][START_REF] Cil | 3d analysis of kinematic behavior of granular materials in triaxial testing using dem with flexible membrane boundary[END_REF] have been used to capture the influence of the geometrical arrangement of grains directly at the representative elementary volume scale. However, the links between the evolving microstructure and complex macroscopic mechanical behaviors are not yet well stabilized, even if local mechanisms responsible for failure and instability are increasingly more understood [START_REF] Radjai | Modeling granular materials: Century-long research across scales[END_REF][START_REF] Rechenmacher | Characterization of mesoscale instabilities in localized granular shear using digital image correlation[END_REF][START_REF] Nicot | Second-order work analysis for granular materials using a multiscale approach[END_REF][START_REF] Zhao | A multiscale approach for investigating the effect of microstructural instability on global failure in granular materials[END_REF][START_REF] Wautier | Micro-inertia origin of instabilities in granular materials[END_REF][START_REF] Xiong | A novel multiscale large deformation approach for modelling of granular collapse[END_REF].

One of the most puzzling features for granular materials is the appearance of shear bands. Even though shear bands relate to plastic dissipation and their formation relies on Rudnicki and Rice localization criterion [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF] in the continuum view, the micromechanical origin of shear band has not been clearly understood yet. In recent years, the evolutions of particle rotations, local voids and other micromechanical indices for granular materials have been tracked by digital image correlation (DIC), X-ray tomography and synchrotron microtomography [START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF][START_REF] Rechenmacher | Grain-scale processes governing shear band initiation and evolution in sands[END_REF][START_REF] Hasan | Experimental assessment of 3d particle-toparticle interaction within sheared sand using synchrotron microtomography[END_REF][START_REF] Desrues | How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on[END_REF]. Besides, numerical tools, such as Discrete Element Method (DEM), are proved to be relevant to perform numerical experiments on granular materials and access to an exhaustive view of their microstructure [START_REF] Iwashita | Micro-deformation mechanism of shear banding process based on modified distinct element method[END_REF][START_REF] Gu | Discrete element modeling of shear band in granular materials[END_REF][START_REF] Zhu | On a common critical state in localized and diffuse failure modes[END_REF][START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF][START_REF] Ma | Role of particle crushing on particle kinematics and shear banding in granular materials[END_REF]. Such detailed descriptions of the deformation patterns in granular materials have revealed the existence of small and short life shear patterns, long before a persistent and well-marked shear band develops under deviatoric loads [START_REF] Desrues | How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on[END_REF][START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Bouil | Emergence of cooperativity in plasticity of soft glassy materials[END_REF][START_REF] Zhou | On local intrinsic dimensionality of deformation in complex materials[END_REF]. Kuhn [START_REF] Kuhn | Structured deformation in granular materials[END_REF] named these structures as "micro-bands" in DEM simulations, and compared their orientation properties to other micromechanical evolutions. Tordesillas et al. [START_REF] Tordesillas | Mesoscale measures of nonaffine deformation in dense granular assemblies[END_REF] correlated the "micro-bands" and the non-affine deformations. In experimental observations, the "micro-bands" have also been tracked and compared to the shear bands [START_REF] Karimi | Correlation and shear bands in a plastically deformed granular medium[END_REF][START_REF] Houdoux | Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity[END_REF]. However, the nature of such structures is still debated and their links to shear bands remain to be established.

At the macroscopic level, the shear band relates to obvious discontinuous area in the strain field where failure occurs (Rudnicki and Rice localization criterion [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]), which exhibits a size quite larger than that of slip lines. Slip lines are accounted for in the standard continuum mechanics' framework [START_REF] Ibrahimbegovic | Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure[END_REF], in which the finite thickness of shear band is frequently considered [START_REF] Hashiguchi | Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[END_REF][START_REF] Voyiadjis | Evolving internal length scales in plastic strain localization for granular materials[END_REF][START_REF] Zaiser | Randomness and slip avalanches in gradient plasticity[END_REF]. For granular materials, meso shear structures similar to slip lines exist under shearing with a size of a few particles, which differ but correlate to the macro shear bands [START_REF] Zhou | On local intrinsic dimensionality of deformation in complex materials[END_REF][START_REF] Zaiser | Randomness and slip avalanches in gradient plasticity[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF][START_REF] Ostoja-Starzewski | Scale effects in plasticity of random media: status and challenges[END_REF][START_REF] Darve | Slip lines versus shear bands: Two competing localization modes[END_REF]. To distinguish shear bands from local shear patterns in frictional granular materials, an intermediate scale, i.e., meso scale, between grain and sample scales is needed. At this scale, slip structures can be analyzed from both continuum and discrete points of views, provided that local stresses and strains are consistently defined [START_REF] Nguyen | Local stress analysis in granular materials at a mesoscale[END_REF][START_REF] Liu | Macroscopic softening in granular materials from a mesoscale perspective[END_REF][START_REF] Clerc | Meso-scale signatures of inertial transitions in granular materials[END_REF].

Researchers tried to model the small shear patterns observed in granular samples. For example, [START_REF] Shi | Microslip model of strain localization in sand deformation[END_REF][START_REF] La Ragione | A simplified model for inelastic behavior of an idealized granular material[END_REF][START_REF] Zhu | A micromechanics-based elastoplastic damage model for granular materials at low confining pressure[END_REF] proposed micro-slip models of strain localization in sand deformation and Shi and Horii [START_REF] Shi | Microslip model of strain localization in sand deformation[END_REF] even formulated the evolution of individual micro slips. Koenders [START_REF] Koenders | Evolution of spatially structured elastic materials using a harmonic density function[END_REF] derived theoretical formulations of local shear behaviors, and Gaspar and Koenders [START_REF] Gaspar | Micromechanic formulation of macroscopic structures in a granular medium[END_REF] proposed an interpretation of microband involving heterogeneous elasticity theory. Zaiser and Aifantis [START_REF] Zaiser | Randomness and slip avalanches in gradient plasticity[END_REF] proposed to account for shear band formation as avalanches of plastic slips. Le Bouil et al. [START_REF] Bouil | Emergence of cooperativity in plasticity of soft glassy materials[END_REF] characterized the length scale and persistence of microbands thanks to digital image correlation in experimental setups. They found that the final shear band does not arise from a coalescence of microbands, nor is initiated by a single micro band that reaches the boundary and becomes locked. Karimi and Barrat [START_REF] Karimi | Correlation and shear bands in a plastically deformed granular medium[END_REF] used an elasto-plastic model of solid flow (based on Mohr-Coulomb yield surface), to interpret microscopic correlations. These models were established in the framework of continuum mechanics and did not provide direct links to the underlying granular mesostructures. In a recent work, Zhou et al. [START_REF] Zhou | On local intrinsic dimensionality of deformation in complex materials[END_REF] used a new metric based on the concept of local intrinsic dimensionality to provide quantitative measures of kinematic patterns in granular assemblies. Their results suggest that a complex symbiosis exists between microbands and shear bands in granular material.

In this work the we propose to adopt a mesomechanical point of view could to relate the microband concept to mesostructures of a few grains instead of using coarse graining approach [START_REF] Zhang | Coarse-graining of a physical granular system[END_REF] to work with continuum fields. At such a scale, a few grains and associative voids consist of mesostructures (e.g., force chains [START_REF] Peters | Characterization of force chains in granular material[END_REF] and contact-based loops [START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Kruyt | Micromechanical definition of the strain tensor for granular materials[END_REF][START_REF] Nguyen | On the definition of a relevant meso-scale for upscaling the mechanical behavior of 3d granular materials[END_REF]) have been defined and investigated. Based on the contact and particle information, incremental deviatoric strain fields can be defined and qualitatively visualize deformation features of the whole sample [START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF][START_REF] Kuhn | Structured deformation in granular materials[END_REF]. In previous work [START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF][START_REF] Liu | Macroscopic softening in granular materials from a mesoscale perspective[END_REF], the authors have shown that meso shear structures are clearly visible in incremental deviatoric strain fields under the early stage of biaxial shearing. Following these observations by naked eyes, we introduce the concept of incremental shear strain chain (simply called shear chain in the following for the sake of brevity) to capture these meso shear features from a quantitative point of view in this paper.

This paper is organized as follows. In Section 2, an example of 2D DEM simulation is presented and mesoscopic deformation quantities attached to grain loops are shown. In Section 3, the concept of shear chain is introduced and the detection algorithm is specified. Some statistical features of the shear chains are also explored. In Section 4, a number of complementary DEM simulations (proportional strain loading tests, drained tests of different confining pressures and densities, drained tests of different sample aspect ratios) are exhibited in order to demonstrate that the shear chain orientation is a material scale property. Finally, in Section 5, a detailed discussion on the relationship between the discrete shear chain concept and the slip line in continuum mechanics for granular materials is given. Particular attention is given to sliding dissipation and shear chain orientation with respect to slip line directions as derived from non-associated plasticity theory.

From discrete to continuum views of granular materials

In this section, a DEM biaxial test is presented and the construction of the incremental strain maps during the loading process is recalled. This simple biaxial DEM test shows how meso shear structures appear and develop under shearing, until the formation of a persistent shear band.

Drained biaxial test numerical modeling

Quasi-2D1 biaxial tests are carried out numerically with the use of the opensource DEM software YADE [61]. Granular samples are generated within a rectangular box of aspect ratio 1.5 with rigid boundaries (as shown in Fig. 1(a), L/W = 1.5, L represents the length and W denotes the width) containing a single layer of 20,000 spheres with a uniform distribution of diameters. The average diameter D 50 = 0.008 m and D max /D min = 1.98. Then they are slowly compressed to reach an isotropic stress state under the confining pressure of 100 kPa 2 . During the compression process, the inter-granular friction angle is temporarily reduced to 2 • to reach a relative dense state. After the isotropic loading, the drained loading condition is considered by keeping the lateral confining pressure constant to 100 kPa and imposing a constant compression strain rate ε1 = 0.01 s -1 in the axial direction (the direction of Y axis). The parameters used in DEM simulations are listed in Table 1, where ρ is the grain density, n is the porosity of the granular assembly, Z m is the average initial coordination number, k n and k t are the normal and tangential stiffness of the contact model respectively,

R s = 2R 1 R 2 /(R 1 + R 2 )
is the harmonic average of the radii of the particles in contact and φ g is the contact friction angle between spheres. The numerical damping is used in the simulations, which will adjust forces on particles by considering the current acceleration and particle velocity, details can be found in Šmilauer et al. [61]. 

ε v = ε 1 + ε 2 3
. The biaxial loading can be considered as quasi-static as the dimensionless ratio between the mean resultant force acting on grains and the mean contact force remains always below 0.01 [START_REF] Zhang | Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests[END_REF] 4 . Key states are labeled under shearing: the initial state (A), the end of the linear-elastic period (B), the most contractive state (C), the peak of deviatoric stress (D), the onset of the single shear band forming (E), the softening regime (F) 5 . At State D (stress peak or limit stress state), the macro shear band firstly occurs and then develops until the ultimate state. In this paper, we mostly focus on the period before State D. 

Incremental deviatoric strain fields attached to grain loops

Incremental deviatoric strain maps are constructed from the unique loop tessellation of the granular assembly. The grain loops in 2D granular materials are defined by dividing the contact network into enclosed polygons containing deformable or undeformable voids [START_REF] Zhu | On a common critical state in localized and diffuse failure modes[END_REF][START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Tordesillas | Mesoscale measures of nonaffine deformation in dense granular assemblies[END_REF][START_REF] Kruyt | Micromechanical definition of the strain tensor for granular materials[END_REF]]. An example of the 2D loop tessellation is shown in Figure 2(a). The use of grain loops to construct incremental strain fields (instead of coarse graining approach [START_REF] Zhang | Coarse-graining of a physical granular system[END_REF][START_REF] Artoni | Coarse graining for granular materials: micropolar balances[END_REF] for instance) is motivated by existing results highlighting that grain loops are relevant mesoscale structures to capture the mechanical strength of granular materials [START_REF] Zhu | On a common critical state in localized and diffuse failure modes[END_REF][START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Nguyen | Local stress analysis in granular materials at a mesoscale[END_REF][START_REF] Liu | Macroscopic softening in granular materials from a mesoscale perspective[END_REF][START_REF] Deng | On the attraction power of critical state in granular materials[END_REF]. It enables keeping alive the link with the underlying contact network at the microscopic scale, and correlating meso and micro-scales (see Section 5.1). Based on the loop tessellation, different local incremental strain tensors can be attached to each loop cell in order to draw an incremental strain map [START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Bagi | Stress and strain in granular assemblies[END_REF][START_REF] Dedecker | Specific features of strain in granular materials[END_REF][START_REF] Cambou | Micromechanics of granular materials[END_REF]. In this paper, loop incremental strain is defined as the average of the symmetric part of the displacement gradient (neglecting grain rotations) over the loop domain:

ε loop ij = 1 |L| L u i,j + u j,i 2 dS ( 1 
)
where |L| is the area of the loop domain L and u i,j = ∂ui ∂xj is the gradient of displacement field within L.

Thanks to Gauss theorem, the integration can be changed to the loop boundary ∂L:

ε loop ij = 1 |L| ∂L u i n j + u j n i 2 dl (2)
in which n is the outer normal to ∂L. At the microscale, the notion of continuous displacement field is meaningless and only grain displacements are known. By assuming a linear interpolation of the displacement along the loop edges, the incremental strain tensor of loop L is eventually defined as:

ε loop ij = 1 |L| c k=1 1 2 l k n k j u 1k i + u 0k i 2 + n k i u 1k j + u 0k j 2 (3) 
where u 1k and u 0k are the displacement vectors of the edge k vertices. The notations used in Equation ( 3) are summarized in Figure 2(b). As discussed in Deng et al. [START_REF] Deng | Lifespan dynamics of cluster conformations in stationary regimes in granular materials[END_REF] for instance, this strain definition is consistent with the macroscopic strain definition through spatial averaging.

During the biaxial loading, incremental strain tensors dε loop for loop cells within the granular assembly are computed from the incremental grain displacements corresponding to macroscopic strain increments of dε 1 = 2.0 * 10 -46 . The strain of the granular sample has been tested, which is quite close to the average value of meso strains within the domain. From the computation of the incremental strain tensors according to Equation (3), incremental deviatoric strains are defined as the absolute difference between the two principal incremental strain values (dε loop are the eigenvalues of dε loop ). For State B and C, small and non-persisting meso shear structures can be observed in the incremental deviatoric strain fields of the granular sample, as shown in Fig. 3 (the incremental deviatoric strain fields of other states can refer to Liu et al. [START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF]). The observed meso shear structure is similar to existing research of microband [START_REF] Kuhn | Structured deformation in granular materials[END_REF], in this paper we will have a specific definition of this structure based on the loop tessellation (Section 3).

In Fig. 3, meso shear patterns are visible and distribute uniformly in the sample domain with two symmetric preferred orientations. By zooming in the selected area of State B in Fig. 3(a), Fig. 4 highlights that the meso shear patterns consist in thin line like structures composed of loops with relatively large incremental deviatoric strain (mainly green loops). In Fig. 4(a), the direction of the incremental displacement of the particles is shown with unit arrows, demonstrating very little change when crossing the meso shear structures colored green. And in Figure 4(b), dark particles are force chain members (details of the definition in Appendix A) which are mostly excluded by meso shear structures.

The shear chain concept

From the observations in Fig. 4, the width of the meso slip structures corresponds to the size of one meso-loop. Therefore, it is tempting to assume that the meso shear patterns (microband) can be regarded as connected chains of loops of large incremental deviatoric strains. In the following sections, these structures are named incremental shear strain chain or simply shear chains for brevity, and are expounded with a rational definition and algorithm. Inspired by force chain definition [START_REF] Peters | Characterization of force chains in granular material[END_REF] recalled in Appendix A, this section will introduce the concept of incremental shear strain chain from a quantitative way, to describe the meso shear structures observed in incremental deviatoric strain field before shear banding.

Definition of incremental shear strain chain

To capture the incremental shear strain chains, the maximum shearing direction of the incremental deviatoric strain of each loop is considered. Fig. 5 shows the schematic drawing of a shear chain, and the procedure is listed in Fig. 6.

In detail, the steps to define shear chains are as follows:

1. For each mesoloop, compute the incremental strain tensor dε loop using the strain definition of loops in Section 2, and identify meso loops with incremental deviatoric strains dε

loop d = |dε loop 1 -dε loop 2
| 7 larger than the average incremental deviatoric strain <dε loop d >. 2. Within this group of loops, randomly select one head loop (only one connection with other loops of large incremental deviatoric strain) and find the possible chain members. This is done by computing the maximum shearing directions 8 of the chosen loop (called Loop A) and its connection loop (called Loop B) and then checking whether the geometric directions joining the 2 barycenters are close to the shearing directions of the two loops. In Fig. 5, β denotes this deviation angle. The connection between the two loops are built if β fulfills a given limitation, in this paper it is set as β ≤ β th = 22.5 • . After one connection built, a new cycle of identifying chain members begins with the Loop B of the last step, until the threshold β ≤ β th = 22.5 • is not fulfilled or no connection loops are found. 3. If a chain of loops is composed of at least three loops, then it is regarded as a shear chain.

It is important to note that the shear chain does not correspond to the shear band (as explained in Liu et al. [START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF]) at the macroscopic level because it cannot be thicker than a mesoloop, and it does not correspond to sliding contacts at the microscopic scale as it is defined on averaged incremental grain displacements only (no interparticle slip is considered).

Similarly to force chain definition, the shear chain definition relies on three thresholds, the combination of which prevents the identification of shear chains in arbitrary deformation field. Because the shearing directions consist in two perpendicular directions, the linearity threshold is set to 45 • /2 = 22.5 • . The choice to use the mean incremental deviatoric strain is justified by sensitivity analyses presented in B.1. Moreover, the robustness of this definition is carefully shown in B.2 (in particular the random selection of the head loops is shown not to significantly affect the identified shear chain population). Besides, the shear chain definition proposed in this paper relies on the deviatoric part of the incremental strain to focus on shearing mechanisms 9 .

An example of the application of the shear chain detection algorithm is given in Fig. 7 between State A and State B for the drained biaxial test presented in Section 2. It can be seen that meso slip features are captured by the shear chain definition, and a number of shear chains with different colors are evenly distributed within the sample. By definition, shear chains are line-like structures. A representation of shear chains is achieved by joining the geometric barycenters of adjacent cells (dark thick line in Fig. 5). For a shear chain of n adjacent mesoloops, the least square method defines the mean direction θ as:

θ = arctan n i=1 (x i -x)(y i -ȳ) n i=1 (x i -x) 2 (4)
where x i and y i corresponds to the x and y coordinates of the geometric barycenter of loop cell i, and x and ȳ are the averages of the x i and y i , respectively.

Statistical features of shear chains

Following the algorithm suggested in Section 3.1, all the states of the biaxial test presented in Section 2 are considered to identify shear chains within the granular assembly, especially for the states before the shear banding (state D). The spatial distribution of shear chains is shown in Fig. 7 quite near the initial isotropic stress state. Hundreds of shear chains are randomly distributed within the granular assembly, demonstrating that the mesoscopic shearing occurrence is diffuse and disordered in space at the first stage of deviatoric loading.

The probability distribution of the shear chain orientation θ corresponding to the state of Fig. 7 is shown in Fig. 8(a). Shear chains are more likely to orientate in one of the two symmetric directions ±45 • , which is similar to the microband observation at the first stage of deviatoric loading in literature [START_REF] Kuhn | Structured deformation in granular materials[END_REF][START_REF] Houdoux | Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity[END_REF]. As the biaxial loading is pursued, the probability distribution of the shear chain orientation θ keeps the same double-peak feature but the preferred orientation seems to change and larger fluctuations are observed, which can be found in Fig. 8(b) showing the probability distribution of θ at the state ε 1 = 0.005. These observations are consistent with the results of Houdoux et al. [START_REF] Houdoux | Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity[END_REF]. In their experimental work, an increase in the size of the error bars is observed for the orientations of the fast fluctuation part of the spatial autocorrelation before shear banding occur (see Fig. 7 in [START_REF] Houdoux | Plastic flow and localization in an amorphous material: experimental interpretation of the fluidity[END_REF]).

Since the preferred orientations of shear chains are symmetric, then the absolute value |θ| could be a proper indicator to track the orientation evolution. The evolution of its mean value < |θ| > is plotted in Fig. 9 for the period before the stress peak (state D, the onset of macroscopic shear band). At the beginning of the loading, < |θ| > is around 45 • . As the deviatoric loads continue to be applied, < |θ| > increases gently (shear chains get closer to the principal compression direction). As illustrated qualitatively in Fig. 8, the standard deviation around <|θ|> is increasing along the drained biaxial test. Nevertheless, a statistical analysis detailed in C demonstrates that the increasing trend visible in Fig. 9 is statistically representative. As a result, the shear chain orientation is influenced by the stress state and/or possibly by the type of loading conditions and the change in geometry of the deformed sample. Before discussing the change in orientation of shear chains with the framework of non-associated elasto-plasticity theory in Section 5, the invariance of the shear chain orientation with respect to structural effects is investigated in Section 4.

Shear chain orientation under different loading conditions

In Section 3, we have defined the shear chain and analyzed the orientation evolution considering a standard drained biaxial test. In this section, different loading conditions are considered to highlight a unique relationship between shear chain orientation and the stress state of the granular assembly 10 . Results in this section provide evidences that the shear chain orientation is a material scale property.

Drained biaxial tests with varying sample aspect ratios

Similar to the example we analyze in Section 2, a set of quasi-2D biaxial drained tests of samples with different aspect ratios (L/W in Fig. 1(a)) are conducted. 10 There might be an additional dependence to some constitutive microstucture features too (e.g. the fabric tensor). Such a study is however out of the scope of the present study.

Firstly, all specimens are randomly generated within rectangular domains of prescribed aspect ratios and compacted to isotropic confining state of 100 kPa.

The same uniform distribution of DEM sample in Section 2, as well as other DEM parameters given in Table 1 are used for biaxial samples of different L/W . Additional specific parameters are summarized in Table 2. For the sixteen samples, only the aspect ratio L/W and the particle number are different at the initial compacted states. The slight changes in void ratio V r can be neglected. When conducting the drained biaxial loading, a compression is imposed in the vertical direction with a constant strain rate of ε 1 = 0.01 s -1 and the lateral pressure is maintained constant to σ 2 = 100 kPa. The overall stress/strain responses for different boundary conditions (different L/W ) are shown in Fig. 10. The sample in Section 2 corresponds to Sample DF here. Although the sizes of samples are different for the drained biaxial tests in Fig. 10, the stress-strain curves before ε 1 = 0.01 are identical. The stage ε 1 = 0.01 corresponds to a bifurcation point after which the response of the sample is strongly influenced by the boundary conditions. During the drained biaxial loading, the incremental deviatoric strain field of specimens experiences a transition from random-distributed meso shear chains to the macro shear band. Fig. 11(a) shows the incremental deviatoric strain fields at ε 1 = 0.005 for the samples DC (L/W=1.2) and DK (L/W=2.0) respectively, which exhibit almost the same spatial distribution of incremental deviatoric strain as for sample DF in Fig. 3. Similar incremental strain fields were obtained for the other samples (not shown here for the sake of brevity).

For each specimen with a given aspect ratio L/W, shear chains exist from the beginning of the loading until the shear band forms. The probability density distributions of shear chain orientations for sample DC (L/W=1.2) and 

Proportional strain loading path

In order to broaden the scope of the results of this paper, another type of loading path is considered in the form of proportional strain loading tests. We use a parameter α to control the change in volume of the sample during the loading as in Jrad et al. [START_REF] Jrad | Experimental analyses of the behaviour of saturated granular materials during axisymmetric proportional strain paths[END_REF]. The incremental volumetric strain is set as:

dε v = dε 1 + dε 2 = αdε 1 (5) 
Under an axial compression (dε 1 > 0), α < 0 corresponds to an increase in the sample volume, while α > 0 corresponds to an imposed contraction. α = 0 corresponds to the special case of the undrained loading path (no volume change). Table 3 summarizes the values of α considered in the different tests in this paper. Except the loading path, all the initial conditions for samples in Table 3 For the different proportional strain loading paths, the evolution of the generalized deviatoric stress σ 1 -(1-α)σ 2 11 is shown in Fig. 13. In all proportional loading paths, shear chains are clearly visible in incremental deviatoric strain fields and for some values of α, and shear banding eventually occurs. Points in Fig. 13 denote the onset of shear banding. In Fig. 14, incremental deviatoric strain fields are shown for Sample PC (α = -0.2) and PG (α = 1) at ε 1 = 0.002. Since stress states diverge at a given axial strain for different proportional strain loading paths, the stress ratio q/p = (σ 1 -σ 2 )/(σ 1 + σ 2 ) is considered 12to compare the mean orientation of shear chains in Fig. 15. In addition, the data corresponding to a drained biaxial test (Sample DF) is also presented in Fig. 15 for comparison. Although q/p is the macroscopic description and |θ| is a mesoscale character of shear chains, they can be compared since the macro stress and strain of granular materials are statistical average of meso or micro stress and strains. The data corresponding to all the tests collapse on a single master curve which indicates that the shear chain orientation does not depend on the type of loading path but only on the stress state q/p.

Effect of density and confining stress

In this subsection, the impact of the initial density and the confining stress level are assessed by considering 9 drained biaxial tests for different initial porosities and confining pressures. Dense, medium and loose samples under the confining pressures of 100 kPa, 200 kPa and 300 kPa are named as "d100", "d200", "d300", "m100", "m200", "m300", "l100", "l200" and "l300" respectively. Except the initial porosities and the confining pressures summarized in Table 4, parameters for the simulations are the same as Sample DF presented in Section 2.1. Samples of different initial densities and confining pressures exhibit different stress/strain relationships. Dense samples are characterized by strain hardening/softening and contractancy/dilatancy, while loose samples are related to the hardening and contractancy only. As conducted in the previous sections, shear chains are detected and analyzed for these nine drained tests. The evolutions of the mean |θ| versus the stress ratio q/p are presented in Fig. 16. Despite several outliers, samples of different densities and confining pressures exhibit the almost the same relationship between the preferred direction of shear chains and the stress ratio. Combined to the results obtained in Sections 4.1 and 4.2, shear chain orientation is shown to be a material scale property of granular materials influenced by the stress state only (at least as a first approximation).

In addition, the stress-strain relationship and shear chain orientation evolution for samples of different coordination numbers but under the same confining pressure and porosity [START_REF] Magnanimo | Characterizing the shear and bulk moduli of an idealized granular material[END_REF] should also be interesting to explore, to further capture the material property of the shear chain features.

Shear chains relationships to granular plasticity

The shear chain concept has been defined in Section 3, and the orientation of the shear chain has been shown to be a material scale property mainly influenced by the stress ratio q/p in Section 4. In this section, we intend to correlate discrete plastic dissipation and continuum views of plasticity in granular materials in terms of the defined shear chain. The spatial correlation between contact sliding and shear chain is investigated and the shear chain orientation is analyzed in relation with the slip line orientations predicted by the standard elasto-plastic continuum formalism for non-associated materials.

Spatial correlation between shear chains and contact sliding

At microscale, energy dissipation can occur through contact sliding. According to the contact model used in the DEM simulations, a sliding index I p can be constructed for each contact as:

I p = |f t | |f n | tan φ g ( 6 
)
where |f n | and |f t | are the normal and tangential force magnitudes respectively, and φ g is the contact friction angle. As a consequence of local Coulomb criterion, contact sliding occurs when I p = 1. Fig. 17 presents the sliding contact distribution for the 5 key states identified in Section 2.1. Visually, the spatial distribution of sliding contacts can reflect the shear band characteristic (State D and E), however the relationship between contact sliding and meso shear features (in Fig. 3) is not obvious and has to be quantified from a statistical point of view. Note that the shear chain definition relies only on grain kinematics and thus the relation with contact sliding needs to be established.

Based on the shear chain definition, contact sliding analysis can be categorized to 3 groups:

-All contacts within the granular assembly; -Shear chain contacts, i.e. all contacts of mesoloops composing the shear chains; -Connection contacts in shear chains, denoting contacts connecting two adjacent loops in shear chains, which are marked in red in Fig. 5.

Evolutions of the sliding fraction S r and average sliding index <I p > for these three groups are shown in Fig. 18. The sliding fraction is defined as S r = N s /N c , where N s denotes the number of sliding contacts among the set of contacts N c considered (all contacts, shear chain contacts or connection contacts).

Both S r and <I p > have the largest values for connection contacts. Shear chain contact population also exhibits larger S r and < I p > than the set of all contacts. Sliding occurs predominantly inside shear chains, which demonstrates that shear chains are mesostructures characterizing sliding mechanisms in granular materials. The fact that connection contacts are even more likely to slide than shear chain contacts agrees well with the existence of mesoscopic sliding lines oriented in the direction of the shear chain. Nevertheless, it should be acknowledged that only 15 % of the contacts are sliding, which means that the kinematic patterns defining shear chains do not result only from sliding in contacts but also probably from contact opening or simply loop deformation.

Further micromechanical analysis will be carried out in forthcoming studies to clarify this point.

Upper and lower bounds for slip line orientation derived from elasto-plasticy theory

As a first approximation, granular plasticity is known to follow Mohr-Coulomb yield criterion. According to this yield criterion, plasticity activates at a given point if the maximum ratio between the shear and normal stresses is larger than a limit value. For a 2D stress tensor with principal stresses σ 1 > σ 2 > 0, the geometric direction giving rise to the maximum ratio between the shear stress and the normal stress is expressed as

θ stat = ± (45 • + φ mob /2) , (7) 
where φ mob is the mobilized friction angle. It is related to the stress state through the relationship:

sin φ mob = σ 1 -σ 2 σ 1 + σ 2 (8) 
In the above equation, θ stat is given with respect to the minor stress direction (horizontal direction in the present case). It defines the first direction in which sliding occurs when the mobilized friction φ mob equals the internal friction angle φ (the Mohr-Coulomb yield criterion) 13 . In the present case, the major and minor stress directions coincide with the axes y and x respectively. Thus, the angle θ stat is given here with respect to the horizontal axis (like θ in Fig. 5).

If the yield function controls plasticity activation (the static condition), plastic strain develops according to a the plastic potential (the kinematic condition, aka the flow rule) that can be a different function in case of non-associated plasticity. For granular materials, the flow rule is usually characterized by the dilatancy angle ψ (where ψ > 0 corresponds to dilatancy). This angle relates to the principal values of the incremental plastic strain as:

sin ψ = - dε 1 + dε 2 dε 1 -dε 2 (9) 
where dε 1 and dε 2 are the principal incremental strain values 14 . Provided that dε 1 > 0 > dε 2 , there exists two directions of zero length variation. The perpendicular directions can be seen as slipping directions in the sense that no length variation is observed across the slipping direction. Expressed with respect to the minor stress direction, the slipping angle θ kinemat satisfy the equation n.

dε 1 0 0 dε 2 .n = 0 (10) with n = cos(θ kinemat -π/2) sin(θ kinemat -π/2) . This gives cos(2θ kinemat -π) = sin(- π 2 ± 2θ kinemat ) = - dε 1 + dε 2 dε 1 -dε 2 (11) 
With use of Equation ( 9), the slipping directions are expressed with respect to the minor diretion (horizontal direction here) as

θ kinemat = ± (45 • + ψ/2) (12) 
For a pure incremental shear deformation, dε 1 + dε 2 = 0, and θ kinemat = ±45 • . In this case, zero extension directions coincide with slipping directions and the slipping directions are perpendicular. In the general case (ψ = 0), the slipping directions are not perpendicular.

When material failure occurs (i.e. when plastic strain develops), θ stat and θ kinemat "compete" to drive the failure line orientation. Indeed, the static condition (given by the yield surface) requires that sliding occurs along direction θ stat , while the kinematic condition (given by the plastic potential) predicts that slipping develops along direction θ kinemat . In case of associated plasticity θ stat = θ kinemat and both conditions are equivalent, but this is not the case for non-associated plasticity.

At the meso scale, depending on whether the yield criterion or the flow rule controls plastic development, slip lines are also expected to form along directions close to θ stat or θ kinemat [START_REF] Darve | Slip lines versus shear bands: Two competing localization modes[END_REF]. In this paper, we have shown that the shear chain orientation is a material property. As a result, its orientation might be related to the yield criterion or flow rule at the macroscale (and not Rudnicki and Rice criterion). In Fig. 19, the mean orientation of shear chains found in this paper is compared to the slip line directions θ stat and θ kinemat estimated from the macroscopic stress and incremental strain tensors. In Fig. 19, neither θ stat nor θ kinemat accounts alone for the shear chain direction. θ stat overestimates the shear chain orientation while θ kinemat underestimates the shear chain orientation.

Nevertheless, it can be underlined that the shear chain orientation is very close to θ stat in the beginning of the test, while it becomes closer to θ kinemat just before the onset of persisting shear band (State D). This observation is consistent with the fact that first slip lines appears while very few grain rearrangement has occurred, demonstrating that mesoscale failure is expected to be stress driven (θ stat ). On the other hand, as the test is carried on, grains rearrange more and more, and the failure pattern is increasingly driven by the plastic strain development. Between the initial and failure states, the shear chain orientation remains in the range of [θ stat , θ kinemat ]. It should also be underlined that the slipping directions θ stat and θ kinemat consider the macroscopic stress or strain whereas shear chain is a mesoscopic concept. As a result, it will be interesting to define and analyze meso stress and strain in further studies before being able to derive a constitutive relationship for the shear chain orientation.

Meso shear behaviors and Eshelby theory

In the previous subsection we show that, standard non-associated elasto-plastic formalism provides a lower bound and an upper bound for the shear chain orientation depending on whether the stress state or the plastic strain imposes the slip line direction. These two directions are related to the friction angle and the dilatancy angle separately (equations [START_REF] Xiong | Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils[END_REF] [START_REF] Liu | Strong contacts, connectivity and fabric anisotropy in granular materials: a 3d perspective[END_REF]). Following the ideas proposed by Mc Namara et al. [START_REF] Mcnamara | Eshelby inclusions in granular matter: theory and simulations[END_REF] and Karimi and Barrat [START_REF] Karimi | Correlation and shear bands in a plastically deformed granular medium[END_REF], the orientation of slip lines can be derived from an Eshelby problem to relate the microband direction to both the friction and dilatancy angles. In their papers, these authors assume that a grain reorganization occurs in a given location in the granular assembly. This small reorganization is a consequence of a local collapse, and generates an incremental strain located in a small surrounding domain, i.e. in an Eshelby inclusion. This local reorganization generates a perturbation of the stress field and can result in several secondary grain reorganizations in the vicinity of the first reorganization.

By solving analytically this problem for Mohr-Coulomb type materials, the geometrical directions corresponding to the largest increase of the shear stress to normal stress ratios are recovered. Such directions are given by a quadrupolar function that predicts slip line directions close to ±45 • . The slip line direction is larger or smaller than 45 • depending on whether the triggering event is contractive or dilative respectively. In this approach, it is interesting to see that the slip line direction combines stress and strain ingredients.

In Mc Namara et al. [START_REF] Mcnamara | Eshelby inclusions in granular matter: theory and simulations[END_REF], the authors simulated the Eshelby inclusion problem from 2D DEM computations for different intergranular friction angles. Whatever the friction used, they observed a slight increase in the slip line direction when the axial strain is increased in a biaxial loading test. Compared with the present results in Fig. 19, the qualitative convex shape of the curve is also observed in Mc Namara et al. [START_REF] Mcnamara | Eshelby inclusions in granular matter: theory and simulations[END_REF].

In addition, the analytical work achieved in Mc Namara et al. [START_REF] Mcnamara | Eshelby inclusions in granular matter: theory and simulations[END_REF] underlines that the slip line orientation can also be influenced by the underlying microstructure anisotropy, especially for large friction angles. As stated by the authors, the anisotropy effect is responsible for additional increase in the slip line orientations as well as in the fluctuations around the mean value. Such a result is consistent with the observed increase in the fluctuations of the shear chain orientations shown in Fig. 8 for instance.

In this section, we discuss how the meso shear chains evolve according to plasticity theories. Meso shear chains defined in this paper is a meso representation of slips for granular materials, and they are different from the well-known shear band in terms of sizes, duration, etc. The detailed comparison of these two sheared structures will be explained in future work of the authors. La Ragione et al. [START_REF] La Ragione | A micromechanical prediction of localization in a granular material[END_REF] developed a formulation to describe the shear band orientation, will also be compared in our future papers.

Conclusion

Based on series of 2D biaxial DEM tests, this paper investigates the development of meso shear structures (the new-defined incremental shear strain chains) in granular materials under different conditions. A quantitative definition of incremental shear strain chain (briefly "shear chain") is proposed and the detection algorithm is detailed. Based on the kinematic definition of shear chains we have shown that shear chains are spatially correlated with microscopic dissipation and that their orientation is consistent with slip line theory in continuum mechanics. Consequently, we beleive that shear chains correspond indeed to slip lines but defined in discrete mechanics instead of continuum mechanics framework. Main points can be summarized as follows:

1. According to the observations of incremental deviatoric strain field of a dense granular assembly under biaxial loading, the concept of incremental shear strain chain is proposed to characterize meso shear patterns (i.e., microband) from a quantitative point of view. The geometric features of meso shear structures are well captured with the definition of shear chain by demonstrating orientation distribution with marked double peaks close to ±45 • . Such a rational concept is defined as a dual concept to the wellknown "force chain", to analyze the mesoscopic shear deformation features of granular materials. 2. The orientation of the shear chains in granular materials is shown to be a material-scale quantity which depends essentially on the macro stress ratio q/p. This conclusion was reached by considering different boundary conditions (drained or proportional strain tests), different confining pressures and different initial sample densities. 3. The shear chain concept is related to plastic dissipation at contact scale, by demonstrating that the microscopic contact sliding is more concentrated in shear chain connections. In the framework of non-associated elasto-plastic theory, the slip line is considered as internal shear events. The shear chain orientation is consistent with the slip line direction which is influenced by both the yield surface and the plastic flow rule. The more microstructure rearranges, the more the flow rule drives the shear chain direction. In addition, it is conjectured that the shear chain direction is probably influenced by the underlying microstructural anisotropy. 4. In our future work, more loading conditions for granular materials should be considered to enhance our conclusion and a better algorithm for searching shear chains should be developed to incorporate all shear chains. As the shear chain could be related to the micro slip, the comparison between shear chain assumption and mathematical formulation (e.g., Gaspar and Koenders [START_REF] Gaspar | Micromechanic formulation of macroscopic structures in a granular medium[END_REF], Karimi and Barrat [START_REF] Karimi | Correlation and shear bands in a plastically deformed granular medium[END_REF], La Ragione et al. [START_REF] La Ragione | A simplified model for inelastic behavior of an idealized granular material[END_REF]) is necessary to further develop the framework of shear chain definition. Besides, shear bands and shear chains are shear behaviors at different scales (time and space), how to correlate them will be presented in our following papers. 

Appendix B Additional details for incremental shear strain chain B.1 Sensitivity analysis of parameters for defining shear chains

When defining an incremental shear strain chain in Section 3, 3 parameters should be appointed:

-the minimum number of loops within a shear chain; -the partition threshold of selected area of large incremental deviatoric strain; -the deviation angle between the shear direction of strain tensor and the geometrical direction of two connected loop cells, i.e., β th in Fig. 5.

For the minimum number of loops within a shear chain, 3 is chosen for the reason that connecting structures containing elements below 3 could not be regarded as chains.

For the selected area for searching shear chains, the average incremental deviatoric strain <dε loop d > is used to distinguish the large incremental deviatoric strain. Here we compare the patterns of different partitions of large incremental deviatoric strain for State B of the sample in Section 2, by using 0.5 <dε loop d >, 0.8 <dε loop d >, <dε loop d >, 1.5 <dε loop d >, 2 <dε loop d > respectively in Fig. B2. It can be seen that the smaller threshold does not result in a clear shearing pattern and a too large threshold will ignore some meso shear structures. Considering the shear chain orientation evolution, we also plot Fig. B3, and it can be demonstrated that the average orientation of shear chains are relatively robust with a proper meso strain threshold. In this paper, we use <dε loop d >.

For the value of β th , i.e., the deviation angle between the shear direction of strain tensor and the geometrical direction of two connected loop cells in Fig. 5, some skewing should be accepted to gain more shear chains, but β th should not be too large when the chains do not correspond to shear features. Here 

B.2 Robustness of the shear chain detection algorithm

In a similar way to the force chain detection algorithm [START_REF] Peters | Characterization of force chains in granular material[END_REF], the shear chain detection algorithm does not account for possible shear chain branches which may occur if the shear zone appears to be thicker than a grain loop. Since the order in which shear chains are detected is random, two independent runs of the algorithm gives slightly different sets of shear chains. In order to quantify the amount of shear chains that are always detected whatever the run, we choose 5 states of the biaxial test to run 20 times the algorithm, and then As shown in Table B1, the overlap part of loops for 5 trials, 10 trials and 20 trials decreases slightly but we can conclude that around 70% of shear chain loops are always found whatever the particular run of the algorithm. From the authors' experience, such result is quite similar to the one obtained with force chains detection. As a result, we can conclude that shear chain statistics computed on a single run are relevant and that the current algorithm for the shear strain chain in Section 3.1 is rational.

Appendix C Statistical representativeness of the increasing trend in shear chain orientation during biaxial tests

As illustrated in Fig. 8, as the deviatoric stress increases, the orientation of the shear chains exhibit larger fluctuations around its mean value. As a result, one could argue that the evolution of the mean |θ| angle plotted in Fig. 9 may not be representative as the standard deviation becomes too large.

To identify whether the trend in Fig. 9 is meaningful, we use ANOVA (Analysis of Variance) to check whether the probability distribution of shear chains of a given state is similar to its previous ones. The orientations of the shear chains are regarded as realizations of different random variables |θ|(ε 1 ), and ANOVA test is used to assess which extent these random variables are similar. Several states before the stress peak are chosen for the ANOVA investigation, and each distribution |θ|(ε i 1 ) is compared with its previous ones |θ|(ε t yy , t ∈ [1, i -1]). After several ANOVA calculations, the corresponding F and p for ANOVA are shown in Fig. C6. According to the law of ANOVA, the coefficient p characterize the degree of similarity of the selected distributions. If p is small enough (typically p < 0.05), we can estimate that the set of considered distributions are not the same. Fig. 6(b) shows that the probability p drops when the axial strain is larger than 0.006. In other words, the distribution of the shear chain orientation experiences important changes during the deviatoric loading especially when the axial strain is larger than 0.006. From this point, the increasing trend for |θ| observed in Fig. 9 is meaningful and confirms the relevance to consider the mean value <|θ|> in the present paper.

Figure 1 (

 1 Figure 1(b) presents the macroscopic stress/strain responses of the biaxial test (rigid boundaries), where q = 0.5(σ 1 -σ 2 ) andε v = ε 1 + ε 2 3. The biaxial loading can be considered as quasi-static as the dimensionless ratio between the mean resultant force acting on grains and the mean contact force remains always below 0.01[START_REF] Zhang | Boundary effects in discrete element method modeling of undrained cyclic triaxial and simple shear element tests[END_REF] 4 . Key states are labeled under shearing: the initial state (A), the end of the linear-elastic period (B), the most contractive state (C), the peak of deviatoric stress (D), the onset of the single shear band forming (E), the softening regime (F)5 . At State D (stress peak or limit stress state), the macro shear band firstly occurs and then develops until the ultimate state. In this paper, we mostly focus on the period before State D.

Fig. 1

 1 Fig. 1 Biaxial loading condition (a) and deviatoric stress and volumetric strain evolutions of an example of the biaxial test (b). In (b), different states are marked: A-the initial state, B-the end of the linear-elastic period, C-the most contractive state, D-the peak of deviatoric stress, E-the onset of the single shear band forming, F-the softening regime. Thick parts of the curves are key periods concerned in this paper.

Fig. 2

 2 Fig. 2 Loop tessellation within the granular assembly (a) and schematic diagram for the computation of the strain tensor in loops (b).

d = |dε loop 1 -dε loop 2 |

 12 where dε loop 1 and dε loop

2

 2 

Fig. 3

 3 Fig. 3 Examples of shear structure distribution within the 2D granular assembly [34]: (a) State B, ε 1 = 0.004; (b) State C, ε 1 = 0.009. The yellow rectangle domain in (a) is enlarged in Figure 4

Fig. 4

 4 Fig.4Zoomed images of a mesoscopic shear structure from State B (selected area is marked in Fig.3(a)). The direction of the displacement field is represented in subfigure (a) while force chain particles are displayed in subfigure (b). The mesoscopic shear structures are mostly colored in green which correspond to large deviatoric incremental strain levels.

7 dε loop 1

 71 and dε loop 2 are the eigenvalues of dεloop 8 The shearing directions correspond to the frame in which the deviatoric part of dε loop has zero diagonal terms. They are oriented to ±45 • from the principal strain directions. In Fig.5the two shearing directions are shown with red dashed lines

Fig. 5

 5 Fig. 5 Schematic drawing of an incremental shear strain chain. Shearing directions are displayed in relation with the principal incremental strain directions and the geometric direction joining the loop barycenters.

Fig. 6

 6 Fig.6The flow chart of searching incremental shear strain chains.

Fig. 7

 7 Fig. 7 Shear chains within the granular assembly (between State A and State B). Quasilinear structures of different colors denote various shear chains.

Fig. 8

 8 Fig. 8 Probability distributions of shear chain orientation θ for ε 1 = 0.001 (close to State A) (a) and for ε 1 = 0.005 (close to state B) (b) of the granular sample in Section 2.1.

Fig. 9

 9 Fig. 9 Evolution of the average shear chain direction <|θ|> during biaxial drained loading.

Fig. 10

 10 Fig. 10 Evolutions of deviatoric stress q (a) and volumetric strain εv (b) during the drained biaxial tests with axial strain rate ε1 = 0.01 s -1 and lateral confinement σ 2 = 100 kPa. Different curves correspond to different aspect ratios L/W ranging from 1.0 to 2.5.

Fig. 11

 11 Fig. 11 Examples of the incremental deviatoric strain field (a) and the probability distribution density (b) for Sample DC (L/W=1.2) and Sample DK (L/W=2.0), at the state of axial strain ε 1 = 0.005.

Fig. 12

 12 Fig.12Evolution of average preferred shear strain direction for specimens of different aspect ratios.

Fig. 13

 13 Fig. 13 Evolutions of generalized deviatoric stresses σ 1 -(1 -α)σ 2 during the proportional strain loading with axial strain rate ε1 = 0.01 s -1 and volumetric strain rate εv = α ε1 . The points represent the beginning of strain localization.

Fig. 14

 14 Fig. 14 Examples of the incremental deviatoric strain field (a) and the probability distribution density (b) for Sample PC (α = -0.2) and Sample PK (α = 1), at the state of axial strain ε 1 = 0.002.

Fig. 15

 15 Fig. 15 Evolution of average preferred shear strain direction for samples under different proportional strain loading paths. Pink points corresponds to the drained biaxial test on sample DF (Section 2.1)

Fig. 16

 16 Fig. 16 Evolution of average preferred shear strain direction for drained biaxial tests with different initial porosities and confining pressures.

Fig. 17

 17 Fig. 17 Spatial distributions of the contact sliding for different loading states (red points denote the positions of sliding, blue arrows show the tangential direction of the contact).

Fig. 18

 18 Fig. 18 Average sliding fraction Sr (a) and average sliding index <Ip> (b) for connection contacts, shear strain contacts and all contacts.

Fig. 19

 19 Fig. 19 Comparison between the preferred orientation of shear chains with the slip line directions θstat = 45 • + φ/2 or θ kinemat = 45 • + ψ/2 predicted by plasticity theory.

Fig. A1

 A1 Fig. A1 Schematic drawing of a force chain.

Fig. B2

 B2 Fig. B2 Spatial patterns of selected large strain area defined by different thresholds: 0.5 < dε loop d >, 0.8 <dε loop d >, <dε loop d >, 1.5 <dε loop d >, 2 <dε loop d >.

Fig. B3

 B3 Fig. B3 Evolution of average orientation of shear chains with respect to different strain thresholds.

Fig. B4

 B4 Fig. B4 Shear chain distribution captured by different β th : β th = 10 • ,β th = 22.5 • ,β th = 30 • .

Fig. C6 F

 C6 Fig. C6 F (a) and p (b) evolutions for ANOVA of shear chain orientations along biaxial loading.

Table 1

 1 Initial isotropic states and loading parameters of the biaxial test example of dense sample.

	ρ (kg • m -3 )	n	Zm	kn/Rs (MPa)	kt/kn	φg	Damping
	3,000	0.161 4.01	300	0.5	35 •	0.25

Table 2

 2 Sample parameters for the series of drained DEM tests. The sample presented in Section 2 is Sample DF.

	Sample	L/W	Np	Initial void ratio Vr
	DA	1.0	13333	0.0162
	DB	1.1	14667	0.0161
	DC	1.2	16000	0.0161
	DD	1.3	17333	0.0161
	DE	1.4	18667	0.0161
	DF	1.5	20000	0.0161
	DG	1.6	21333	0.0161
	DH	1.7	22667	0.0160
	DI	1.8	24000	0.0161
	DJ	1.9	25333	0.0160
	DK	2.0	26667	0.0160
	DL	2.1	28000	0.0160
	DM	2.2	29333	0.0160
	DN	2.3	30667	0.0160
	DO	2.4	32000	0.0159
	DP	2.5	33333	0.0159

Table 3

 3 are the same as for Sample DF in Table2. Sample parameters used for the proportional strain loading paths. Shear chain concept for granular materials

	Sample	PA	PB	PC	PD PE PF PG
	α	-1.0 -0.2 -0.5	0.	0.2	0.5	1.0

Table 4

 4 Sample parameters of drained DEM tests of different densities and confining pressures.

	Sample Initial porosity (2D) Confining pressure
	d100	0.160	100 kPa
	d200	0.154	200 kPa
	d300	0.147	300 kPa
	m100	0.185	100 kPa
	m200	0.178	200 kPa
	m300	0.172	300 kPa
	l100	0.207	100 kPa
	l200	0.198	200 kPa
	l300	0.190	300 kPa

  TableB1summarizes the results. Proportions of overlap shear chain loops in 5, 10 or 20 independent runs of the shear chain detection algorithm.

	States chosen 5 trials 10 trials 20 trials
	ε 1 = 0.001	74.5%	71.6%	70.9%
	ε 1 = 0.003	74.1%	71.3%	70.6%
	ε 1 = 0.008	77.6%	74.3%	73.9%
	ε 1 = 0.014	77.2%	72.6%	71.3%
	ε 1 = 0.025	77.5%	70.5%	69.9%
	Table B1			

Particles with a 3D shape are considered (spheres in the present case) but their motion is restricted to

2D (X-Y plane, two translations and one rotation). The difference with fully 2D simulations lies in the definition of the inertia of the particles.2 Please note that despite the fact that samples are in 2D, stresses are derived by use of an out of plane arbitrary dimension taken equal to the maximum particle diameters.

Note that soil mechanics conventions are used with compressions counted positive.

This condition was also checked in the present study by carrying a sensitivity analysis of the stress strain response to the loading parameters

Details can be found in Liu et al.[START_REF] Liu | Sustainability of internal structures during shear band forming in 2d granular materials[END_REF].

Note that the results obtained in the present study are not impacted by the particular choice for the macroscopic strain increment. Indeed, all strain increments presented in the study can be rescaled in terms of strain rate. The use of grain displacements instead of velocities to compute strain rates enable to get rid of small oscillations resulting from the elastic stiffness at contacts.

Should the total incremental strain be considered instead of its deviatoric part (to account for volume variations), an alternative definition for shear chains might be sought by considering the perpendicular direction to the zero-extension direction (if such a direction exists)

See details in Nicot et al.[START_REF] Nicot | Granular media failure along triaxial proportional strain paths[END_REF]. Under the constraint dε1 +dε2 = αdε1, the first order variation of the energy balance writes dW = dε1 [σ1 -(1 -α)σ2]. Thus the generalized deviatoric stress is the conjugate variable to the axial strain. In case α = 0 it corresponds to the usual deviatoric stress.

The choice of such state variable is driven by the fact that granular materials are known to follow Mohr-Coulomb plasticity as a first approximation.

Since the elastic domain is small for granular materials, the mobilized friction angle rapidly equals the internal friction angle. Then, its value vary along the loading path according to strain hardening/softening behavior.

Rigorously speaking, only the plastic part of the incremental strain should be considered, but in practice, the elastic incremental strain can be neglected as soon as the plasticity activates.

Note that force chains, as defined by Peters et al.[START_REF] Peters | Characterization of force chains in granular material[END_REF], should be better renamed as stress chained. However we keep the name force chains as it is widely used in the literature.
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Appendix A Force chain definition

In the understanding of the micromechanics of granular materials, grain loops and force chains are important mesostructures. Force chains account for the macroscopic mechanical strength of granular materials, while loops play an important role in volumetric and anisotropic evolutions. Moreover, loops surrounding force chains are known to strongly influence the mechanical stability of granular materials [START_REF] Wautier | Micro-inertia origin of instabilities in granular materials[END_REF][START_REF] Liu | Macroscopic softening in granular materials from a mesoscale perspective[END_REF][START_REF] Tordesillas | Force cycles and force chains[END_REF][START_REF] Tordesillas | Structural stability and jamming of self-organized cluster conformations in dense granular materials[END_REF][START_REF] Zhu | Meso-structure organization in twodimensional granular materials along biaxial loading path[END_REF].

The definition of a force chain [START_REF] Peters | Characterization of force chains in granular material[END_REF] 15 is briefly recalled here and illustrated in Fig. A1: -A particle within a force chain fulfils that its major principal stress is larger than the mean major principal stress of all grains (σ 1 ≥ <σ 1 >). -The major principal stress direction of chained particles is aligned with the geometrical direction of contact (less than 45 • deviation). -A force chain contains at least 3 contacting particles.

Force chain definition relies on three thresholds that involve some arbitrariness. However a minimum of three particles is necessary to define a chained structure, and two directions are correlated/anti-correlated if they differ by an angle smaller or larger than 45 • . Besides, the threshold (σ 1 / < σ 1 >) ≥ 1 is justified by the shape of the distribution function of the principal stresses in grains (as long as grain polydispersity is not too large) [START_REF] Radjai | Bimodal character of stress transmission in granular packings[END_REF].