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Abstract

Constitutive behaviors of granular materials are driven by both particle
interactions and geometric arrangements of contact network. To bridge
the gap between the grain scale and the sample scale, the mesoscale is of
great importance as it corresponds to the smallest scale at which geomet-
rical effect can be accounted for. Meso shear structures (sometimes called
microbands) have been observed frequently on incremental strain maps
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in granular materials under shearing, while the Rudnicki and Rice local-
ization criterion for shear band is not fulfilled yet. These meso structures
are thin, quasi-linear and they involve a few grains as well as their sur-
rounding voids. This paper introduces the concept of “incremental shear
strain chain” (simply called “shear chain”) to provide a specific quantita-
tive definition of such mesostructures. “Shear chains” are defined based
on incremental deviatoric strain fields in 2D biaxial simulations. Particu-
lar attention is paid to demonstrate that the shear chain orientation is a
material scale property, insensitive to boundary conditions, loading paths
and sample densities. Since shear chains are shown to be closely related
to sliding mechanisms, they can stand for a mesoscale definition of the
concept of slip lines as defined in the standard elasto-plasticity theory.

Keywords: granular materials, DEM, mesostructures, slip line, incremental
shear strain chain, granular plasticity

1 Introduction

Granular materials are found in a great variety of engineering problems and
industrial applications. Despite their apparent simplicity, the understanding of
their multiscale mechanical behaviors is a fascinating and very active domain of
research. Constitutive behaviors of granular materials are complex and involve
combined effects of local contact laws [1, 2], particle breakage [3, 4], particle
size distribution [5, 6], fluid impact [7, 8] and contact network topology [9–
12]. The contact-based and void-based fabric [13–15], the strong/weak contact
subnetworks [12, 16, 17] and particle kinematics [18, 19] have been used to
capture the influence of the geometrical arrangement of grains directly at the
representative elementary volume scale. However, the links between the evolv-
ing microstructure and complex macroscopic mechanical behaviors are not yet
well stabilized, even if local mechanisms responsible for failure and instability
are increasingly more understood [20–25].

One of the most puzzling features for granular materials is the appearance
of shear bands. Even though shear bands relate to plastic dissipation and their
formation relies on Rudnicki and Rice localization criterion [26] in the con-
tinuum view, the micromechanical origin of shear band has not been clearly
understood yet. In recent years, the evolutions of particle rotations, local voids
and other micromechanical indices for granular materials have been tracked by
digital image correlation (DIC), X-ray tomography and synchrotron microto-
mography [27–30]. Besides, numerical tools, such as Discrete Element Method
(DEM), are proved to be relevant to perform numerical experiments on granu-
lar materials and access to an exhaustive view of their microstructure [31–35].
Such detailed descriptions of the deformation patterns in granular materials
have revealed the existence of small and short life shear patterns, long before a
persistent and well-marked shear band develops under deviatoric loads [30, 36–
38]. Kuhn [36] named these structures as “micro-bands” in DEM simulations,
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and compared their orientation properties to other micromechanical evolu-
tions. Tordesillas et al. [39] correlated the “micro-bands” and the non-affine
deformations. In experimental observations, the “micro-bands” have also been
tracked and compared to the shear bands [40, 41]. However, the nature of
such structures is still debated and their links to shear bands remain to be
established.

At the macroscopic level, the shear band relates to obvious discontinuous
area in the strain field where failure occurs (Rudnicki and Rice localization
criterion [26]), which exhibits a size quite larger than that of slip lines. Slip
lines are accounted for in the standard continuum mechanics’ framework [42],
in which the finite thickness of shear band is frequently considered [43–45].
For granular materials, meso shear structures similar to slip lines exist under
shearing with a size of a few particles, which differ but correlate to the macro
shear bands [38, 45–48]. To distinguish shear bands from local shear patterns
in frictional granular materials, an intermediate scale, i.e., meso scale, between
grain and sample scales is needed. At this scale, slip structures can be analyzed
from both continuum and discrete points of views, provided that local stresses
and strains are consistently defined [49–51].

Researchers tried to model the small shear patterns observed in granular
samples. For example, [52–54] proposed micro-slip models of strain localization
in sand deformation and Shi and Horii [52] even formulated the evolution of
individual micro slips. Koenders [55] derived theoretical formulations of local
shear behaviors, and Gaspar and Koenders [56] proposed an interpretation of
microband involving heterogeneous elasticity theory. Zaiser and Aifantis [45]
proposed to account for shear band formation as avalanches of plastic slips. Le
Bouil et al. [37] characterized the length scale and persistence of microbands
thanks to digital image correlation in experimental setups. They found that
the final shear band does not arise from a coalescence of microbands, nor
is initiated by a single micro band that reaches the boundary and becomes
locked. Karimi and Barrat [40] used an elasto-plastic model of solid flow (based
on Mohr-Coulomb yield surface), to interpret microscopic correlations. These
models were established in the framework of continuum mechanics and did
not provide direct links to the underlying granular mesostructures. In a recent
work, Zhou et al. [38] used a new metric based on the concept of local intrinsic
dimensionality to provide quantitative measures of kinematic patterns in gran-
ular assemblies. Their results suggest that a complex symbiosis exists between
microbands and shear bands in granular material.

In this work the we propose to adopt a mesomechanical point of view could
to relate the microband concept to mesostructures of a few grains instead of
using coarse graining approach [57] to work with continuum fields. At such a
scale, a few grains and associative voids consist of mesostructures (e.g., force
chains [58] and contact-based loops [36, 59, 60]) have been defined and inves-
tigated. Based on the contact and particle information, incremental deviatoric
strain fields can be defined and qualitatively visualize deformation features of
the whole sample[34, 36]. In previous work [34, 50], the authors have shown
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that meso shear structures are clearly visible in incremental deviatoric strain
fields under the early stage of biaxial shearing. Following these observations by
naked eyes, we introduce the concept of incremental shear strain chain (sim-
ply called shear chain in the following for the sake of brevity) to capture these
meso shear features from a quantitative point of view in this paper.

This paper is organized as follows. In Section 2, an example of 2D DEM sim-
ulation is presented and mesoscopic deformation quantities attached to grain
loops are shown. In Section 3, the concept of shear chain is introduced and the
detection algorithm is specified. Some statistical features of the shear chains
are also explored. In Section 4, a number of complementary DEM simulations
(proportional strain loading tests, drained tests of different confining pressures
and densities, drained tests of different sample aspect ratios) are exhibited in
order to demonstrate that the shear chain orientation is a material scale prop-
erty. Finally, in Section 5, a detailed discussion on the relationship between
the discrete shear chain concept and the slip line in continuum mechanics for
granular materials is given. Particular attention is given to sliding dissipation
and shear chain orientation with respect to slip line directions as derived from
non-associated plasticity theory.

2 From discrete to continuum views of granular
materials

In this section, a DEM biaxial test is presented and the construction of the
incremental strain maps during the loading process is recalled. This simple
biaxial DEM test shows how meso shear structures appear and develop under
shearing, until the formation of a persistent shear band.

2.1 Drained biaxial test numerical modeling

Quasi-2D1 biaxial tests are carried out numerically with the use of the open-
source DEM software YADE [61]. Granular samples are generated within a
rectangular box of aspect ratio 1.5 with rigid boundaries (as shown in Fig. 1(a),
L/W = 1.5, L represents the length and W denotes the width) containing a
single layer of 20,000 spheres with a uniform distribution of diameters. The
average diameter D50 = 0.008 m and Dmax/Dmin = 1.98. Then they are slowly
compressed to reach an isotropic stress state under the confining pressure of
100 kPa2. During the compression process, the inter-granular friction angle is
temporarily reduced to 2◦ to reach a relative dense state. After the isotropic
loading, the drained loading condition is considered by keeping the lateral
confining pressure constant to 100 kPa and imposing a constant compression
strain rate ε̇1 = 0.01 s−1 in the axial direction (the direction of Y axis). The
parameters used in DEM simulations are listed in Table 1, where ρ is the grain

1Particles with a 3D shape are considered (spheres in the present case) but their motion is
restricted to 2D (X-Y plane, two translations and one rotation). The difference with fully 2D
simulations lies in the definition of the inertia of the particles.

2Please note that despite the fact that samples are in 2D, stresses are derived by use of an out
of plane arbitrary dimension taken equal to the maximum particle diameters.
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density, n is the porosity of the granular assembly, Zm is the average initial
coordination number, kn and kt are the normal and tangential stiffness of the
contact model respectively, Rs = 2R1R2/(R1 +R2) is the harmonic average of
the radii of the particles in contact and φg is the contact friction angle between
spheres. The numerical damping is used in the simulations, which will adjust
forces on particles by considering the current acceleration and particle velocity,
details can be found in Šmilauer et al. [61].

Table 1 Initial isotropic states and loading parameters of the biaxial test example of
dense sample.

ρ (kg ·m−3) n Zm kn/Rs (MPa) kt/kn φg Damping
3,000 0.161 4.01 300 0.5 35◦ 0.25

Figure 1(b) presents the macroscopic stress/strain responses of the biaxial
test (rigid boundaries), where q = 0.5(σ1−σ2) and εv = ε1 + ε2

3. The biaxial
loading can be considered as quasi-static as the dimensionless ratio between
the mean resultant force acting on grains and the mean contact force remains
always below 0.01 [62] 4. Key states are labeled under shearing: the initial state
(A), the end of the linear-elastic period (B), the most contractive state (C),
the peak of deviatoric stress (D), the onset of the single shear band forming
(E), the softening regime (F) 5. At State D (stress peak or limit stress state),
the macro shear band firstly occurs and then develops until the ultimate state.
In this paper, we mostly focus on the period before State D.

(a) (b)

Fig. 1 Biaxial loading condition (a) and deviatoric stress and volumetric strain evolutions
of an example of the biaxial test (b). In (b), different states are marked: A–the initial state,
B–the end of the linear-elastic period, C–the most contractive state, D–the peak of deviatoric
stress, E–the onset of the single shear band forming, F–the softening regime. Thick parts of
the curves are key periods concerned in this paper.

3Note that soil mechanics conventions are used with compressions counted positive.
4This condition was also checked in the present study by carrying a sensitivity analysis of the

stress strain response to the loading parameters
5Details can be found in Liu et al. [34].
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2.2 Incremental deviatoric strain fields attached to grain
loops

Incremental deviatoric strain maps are constructed from the unique loop tes-
sellation of the granular assembly. The grain loops in 2D granular materials
are defined by dividing the contact network into enclosed polygons containing
deformable or undeformable voids [33, 36, 39, 59]. An example of the 2D loop
tessellation is shown in Figure 2(a). The use of grain loops to construct incre-
mental strain fields (instead of coarse graining approach [57, 63] for instance)
is motivated by existing results highlighting that grain loops are relevant
mesoscale structures to capture the mechanical strength of granular materials
[33, 36, 49, 50, 64]. It enables keeping alive the link with the underlying con-
tact network at the microscopic scale, and correlating meso and micro-scales
(see Section 5.1).

(a) (b)

Fig. 2 Loop tessellation within the granular assembly (a) and schematic diagram for the
computation of the strain tensor in loops (b).

Based on the loop tessellation, different local incremental strain tensors
can be attached to each loop cell in order to draw an incremental strain map
[36, 65–67]. In this paper, loop incremental strain is defined as the average of
the symmetric part of the displacement gradient (neglecting grain rotations)
over the loop domain:

εloopij =
1

|L|

∫
L

ui,j + uj,i
2

dS (1)

where |L| is the area of the loop domain L and ui,j = ∂ui

∂xj
is the gradient of

displacement field within L.
Thanks to Gauss theorem, the integration can be changed to the loop

boundary ∂L:

εloopij =
1

|L|

∫
∂L

uinj + ujni
2

dl (2)
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in which n is the outer normal to ∂L. At the microscale, the notion of continu-
ous displacement field is meaningless and only grain displacements are known.
By assuming a linear interpolation of the displacement along the loop edges,
the incremental strain tensor of loop L is eventually defined as:

εloopij =
1

|L|

c∑
k=1

1

2
lk

(
nkj
u1k
i + u0k

i

2
+ nki

u1k
j + u0k

j

2

)
(3)

where u1k and u0k are the displacement vectors of the edge k vertices. The
notations used in Equation (3) are summarized in Figure 2(b). As discussed
in Deng et al. [68] for instance, this strain definition is consistent with the
macroscopic strain definition through spatial averaging.

During the biaxial loading, incremental strain tensors dεloop for loop cells
within the granular assembly are computed from the incremental grain dis-
placements corresponding to macroscopic strain increments of dε1 = 2.0∗10−4

6. The strain of the granular sample has been tested, which is quite close to the
average value of meso strains within the domain. From the computation of the
incremental strain tensors according to Equation (3), incremental deviatoric
strains are defined as the absolute difference between the two principal incre-
mental strain values (dεloop

d = |dεloop
1 −dεloop

2 | where dεloop
1 and dεloop

2 are the
eigenvalues of dεloop). For State B and C, small and non-persisting meso shear
structures can be observed in the incremental deviatoric strain fields of the
granular sample, as shown in Fig. 3 (the incremental deviatoric strain fields
of other states can refer to Liu et al. [34]). The observed meso shear structure
is similar to existing research of microband [36], in this paper we will have a
specific definition of this structure based on the loop tessellation (Section 3).

In Fig. 3, meso shear patterns are visible and distribute uniformly in the
sample domain with two symmetric preferred orientations. By zooming in the
selected area of State B in Fig. 3(a), Fig. 4 highlights that the meso shear pat-
terns consist in thin line like structures composed of loops with relatively large
incremental deviatoric strain (mainly green loops). In Fig. 4(a), the direction
of the incremental displacement of the particles is shown with unit arrows,
demonstrating very little change when crossing the meso shear structures col-
ored green. And in Figure 4(b), dark particles are force chain members (details
of the definition in Appendix A) which are mostly excluded by meso shear
structures.

3 The shear chain concept

From the observations in Fig. 4, the width of the meso slip structures corre-
sponds to the size of one meso-loop. Therefore, it is tempting to assume that
the meso shear patterns (microband) can be regarded as connected chains of

6Note that the results obtained in the present study are not impacted by the particular choice
for the macroscopic strain increment. Indeed, all strain increments presented in the study can be
rescaled in terms of strain rate. The use of grain displacements instead of velocities to compute
strain rates enable to get rid of small oscillations resulting from the elastic stiffness at contacts.
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(a) (b)

Fig. 3 Examples of shear structure distribution within the 2D granular assembly [34]: (a)
State B, ε1 = 0.004; (b) State C, ε1 = 0.009. The yellow rectangle domain in (a) is enlarged
in Figure 4

(a) (b)

Fig. 4 Zoomed images of a mesoscopic shear structure from State B (selected area is
marked in Fig. 3(a)). The direction of the displacement field is represented in subfigure (a)
while force chain particles are displayed in subfigure (b). The mesoscopic shear structures
are mostly colored in green which correspond to large deviatoric incremental strain levels.

loops of large incremental deviatoric strains. In the following sections, these
structures are named incremental shear strain chain or simply shear chains for
brevity, and are expounded with a rational definition and algorithm. Inspired
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by force chain definition [58] recalled in Appendix A, this section will intro-
duce the concept of incremental shear strain chain from a quantitative way, to
describe the meso shear structures observed in incremental deviatoric strain
field before shear banding.

3.1 Definition of incremental shear strain chain

To capture the incremental shear strain chains, the maximum shearing direc-
tion of the incremental deviatoric strain of each loop is considered. Fig. 5 shows
the schematic drawing of a shear chain, and the procedure is listed in Fig. 6.
In detail, the steps to define shear chains are as follows:

1. For each mesoloop, compute the incremental strain tensor dεloop using the
strain definition of loops in Section 2, and identify meso loops with incre-
mental deviatoric strains dεloop

d = |dεloop
1 −dεloop

2 |7 larger than the average

incremental deviatoric strain <dεloop
d >.

2. Within this group of loops, randomly select one head loop (only one con-
nection with other loops of large incremental deviatoric strain) and find the
possible chain members. This is done by computing the maximum shear-
ing directions8 of the chosen loop (called Loop A) and its connection loop
(called Loop B) and then checking whether the geometric directions joining
the 2 barycenters are close to the shearing directions of the two loops. In Fig.
5, β denotes this deviation angle. The connection between the two loops are
built if β fulfills a given limitation, in this paper it is set as β ≤ βth = 22.5◦.
After one connection built, a new cycle of identifying chain members begins
with the Loop B of the last step, until the threshold β ≤ βth = 22.5◦ is not
fulfilled or no connection loops are found.

3. If a chain of loops is composed of at least three loops, then it is regarded
as a shear chain.

It is important to note that the shear chain does not correspond to the
shear band (as explained in Liu et al. [34]) at the macroscopic level because
it cannot be thicker than a mesoloop, and it does not correspond to sliding
contacts at the microscopic scale as it is defined on averaged incremental grain
displacements only (no interparticle slip is considered).

Similarly to force chain definition, the shear chain definition relies on three
thresholds, the combination of which prevents the identification of shear chains
in arbitrary deformation field. Because the shearing directions consist in two
perpendicular directions, the linearity threshold is set to 45◦/2 = 22.5◦. The
choice to use the mean incremental deviatoric strain is justified by sensitivity
analyses presented in B.1. Moreover, the robustness of this definition is care-
fully shown in B.2 (in particular the random selection of the head loops is
shown not to significantly affect the identified shear chain population). Besides,

7dεloop1 and dεloop2 are the eigenvalues of dεloop

8The shearing directions correspond to the frame in which the deviatoric part of dεloop has
zero diagonal terms. They are oriented to ±45◦ from the principal strain directions. In Fig. 5 the
two shearing directions are shown with red dashed lines
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Fig. 5 Schematic drawing of an incremental shear strain chain. Shearing directions are
displayed in relation with the principal incremental strain directions and the geometric
direction joining the loop barycenters.

Fig. 6 The flow chart of searching incremental shear strain chains.
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the shear chain definition proposed in this paper relies on the deviatoric part
of the incremental strain to focus on shearing mechanisms 9.

An example of the application of the shear chain detection algorithm is
given in Fig. 7 between State A and State B for the drained biaxial test
presented in Section 2. It can be seen that meso slip features are captured by
the shear chain definition, and a number of shear chains with different colors
are evenly distributed within the sample.

Fig. 7 Shear chains within the granular assembly (between State A and State B). Quasi-
linear structures of different colors denote various shear chains.

By definition, shear chains are line-like structures. A representation of shear
chains is achieved by joining the geometric barycenters of adjacent cells (dark
thick line in Fig. 5). For a shear chain of n adjacent mesoloops, the least square
method defines the mean direction θ as:

θ = arctan

(∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

)
(4)

where xi and yi corresponds to the x and y coordinates of the geometric
barycenter of loop cell i, and x̄ and ȳ are the averages of the xi and yi,
respectively.

9Should the total incremental strain be considered instead of its deviatoric part (to account for
volume variations), an alternative definition for shear chains might be sought by considering the
perpendicular direction to the zero-extension direction (if such a direction exists)



Springer Nature 2021 LATEX template

12 Shear chain concept for granular materials

3.2 Statistical features of shear chains

Following the algorithm suggested in Section 3.1, all the states of the biaxial
test presented in Section 2 are considered to identify shear chains within the
granular assembly, especially for the states before the shear banding (state D).
The spatial distribution of shear chains is shown in Fig. 7 quite near the initial
isotropic stress state. Hundreds of shear chains are randomly distributed within
the granular assembly, demonstrating that the mesoscopic shearing occurrence
is diffuse and disordered in space at the first stage of deviatoric loading.

The probability distribution of the shear chain orientation θ corresponding
to the state of Fig. 7 is shown in Fig. 8(a). Shear chains are more likely to
orientate in one of the two symmetric directions ±45◦, which is similar to
the microband observation at the first stage of deviatoric loading in literature
[36, 41].

(a) (b)

Fig. 8 Probability distributions of shear chain orientation θ for ε1 = 0.001 (close to State
A) (a) and for ε1 = 0.005 (close to state B) (b) of the granular sample in Section 2.1.

As the biaxial loading is pursued, the probability distribution of the shear
chain orientation θ keeps the same double-peak feature but the preferred orien-
tation seems to change and larger fluctuations are observed, which can be found
in Fig. 8(b) showing the probability distribution of θ at the state ε1 = 0.005.
These observations are consistent with the results of Houdoux et al. [41]. In
their experimental work, an increase in the size of the error bars is observed
for the orientations of the fast fluctuation part of the spatial autocorrelation
before shear banding occur (see Fig. 7 in [41]).

Since the preferred orientations of shear chains are symmetric, then the
absolute value |θ| could be a proper indicator to track the orientation evolution.
The evolution of its mean value < |θ|> is plotted in Fig. 9 for the period
before the stress peak (state D, the onset of macroscopic shear band). At
the beginning of the loading, < |θ|> is around 45◦. As the deviatoric loads
continue to be applied, < |θ|> increases gently (shear chains get closer to
the principal compression direction). As illustrated qualitatively in Fig. 8,
the standard deviation around <|θ|> is increasing along the drained biaxial
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test. Nevertheless, a statistical analysis detailed in C demonstrates that the
increasing trend visible in Fig. 9 is statistically representative.

Fig. 9 Evolution of the average shear chain direction <|θ|> during biaxial drained loading.

As a result, the shear chain orientation is influenced by the stress state
and/or possibly by the type of loading conditions and the change in geometry
of the deformed sample. Before discussing the change in orientation of shear
chains with the framework of non-associated elasto-plasticity theory in Section
5, the invariance of the shear chain orientation with respect to structural effects
is investigated in Section 4.

4 Shear chain orientation under different
loading conditions

In Section 3, we have defined the shear chain and analyzed the orientation
evolution considering a standard drained biaxial test. In this section, different
loading conditions are considered to highlight a unique relationship between
shear chain orientation and the stress state of the granular assembly10. Results
in this section provide evidences that the shear chain orientation is a material
scale property.

4.1 Drained biaxial tests with varying sample aspect
ratios

Similar to the example we analyze in Section 2, a set of quasi-2D biaxial drained
tests of samples with different aspect ratios (L/W in Fig. 1(a)) are conducted.

10There might be an additional dependence to some constitutive microstucture features too
(e.g. the fabric tensor). Such a study is however out of the scope of the present study.
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Firstly, all specimens are randomly generated within rectangular domains of
prescribed aspect ratios and compacted to isotropic confining state of 100 kPa.

The same uniform distribution of DEM sample in Section 2, as well as
other DEM parameters given in Table 1 are used for biaxial samples of differ-
ent L/W . Additional specific parameters are summarized in Table 2. For the
sixteen samples, only the aspect ratio L/W and the particle number are dif-
ferent at the initial compacted states. The slight changes in void ratio Vr can
be neglected. When conducting the drained biaxial loading, a compression is
imposed in the vertical direction with a constant strain rate of ε1 = 0.01 s−1

and the lateral pressure is maintained constant to σ2 = 100 kPa. The overall
stress/strain responses for different boundary conditions (different L/W ) are
shown in Fig. 10. The sample in Section 2 corresponds to Sample DF here.

Sample L/W Np Initial void ratio Vr
DA 1.0 13333 0.0162
DB 1.1 14667 0.0161
DC 1.2 16000 0.0161
DD 1.3 17333 0.0161
DE 1.4 18667 0.0161
DF 1.5 20000 0.0161
DG 1.6 21333 0.0161
DH 1.7 22667 0.0160
DI 1.8 24000 0.0161
DJ 1.9 25333 0.0160
DK 2.0 26667 0.0160
DL 2.1 28000 0.0160
DM 2.2 29333 0.0160
DN 2.3 30667 0.0160
DO 2.4 32000 0.0159
DP 2.5 33333 0.0159

Table 2 Sample parameters for the series of drained DEM tests. The sample presented in
Section 2 is Sample DF.

Although the sizes of samples are different for the drained biaxial tests
in Fig. 10, the stress-strain curves before ε1 = 0.01 are identical. The stage
ε1 = 0.01 corresponds to a bifurcation point after which the response of the
sample is strongly influenced by the boundary conditions. During the drained
biaxial loading, the incremental deviatoric strain field of specimens experiences
a transition from random-distributed meso shear chains to the macro shear
band. Fig. 11(a) shows the incremental deviatoric strain fields at ε1 = 0.005 for
the samples DC (L/W=1.2) and DK (L/W=2.0) respectively, which exhibit
almost the same spatial distribution of incremental deviatoric strain as for
sample DF in Fig. 3. Similar incremental strain fields were obtained for the
other samples (not shown here for the sake of brevity).

For each specimen with a given aspect ratio L/W, shear chains exist from
the beginning of the loading until the shear band forms. The probability den-
sity distributions of shear chain orientations for sample DC (L/W=1.2) and



Springer Nature 2021 LATEX template

Shear chain concept for granular materials 15

(a) (b)

Fig. 10 Evolutions of deviatoric stress q (a) and volumetric strain εv (b) during the drained
biaxial tests with axial strain rate ε̇1 = 0.01 s−1 and lateral confinement σ2 = 100 kPa.
Different curves correspond to different aspect ratios L/W ranging from 1.0 to 2.5.

DK (L/W=2.0) at the same state of Fig. 11(a) are given in Fig. 11(b). As sam-
ple DF, the preferred orientations of shear chains in Fig. 11(b) are also close
to ±45◦.

The evolutions of the mean direction |θ| are shown for all the biaxial tests
in Fig. 12. Despite some fluctuations, the orientation of shear chain is not
affected by the boundary conditions: the preferred direction of shear chains
increases from 45◦ to nearly 50◦ just before the stress peak and the onset of
persistent shear bands.

4.2 Proportional strain loading path

In order to broaden the scope of the results of this paper, another type of
loading path is considered in the form of proportional strain loading tests. We
use a parameter α to control the change in volume of the sample during the
loading as in Jrad et al. [69]. The incremental volumetric strain is set as:

dεv = dε1 + dε2 = αdε1 (5)

Under an axial compression (dε1 > 0), α < 0 corresponds to an increase in
the sample volume, while α > 0 corresponds to an imposed contraction. α = 0
corresponds to the special case of the undrained loading path (no volume
change). Table 3 summarizes the values of α considered in the different tests
in this paper. Except the loading path, all the initial conditions for samples in
Table 3 are the same as for Sample DF in Table 2.

Sample PA PB PC PD PE PF PG
α -1.0 -0.2 -0.5 0. 0.2 0.5 1.0

Table 3 Sample parameters used for the proportional strain loading paths.
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(a)

(b)

Fig. 11 Examples of the incremental deviatoric strain field (a) and the probability distri-
bution density (b) for Sample DC (L/W=1.2) and Sample DK (L/W=2.0), at the state of
axial strain ε1 = 0.005.

For the different proportional strain loading paths, the evolution of the
generalized deviatoric stress σ1−(1−α)σ2

11 is shown in Fig. 13. In all propor-
tional loading paths, shear chains are clearly visible in incremental deviatoric
strain fields and for some values of α, and shear banding eventually occurs.
Points in Fig. 13 denote the onset of shear banding. In Fig. 14, incremental
deviatoric strain fields are shown for Sample PC (α = −0.2) and PG (α = 1)
at ε1 = 0.002.

11See details in Nicot et al. [70]. Under the constraint dε1+dε2 = αdε1, the first order variation
of the energy balance writes dW = dε1 [σ1 − (1 − α)σ2]. Thus the generalized deviatoric stress is
the conjugate variable to the axial strain. In case α = 0 it corresponds to the usual deviatoric
stress.
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Fig. 12 Evolution of average preferred shear strain direction for specimens of different
aspect ratios.

Fig. 13 Evolutions of generalized deviatoric stresses σ1−(1−α)σ2 during the proportional
strain loading with axial strain rate ε̇1 = 0.01 s−1 and volumetric strain rate ε̇v = αε̇1. The
points represent the beginning of strain localization.

Since stress states diverge at a given axial strain for different proportional
strain loading paths, the stress ratio q/p = (σ1−σ2)/(σ1 +σ2) is considered12

to compare the mean orientation of shear chains in Fig. 15. In addition, the
data corresponding to a drained biaxial test (Sample DF) is also presented in
Fig. 15 for comparison. Although q/p is the macroscopic description and |θ| is
a mesoscale character of shear chains, they can be compared since the macro
stress and strain of granular materials are statistical average of meso or micro

12The choice of such state variable is driven by the fact that granular materials are known to
follow Mohr-Coulomb plasticity as a first approximation.
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(a)

(b)

Fig. 14 Examples of the incremental deviatoric strain field (a) and the probability distri-
bution density (b) for Sample PC (α = −0.2) and Sample PK (α = 1), at the state of axial
strain ε1 = 0.002.

stress and strains. The data corresponding to all the tests collapse on a single
master curve which indicates that the shear chain orientation does not depend
on the type of loading path but only on the stress state q/p.

4.3 Effect of density and confining stress

In this subsection, the impact of the initial density and the confining stress
level are assessed by considering 9 drained biaxial tests for different initial
porosities and confining pressures. Dense, medium and loose samples under
the confining pressures of 100 kPa, 200 kPa and 300 kPa are named as “d100”,
“d200”, “d300”, “m100”, “m200”, “m300”, “l100”, “l200” and “l300” respec-
tively. Except the initial porosities and the confining pressures summarized in
Table 4, parameters for the simulations are the same as Sample DF presented
in Section 2.1.
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Fig. 15 Evolution of average preferred shear strain direction for samples under different
proportional strain loading paths. Pink points corresponds to the drained biaxial test on
sample DF (Section 2.1)

Sample Initial porosity (2D) Confining pressure
d100 0.160 100 kPa
d200 0.154 200 kPa
d300 0.147 300 kPa
m100 0.185 100 kPa
m200 0.178 200 kPa
m300 0.172 300 kPa
l100 0.207 100 kPa
l200 0.198 200 kPa
l300 0.190 300 kPa

Table 4 Sample parameters of drained DEM tests of different densities and confining
pressures.

Samples of different initial densities and confining pressures exhibit dif-
ferent stress/strain relationships. Dense samples are characterized by strain
hardening/softening and contractancy/dilatancy, while loose samples are
related to the hardening and contractancy only. As conducted in the previous
sections, shear chains are detected and analyzed for these nine drained tests.
The evolutions of the mean |θ| versus the stress ratio q/p are presented in
Fig. 16. Despite several outliers, samples of different densities and confining
pressures exhibit the almost the same relationship between the preferred direc-
tion of shear chains and the stress ratio. Combined to the results obtained in
Sections 4.1 and 4.2, shear chain orientation is shown to be a material scale
property of granular materials influenced by the stress state only (at least as
a first approximation).

In addition, the stress-strain relationship and shear chain orientation evo-
lution for samples of different coordination numbers but under the same



Springer Nature 2021 LATEX template

20 Shear chain concept for granular materials

Fig. 16 Evolution of average preferred shear strain direction for drained biaxial tests with
different initial porosities and confining pressures.

confining pressure and porosity [71] should also be interesting to explore, to
further capture the material property of the shear chain features.

5 Shear chains relationships to granular
plasticity

The shear chain concept has been defined in Section 3, and the orientation
of the shear chain has been shown to be a material scale property mainly
influenced by the stress ratio q/p in Section 4. In this section, we intend to cor-
relate discrete plastic dissipation and continuum views of plasticity in granular
materials in terms of the defined shear chain. The spatial correlation between
contact sliding and shear chain is investigated and the shear chain orientation
is analyzed in relation with the slip line orientations predicted by the standard
elasto-plastic continuum formalism for non-associated materials.

5.1 Spatial correlation between shear chains and contact
sliding

At microscale, energy dissipation can occur through contact sliding. According
to the contact model used in the DEM simulations, a sliding index Ip can be
constructed for each contact as:

Ip =
|ft|

|fn| tanφg
(6)
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where |fn| and |ft| are the normal and tangential force magnitudes respectively,
and φg is the contact friction angle. As a consequence of local Coulomb crite-
rion, contact sliding occurs when Ip = 1. Fig. 17 presents the sliding contact
distribution for the 5 key states identified in Section 2.1.

Fig. 17 Spatial distributions of the contact sliding for different loading states (red points
denote the positions of sliding, blue arrows show the tangential direction of the contact).

Visually, the spatial distribution of sliding contacts can reflect the shear
band characteristic (State D and E), however the relationship between contact
sliding and meso shear features (in Fig. 3) is not obvious and has to be quanti-
fied from a statistical point of view. Note that the shear chain definition relies
only on grain kinematics and thus the relation with contact sliding needs to
be established.

Based on the shear chain definition, contact sliding analysis can be
categorized to 3 groups:

- All contacts within the granular assembly;
- Shear chain contacts, i.e. all contacts of mesoloops composing the shear

chains;
- Connection contacts in shear chains, denoting contacts connecting two

adjacent loops in shear chains, which are marked in red in Fig. 5.

Evolutions of the sliding fraction Sr and average sliding index <Ip> for
these three groups are shown in Fig. 18. The sliding fraction is defined as
Sr = Ns/Nc, where Ns denotes the number of sliding contacts among the
set of contacts Nc considered (all contacts, shear chain contacts or connection
contacts).

Both Sr and <Ip> have the largest values for connection contacts. Shear
chain contact population also exhibits larger Sr and <Ip> than the set of
all contacts. Sliding occurs predominantly inside shear chains, which demon-
strates that shear chains are mesostructures characterizing sliding mechanisms
in granular materials. The fact that connection contacts are even more likely
to slide than shear chain contacts agrees well with the existence of mesoscopic
sliding lines oriented in the direction of the shear chain. Nevertheless, it should
be acknowledged that only 15 % of the contacts are sliding, which means that
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(a) (b)

Fig. 18 Average sliding fraction Sr (a) and average sliding index <Ip> (b) for connection
contacts, shear strain contacts and all contacts.

the kinematic patterns defining shear chains do not result only from sliding in
contacts but also probably from contact opening or simply loop deformation.
Further micromechanical analysis will be carried out in forthcoming studies to
clarify this point.

5.2 Upper and lower bounds for slip line orientation
derived from elasto-plasticy theory

As a first approximation, granular plasticity is known to follow Mohr-Coulomb
yield criterion. According to this yield criterion, plasticity activates at a given
point if the maximum ratio between the shear and normal stresses is larger
than a limit value. For a 2D stress tensor with principal stresses σ1 > σ2 > 0,
the geometric direction giving rise to the maximum ratio between the shear
stress and the normal stress is expressed as

θstat = ± (45◦ + φmob/2) , (7)

where φmob is the mobilized friction angle. It is related to the stress state
through the relationship:

sinφmob =
σ1 − σ2

σ1 + σ2
(8)

In the above equation, θstat is given with respect to the minor stress direc-
tion (horizontal direction in the present case). It defines the first direction in
which sliding occurs when the mobilized friction φmob equals the internal fric-
tion angle φ (the Mohr-Coulomb yield criterion) 13. In the present case, the
major and minor stress directions coincide with the axes y and x respectively.

13Since the elastic domain is small for granular materials, the mobilized friction angle rapidly
equals the internal friction angle. Then, its value vary along the loading path according to strain
hardening/softening behavior.
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Thus, the angle θstat is given here with respect to the horizontal axis (like θ
in Fig. 5).

If the yield function controls plasticity activation (the static condition),
plastic strain develops according to a the plastic potential (the kinematic condi-
tion, aka the flow rule) that can be a different function in case of non-associated
plasticity. For granular materials, the flow rule is usually characterized by the
dilatancy angle ψ (where ψ > 0 corresponds to dilatancy). This angle relates
to the principal values of the incremental plastic strain as:

sinψ = −dε1 + dε2

dε1 − dε2
(9)

where dε1 and dε2 are the principal incremental strain values14. Provided
that dε1 > 0 > dε2, there exists two directions of zero length variation. The
perpendicular directions can be seen as slipping directions in the sense that
no length variation is observed across the slipping direction. Expressed with
respect to the minor stress direction, the slipping angle θkinemat satisfy the
equation

n.

(
dε1 0
0 dε2

)
.n = 0 (10)

with n =

(
cos(θkinemat − π/2)
sin(θkinemat − π/2)

)
. This gives

cos(2θkinemat − π) = sin(−π
2
± 2θkinemat) = −dε1 + dε2

dε1 − dε2
(11)

With use of Equation (9), the slipping directions are expressed with respect
to the minor diretion (horizontal direction here) as

θkinemat = ± (45◦ + ψ/2) (12)

For a pure incremental shear deformation, dε1 + dε2 = 0, and θkinemat =
±45◦. In this case, zero extension directions coincide with slipping directions
and the slipping directions are perpendicular. In the general case (ψ 6= 0), the
slipping directions are not perpendicular.

When material failure occurs (i.e. when plastic strain develops), θstat and
θkinemat “compete” to drive the failure line orientation. Indeed, the static con-
dition (given by the yield surface) requires that sliding occurs along direction
θstat, while the kinematic condition (given by the plastic potential) predicts
that slipping develops along direction θkinemat. In case of associated plasticity
θstat = θkinemat and both conditions are equivalent, but this is not the case
for non-associated plasticity.

At the meso scale, depending on whether the yield criterion or the flow
rule controls plastic development, slip lines are also expected to form along

14Rigorously speaking, only the plastic part of the incremental strain should be considered, but
in practice, the elastic incremental strain can be neglected as soon as the plasticity activates.
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directions close to θstat or θkinemat [48]. In this paper, we have shown that
the shear chain orientation is a material property. As a result, its orientation
might be related to the yield criterion or flow rule at the macroscale (and not
Rudnicki and Rice criterion). In Fig. 19, the mean orientation of shear chains
found in this paper is compared to the slip line directions θstat and θkinemat
estimated from the macroscopic stress and incremental strain tensors.

Fig. 19 Comparison between the preferred orientation of shear chains with the slip line
directions θstat = 45◦ + φ/2 or θkinemat = 45◦ + ψ/2 predicted by plasticity theory.

In Fig. 19, neither θstat nor θkinemat accounts alone for the shear chain
direction. θstat overestimates the shear chain orientation while θkinemat
underestimates the shear chain orientation.

Nevertheless, it can be underlined that the shear chain orientation is very
close to θstat in the beginning of the test, while it becomes closer to θkinemat
just before the onset of persisting shear band (State D). This observation is
consistent with the fact that first slip lines appears while very few grain rear-
rangement has occurred, demonstrating that mesoscale failure is expected to
be stress driven (θstat). On the other hand, as the test is carried on, grains
rearrange more and more, and the failure pattern is increasingly driven by the
plastic strain development. Between the initial and failure states, the shear
chain orientation remains in the range of [θstat, θkinemat]. It should also be
underlined that the slipping directions θstat and θkinemat consider the macro-
scopic stress or strain whereas shear chain is a mesoscopic concept. As a result,
it will be interesting to define and analyze meso stress and strain in further
studies before being able to derive a constitutive relationship for the shear
chain orientation.
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5.3 Meso shear behaviors and Eshelby theory

In the previous subsection we show that, standard non-associated elasto-plastic
formalism provides a lower bound and an upper bound for the shear chain ori-
entation depending on whether the stress state or the plastic strain imposes the
slip line direction. These two directions are related to the friction angle and the
dilatancy angle separately (equations (7) (12)). Following the ideas proposed
by Mc Namara et al. [72] and Karimi and Barrat [40], the orientation of slip
lines can be derived from an Eshelby problem to relate the microband direc-
tion to both the friction and dilatancy angles. In their papers, these authors
assume that a grain reorganization occurs in a given location in the granular
assembly. This small reorganization is a consequence of a local collapse, and
generates an incremental strain located in a small surrounding domain, i.e.
in an Eshelby inclusion. This local reorganization generates a perturbation of
the stress field and can result in several secondary grain reorganizations in the
vicinity of the first reorganization.

By solving analytically this problem for Mohr-Coulomb type materials,
the geometrical directions corresponding to the largest increase of the shear
stress to normal stress ratios are recovered. Such directions are given by a
quadrupolar function that predicts slip line directions close to ±45◦. The slip
line direction is larger or smaller than 45◦ depending on whether the triggering
event is contractive or dilative respectively. In this approach, it is interesting
to see that the slip line direction combines stress and strain ingredients.

In Mc Namara et al. [72], the authors simulated the Eshelby inclusion
problem from 2D DEM computations for different intergranular friction angles.
Whatever the friction used, they observed a slight increase in the slip line
direction when the axial strain is increased in a biaxial loading test. Compared
with the present results in Fig. 19, the qualitative convex shape of the curve
is also observed in Mc Namara et al. [72].

In addition, the analytical work achieved in Mc Namara et al. [72] under-
lines that the slip line orientation can also be influenced by the underlying
microstructure anisotropy, especially for large friction angles. As stated by the
authors, the anisotropy effect is responsible for additional increase in the slip
line orientations as well as in the fluctuations around the mean value. Such a
result is consistent with the observed increase in the fluctuations of the shear
chain orientations shown in Fig. 8 for instance.

In this section, we discuss how the meso shear chains evolve according
to plasticity theories. Meso shear chains defined in this paper is a meso rep-
resentation of slips for granular materials, and they are different from the
well-known shear band in terms of sizes, duration, etc. The detailed compar-
ison of these two sheared structures will be explained in future work of the
authors. La Ragione et al. [73] developed a formulation to describe the shear
band orientation, will also be compared in our future papers.
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6 Conclusion

Based on series of 2D biaxial DEM tests, this paper investigates the devel-
opment of meso shear structures (the new-defined incremental shear strain
chains) in granular materials under different conditions. A quantitative def-
inition of incremental shear strain chain (briefly “shear chain”) is proposed
and the detection algorithm is detailed. Based on the kinematic definition of
shear chains we have shown that shear chains are spatially correlated with
microscopic dissipation and that their orientation is consistent with slip line
theory in continuum mechanics. Consequently, we beleive that shear chains
correspond indeed to slip lines but defined in discrete mechanics instead of
continuum mechanics framework. Main points can be summarized as follows:

1. According to the observations of incremental deviatoric strain field of a
dense granular assembly under biaxial loading, the concept of incremen-
tal shear strain chain is proposed to characterize meso shear patterns (i.e.,
microband) from a quantitative point of view. The geometric features of
meso shear structures are well captured with the definition of shear chain
by demonstrating orientation distribution with marked double peaks close
to ±45◦. Such a rational concept is defined as a dual concept to the well-
known “force chain”, to analyze the mesoscopic shear deformation features
of granular materials.

2. The orientation of the shear chains in granular materials is shown to be a
material-scale quantity which depends essentially on the macro stress ratio
q/p. This conclusion was reached by considering different boundary condi-
tions (drained or proportional strain tests), different confining pressures and
different initial sample densities.

3. The shear chain concept is related to plastic dissipation at contact scale, by
demonstrating that the microscopic contact sliding is more concentrated in
shear chain connections. In the framework of non-associated elasto-plastic
theory, the slip line is considered as internal shear events. The shear chain
orientation is consistent with the slip line direction which is influenced by
both the yield surface and the plastic flow rule. The more microstructure
rearranges, the more the flow rule drives the shear chain direction. In addi-
tion, it is conjectured that the shear chain direction is probably influenced
by the underlying microstructural anisotropy.

4. In our future work, more loading conditions for granular materials should be
considered to enhance our conclusion and a better algorithm for searching
shear chains should be developed to incorporate all shear chains. As the
shear chain could be related to the micro slip, the comparison between shear
chain assumption and mathematical formulation (e.g., Gaspar and Koenders
[56], Karimi and Barrat [40], La Ragione et al. [53]) is necessary to further
develop the framework of shear chain definition. Besides, shear bands and
shear chains are shear behaviors at different scales (time and space), how to
correlate them will be presented in our following papers.
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Appendix A Force chain definition

In the understanding of the micromechanics of granular materials, grain loops
and force chains are important mesostructures. Force chains account for the
macroscopic mechanical strength of granular materials, while loops play an
important role in volumetric and anisotropic evolutions. Moreover, loops sur-
rounding force chains are known to strongly influence the mechanical stability
of granular materials [24, 50, 74–76].

The definition of a force chain [58] 15 is briefly recalled here and illustrated
in Fig. A1:

- A particle within a force chain fulfils that its major principal stress is larger
than the mean major principal stress of all grains (σ1 ≥ <σ1>).

- The major principal stress direction of chained particles is aligned with the
geometrical direction of contact (less than 45◦ deviation).

- A force chain contains at least 3 contacting particles.

Force chain definition relies on three thresholds that involve some arbitrari-
ness. However a minimum of three particles is necessary to define a chained
structure, and two directions are correlated/anti-correlated if they differ by an
angle smaller or larger than 45◦. Besides, the threshold (σ1/ < σ1 >) ≥ 1 is
justified by the shape of the distribution function of the principal stresses in
grains (as long as grain polydispersity is not too large) [16].

15Note that force chains, as defined by Peters et al. [58], should be better renamed as stress
chained. However we keep the name force chains as it is widely used in the literature.
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Fig. A1 Schematic drawing of a force chain.

Appendix B Additional details for
incremental shear strain chain

B.1 Sensitivity analysis of parameters for defining shear
chains

When defining an incremental shear strain chain in Section 3, 3 parameters
should be appointed:

- the minimum number of loops within a shear chain;
- the partition threshold of selected area of large incremental deviatoric strain;
- the deviation angle between the shear direction of strain tensor and the

geometrical direction of two connected loop cells, i.e., βth in Fig. 5.

For the minimum number of loops within a shear chain, 3 is chosen for the
reason that connecting structures containing elements below 3 could not be
regarded as chains.

For the selected area for searching shear chains, the average incremental
deviatoric strain <dεloop

d > is used to distinguish the large incremental devi-
atoric strain. Here we compare the patterns of different partitions of large
incremental deviatoric strain for State B of the sample in Section 2, by using
0.5 <dεloop

d >, 0.8 <dεloop
d >, <dεloop

d >, 1.5 <dεloop
d >, 2 <dεloop

d > respectively
in Fig. B2. It can be seen that the smaller threshold does not result in a clear
shearing pattern and a too large threshold will ignore some meso shear struc-
tures. Considering the shear chain orientation evolution, we also plot Fig. B3,
and it can be demonstrated that the average orientation of shear chains are
relatively robust with a proper meso strain threshold. In this paper, we use
<dεloop

d >.
For the value of βth, i.e., the deviation angle between the shear direction of

strain tensor and the geometrical direction of two connected loop cells in Fig.
5, some skewing should be accepted to gain more shear chains, but βth should
not be too large when the chains do not correspond to shear features. Here
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Fig. B2 Spatial patterns of selected large strain area defined by different thresholds: 0.5 <

dεloopd >, 0.8 <dεloopd >, <dεloopd >, 1.5 <dεloopd >, 2 <dεloopd >.

Fig. B3 Evolution of average orientation of shear chains with respect to different strain
thresholds.

we compared seven values: βth = 10◦,βth = 15◦,βth = 19◦,βth = 22.5◦(chosen
value in the paper),β = 25◦,βth = 27◦,βth = 30◦. The shear chains captured
by βth = 10◦, βth = 22.5◦ and βth = 30◦ are shown in Fig. B4, compared to
selected area of large incremental deviatoric strain. In Fig. B5, the |θ| evolu-
tions before shear banding are compared for different βth thresholds. Different
options of βth will affect the shear chain orientations. As the meso structure
initially orientate 45◦ in some theories [40, 41] and small differences are found
between βth = 19◦ and βth = 25◦ in Fig. 5(b), the chosen βth = 22.5◦ in this
paper should be assumed to be rational.

B.2 Robustness of the shear chain detection algorithm

In a similar way to the force chain detection algorithm [58], the shear chain
detection algorithm does not account for possible shear chain branches which
may occur if the shear zone appears to be thicker than a grain loop. Since the
order in which shear chains are detected is random, two independent runs of
the algorithm gives slightly different sets of shear chains. In order to quantify
the amount of shear chains that are always detected whatever the run, we
choose 5 states of the biaxial test to run 20 times the algorithm, and then
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Fig. B4 Shear chain distribution captured by different βth: βth = 10◦,βth = 22.5◦,βth =
30◦.

(a) (b)

Fig. B5 Evolution of average orientation of shear chains with respect to different βth: (a)
all βth values; (b) proper βth values.

compare the loop Ids composing the sets of shear chains. Table B1 summarizes
the results.

States chosen 5 trials 10 trials 20 trials
ε1 = 0.001 74.5% 71.6% 70.9%
ε1 = 0.003 74.1% 71.3% 70.6%
ε1 = 0.008 77.6% 74.3% 73.9%
ε1 = 0.014 77.2% 72.6% 71.3%
ε1 = 0.025 77.5% 70.5% 69.9%

Table B1 Proportions of overlap shear chain loops in 5, 10 or 20 independent runs of the
shear chain detection algorithm.

As shown in Table B1, the overlap part of loops for 5 trials, 10 trials and 20
trials decreases slightly but we can conclude that around 70% of shear chain
loops are always found whatever the particular run of the algorithm. From
the authors’ experience, such result is quite similar to the one obtained with
force chains detection. As a result, we can conclude that shear chain statistics
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computed on a single run are relevant and that the current algorithm for the
shear strain chain in Section 3.1 is rational.

Appendix C Statistical representativeness of
the increasing trend in shear
chain orientation during biaxial
tests

As illustrated in Fig. 8, as the deviatoric stress increases, the orientation of
the shear chains exhibit larger fluctuations around its mean value. As a result,
one could argue that the evolution of the mean |θ| angle plotted in Fig. 9 may
not be representative as the standard deviation becomes too large.

To identify whether the trend in Fig. 9 is meaningful, we use ANOVA
(Analysis of Variance) to check whether the probability distribution of shear
chains of a given state is similar to its previous ones. The orientations of
the shear chains are regarded as realizations of different random variables
|θ|(ε1), and ANOVA test is used to assess which extent these random variables
are similar. Several states before the stress peak are chosen for the ANOVA
investigation, and each distribution |θ|(εi1) is compared with its previous ones
|θ|(εtyy, t ∈ [1, i− 1]). After several ANOVA calculations, the corresponding F
and p for ANOVA are shown in Fig. C6.

(a) (b)

Fig. C6 F (a) and p (b) evolutions for ANOVA of shear chain orientations along biaxial
loading.

According to the law of ANOVA, the coefficient p characterize the degree of
similarity of the selected distributions. If p is small enough (typically p < 0.05),
we can estimate that the set of considered distributions are not the same.
Fig. 6(b) shows that the probability p drops when the axial strain is larger
than 0.006. In other words, the distribution of the shear chain orientation
experiences important changes during the deviatoric loading especially when
the axial strain is larger than 0.006. From this point, the increasing trend for
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|θ| observed in Fig. 9 is meaningful and confirms the relevance to consider the
mean value <|θ|> in the present paper.
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