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Abstract
Single-step genomic BLUP (ssGBLUP) relies on the combination of the genomic 
(G) and pedigree relationship matrices for all (A) and genotyped (A22) animals. 
The procedure ensures G and A22 are compatible so that both matrices refer to 
the same genetic base (‘tuning’). Then G is combined with a proportion of A22 
(‘blending’) to avoid singularity problems and to account for the polygenic com-
ponent not accounted for by markers. This computational procedure has been 
implemented in the reverse order (blending before tuning) following the sequen-
tial research developments. However, blending before tuning may result in less 
optimal tuning because the blended matrix already contains a proportion of A22. 
In this study, the impact of ‘tuning before blending’ was compared with ‘blending 
before tuning’ on genomic estimated breeding values (GEBV), single nucleotide 
polymorphism (SNP) effects and indirect predictions (IP) from ssGBLUP using 
American Angus Association and Holstein Association USA, Inc. data. Two 
slightly different tuning methods were used; one that adjusts the mean diagonals 
and off-diagonals of G to be similar to those in A22 and another one that adjusts 
based on the average difference between all elements of G and A22. Over 6 million 
Angus growth records and 5.9 million Holstein udder depth records were avail-
able. Genomic information was available on 51,478 Angus and 105,116 Holstein 
animals. Average realized relationship estimates among groups of animals were 
similar across scenarios. Scatterplots show that GEBV, SNP effects and IP did not 
noticeably change for all animals in the evaluation regardless of the order of com-
putations and when using blending parameter of 0.05. Formulas were derived to 
determine the blending parameter that maximizes changes in the genomic re-
lationship matrix and GEBV when changing the order of blending and tuning. 
Algebraically, the change is maximized when the blending parameter is equal 
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1   |   INTRODUCTION

Single-step genomic best linear unbiased prediction 
(ssGBLUP) allows for the combination of phenotypes, 
pedigree and single nucleotide polymorphism (SNP) in-
formation to obtain the genomic estimated breeding val-
ues (GEBV) for all the animals in an evaluation (Misztal 
et al., 2009). In this method, the inverse of the pedigree 
relationship matrix, A−1, is replaced by the inverse of the 
realized relationship matrix, H−1(Aguilar et al., 2010). The 
H−1 is composed of A−1, the inverse of the genomic rela-
tionship matrix (G) and the inverse of the pedigree rela-
tionship matrix among genotyped animals 

(
A22

)
.

When constructing H−1 in ssGBLUP, two main chal-
lenges arise: (i) the singularity of G (VanRaden,  2008), 
and (ii) the compatibility between G and A22 
(VanRaden,  2008; Vitezica et al.,  2011). The singularity 
of G is solved in a procedure called blending, in which 
a weighted sum of G and a positive-definite matrix is 
used. A common choice of blending is described in 
VanRaden  (2008), where the blended genomic relation-
ship matrix Gb = (1 − �)G + �A22 , with 0 < 𝛽 < 1 known 
as the blending parameter or proportion. This blending 
method is equivalent to fitting a residual polygenic effect 
in a SNP-BLUP model (Liu et al., 2016). Another option is 
to blend G with an identity matrix instead of A22. Although 
the second option is computationally more convenient, 
the first option is still preferred (Legarra et al., 2022). The 
compatibility between G and A22 is contingent on the ge-
netic bases of the two matrices as well as the frequencies 
of the selected SNP and centring of the genotypes in the 
construction of G (VanRaden, 2008; Vitezica et al., 2011). 
The differences in the genetic base between G and A22 
arise because G is not constructed with the allele fre-
quencies of the base population (VanRaden,  2008) and 
the pedigree used to construct A22 might be incomplete 
(Misztal et al., 2013). More often, G is constructed with 
allele frequencies based on the current, observed popula-
tion (‘centred’ coding) or a constant 0.5, because estimat-
ing the allele frequencies in the base population is not 
straightforward (Gengler et al.,  2007). Utilizing centred 
coding assumes that the expectation of breeding values 
for genotyped animals is 0 which poses another obsta-
cle. When the population has undergone selection, more 

recent animals should have higher genetic values than 
the base. To account for this fact, several methods were 
proposed to establish compatibility between the relation-
ship matrices of genotyped animals, either to scale G to 
A22 (Christensen et al., 2012; Vitezica et al., 2011) or to 
scale A22 to G (Christensen, 2012; Legarra et al., 2015). All 
these methods implicitly estimate the difference between 
the genetic bases in G and in A (Vitezica et al.,  2011). 
The methods belonging to the first group consist of mul-
tiplying and adding constants obtained from A22 to the 
elements of G . The methods of the second group consist 
of modifying the entire A−1 with parameters calculated 
from genomic information (Garcia-Baccino et al., 2017). 
Although the second group of methods provides a sturdy 
framework based on genetic theory, there is a need to 
estimate extra parameters in the model (Garcia-Baccino 
et al., 2017). This is a difficult task for large-scale genetic 
evaluations. Hereafter, the first group of methods will be 
referred to as the tuning of G.

In the early stages of ssGBLUP implementation, 
blending was applied before tuning. Blending before 
tuning was implemented as the default order of oper-
ations in the BLUPF90 family of programs (Misztal 
et al.,  2014) until version 1.306 (2022) of the genomic 
library and has been observed in literature (Masuda 
et al., 2016; Pocrnic, 2017). However, blending G before 
tuning may add bias to GEBV because the original G is 
not in the same scale as A22. Thus, the blended G al-
ready contains a portion of A22 and refers to a different 
genetic base. Further tuning this resulting G with a re-
sidual polygenic effect included creates a theoretical in-
consistency which results in a suboptimal correction for 
the difference in the genetic base between the two ma-
trices. The inconsistency is expected to be small when 
the blending parameter � has a small value, for example, 
0.05 as in VanRaden (2008). However, other evaluations 
(Andersen et al., 2021; Interbull Centre, 2021; Alkhoder 
& Liu, 2021) use higher numbers of 0.20 or more for 
blending. These theoretical inconsistencies may impact 
GEBV and indirect predictions (IP) as IP are a linear 
function of GEBV and G−1. It is therefore more appro-
priate to first, make the original (unblended, untuned) 
G resemble A22 and later blend it with a polygenic frac-
tion of A22. Thus, the objectives of this study were to 

to 0.5. Overall, tuning G before blending, regardless of blending parameter used, 
had a negligible impact on genomic predictions and SNP effects in this study.

K E Y W O R D S

genetic base, indirect predictions, residual polygenic effect, scaling of genomic matrices, 
single-step genomic best linear unbiased prediction
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investigate the impact of changing the order of blending 
and tuning on the genomic relationship matrix and ge-
nomic predictions. Changes in GEBV and IP were eval-
uated using American Angus Association and Holstein 
Association USA, Inc. data. Mathematical expressions 
were derived to determine the blending parameter that 
maximizes changes in the genomic relationship matrix 
and genomic predictions when changing the order of 
blending and tuning.

2   |   MATERIALS AND METHODS

The data were obtained from existing databases; there-
fore, approval from the Animal Care and Use Committee 
was not obtained for this study.

2.1  |  Description of data

Phenotypic data of Angus animals were provided by 
American Angus Association (AAA, Saint Joseph, MO) 
and included 6,189,661 birth weight (BW) records, 
6,890,625 weaning weight (WW) records and 3,387,252 
post-weaning gain (PWG) records. There were 8,236,425 
animals in the pedigree born between 1955 and 2014. A 
total of 51,478 genotyped animals were available after 
55 individuals were removed due to an animal call rate 
lower than 0.90. Angus cattle were genotyped or imputed 
to 54,609 SNP markers based on a combination of several 
different SNP chips. SNP with call rate lower than 0.9, 
minor allele frequencies (MAF) less than 0.05 and mono-
morphic SNP were removed in quality control (Wiggans 
et al., 2009). Genotypes and phenotypes of a set of 19,056 
young, genotyped animals born in 2013–2014 were ex-
tracted from the existing data for computing IP. These 

genotypes were not used for the estimation of marker ef-
fects. Pedigrees of these animals were kept for simplicity, 
but it is known that these pedigrees carried negligible in-
formation (Lourenco et al., 2015).

Holstein cattle phenotypic data were provided by the 
Holstein Association USA, Inc. and included 5,932,709 
udder depth (UD) records. The pedigree contained 
8,338,450 animals born between 1983 and 2014. A total 
of 105,116 Holstein animals were genotyped and then im-
puted for 60,671 SNP based on a combination of several 
different SNP chips (Wiggans et al., 2016). Quality control 
was carried out by the data providers following Wiggans 
et al.  (2009). Again, a separated dataset of young, gen-
otyped Holsteins was created for IP as described by the 
Interbull validation method (Mäntysaari et al., 2010). The 
group of animals for IP consisted of 1,711 genotyped bulls 
with no progeny records in 2010, and at least 50 daughters 
with records in 2014. Thus, progeny records of these indi-
viduals did not contribute to their IP.

Both data providers conducted quality control on phe-
notypic data prior to sharing. Descriptive statistics of phe-
notypes are shown in Table 1 for both datasets.

2.2  |  Models

The multiple-trait model used to evaluate all three AAA 
growth traits was as follows:

where y =
(
y�bw y

�
ww y�pwg

)� was the vector of phenotypes, 
b was the vector of fixed effects of contemporary groups, 
u = (u�

bw u�
ww u�

pwg)
�
 was the vector of additive direct 

genetic effects, mat = (mat�bw mat�ww 0�)
�
 was the vec-

tor of maternal genetic effects, mpe = (0� mpe�ww 0�)
�
 

was the vector of maternal permanent environmental ef-
fects, e was the vector of error terms and X, Z1,Z2 and Z3 
were incidence matrices. All random effects were assumed 
to be multivariate normally distributed with null expecta-
tion and the following covariance structure:

where H is the ssGBLUP covariance matrix defined in 
Legarra et al. (2009), �ij denotes the covariance components 
of the ith effect for the jth combination of traits and R is the 
error covariance matrix among traits.

(1)y = Xb + Z1u + Z2mat + Z3mpe + e

(2)Var

⎛⎜⎜⎜⎜⎝

u

mat

mpe

e

⎞⎟⎟⎟⎟⎠
=Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ubw
uww
upwg
matbw
matww
mpeww

e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H𝜎2ubw
H𝜎ubw,uww H𝜎ubw,upwg H𝜎ubw,matbw 0 0 0

H𝜎2uww
H𝜎uww,upwg 0 0 0 0

H𝜎2upgw
0 0 0 0

H𝜎2matbw
0 0 0

H𝜎2matww
0 0

symmetric I𝜎2mpeww
0

R⊗I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The model used to evaluate UD for Holstein cattle was 
as follows:

where y was the vector of udder depth observations, b 
was the vector of fixed effects of herd-year-season, age 
× parity and stage of lactation × parity; u was the vec-
tor of additive genetic effects, hs was the vector of herd 
× sire interaction effects, pe was the vector of perma-
nent environmental effects, e was the vector of errors 
and X, W1,W2 and W3 were incidence matrices for vec-
tors b,u,hs and pe respectively. As before, all random 
effects were assumed to be multivariate normally dis-
tributed with null expectation and the following cova-
riance structure:

2.3  |  Construction of genomic 
relationship matrix (G) and genomic 
predictions

In all analyses, G was created using the first method of 
VanRaden (2008):

where M contains genotypes coded as {0, 1, 2} and P is a 
matrix whose columns contain observed allele frequencies 
across the entire dataset of the second allele at a locus pi.

Here we describe how the blending and tuning proce-
dures work. A blended matrix is calculated as

with 0 < 𝛽 < 1. A tuned matrix is obtained by scaling 
G to A22 as

with constants �x and tx calculated from the following tuning 
methods. The subscript x was either c or v for Christensen et 
al.  (2012) or Vitezica et al.  (2011) tuning methods respec-
tively. Christensen et al. (2012) adjust the means of diagonal 
elements (diagG) and of all elements (G) of G to be simi-
lar to those in A22 with constants �c and tc solving the two 
equations:

which results in tc =
(
diagA22−A22

)
(
diagG−G

)  or, equivalently after some 

algebra 
(
diagA22−offdiagA22

)
(
diagG−offdiagG

)  and �c = A22 −G × tc.

Vitezica et al. (2011) adjusts based on Wright's fixation 
index (Fst) with constants �v and tv:

(3)y = Xb +W1u +W2hs +W3pe + e

(4)Var

⎛⎜⎜⎜⎜⎝

u

hs

pe

e

⎞⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

H�2u 0 0 0

I�2
hs

0 0

I�2pe 0

symmetric I�2e

⎞
⎟⎟⎟⎟⎟⎠

(5)G =
(M − 2P)(M−2P)�

2
∑m

i=1 pi
�
1 − pi

�

(6)Gb = (1 − �)G + �A22

(7)Gx = 11��x + txG

(8)diagG × tc + �c = diagA22

(9)G × tc + �c = A22

(10)�v = A22 −G

Item
No. of animals 
with records

No. of 
records Mean SD

Angus

Genotyped 51,478

BW 50,388 35.85 4.16

WW 51,425 301.91 43.16

PWG 35,995 194.30 72.53

All 6,948,617

BW 6,189,661 36.46 4.43

WW 6,890,625 263.12 44.62

PWG 3,387,252 162.26 67.12

Holstein

Genotyped 105,116

UD 37,292 32.97 8.29

All 10,067,745

UD 10,067,731 28.85 8.57

Abbreviations: BW, birth weight (kg); PWG, post weaning gain (kg/day); UD, udder depth (score based 
on distance from udder floor to point of the hock); WW, weaning weight (kg).

T A B L E  1   Mean and standard 
deviations (SD) of phenotypes for 
genotyped and all Angus and Holstein 
cattle
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In this case, �v is Wright's Fst which represents the 
difference between genomic and pedigree bases. In the 
case of Hardy–Weinberg equilibrium, both methods give 
nearly the same values of �v and tv.

It must be noted that although the algebra is quite gen-
eral, these equations were conceived to be used with ob-
served frequencies, in which case �v and �c are positive by 
construction. Otherwise, for instance if allele frequencies 
used to build G are 0.5, �v or �c may be negative and this 
may result in not positive definite Gx.

For actual building of the final G matrix, there are two 
options. The first one compares relationship matrices and 
achieves compatibility, then modifies the resulting ma-
trix. In this case, tuning is applied before blending and the 
final matrix can be understood as

Alternatively, if blending is applied before tuning, the final 
matrix is

For each dataset, four sets of GEBV were calculated: Gbc , 
Gcb,Gbv and Gvb, where the subscript indicates the order 
(‘b’ from blending comes earlier or later) and the form of 
tuning (‘c’ or ‘v’—either Christensen et al. (2012) or Vitezica 
et al. (2011)). Expanded formulas for each genomic relation-
ship matrix can be found in Appendix A.

In the initial analysis, a blending parameter of � = 0.05 
(VanRaden,  2008) was used to calculate all four sets of 
GEBV. Then, we derived equations which determined 
the blending parameter � that maximizes changes in the 
genomic relationship matrix and genomic predictions 
when changing the order of blending and tuning using 
Christensen et al. (2012) and Vitezica et al. (2011) meth-
ods (Appendices B and C). Analyses were repeated using 
the blending parameter that maximizes changes, � = 0.5. 
After calculating each set of GEBV using the BLUP90IOD2 
program (Misztal et al.,  2014), a separate analysis was 
conducted to compute IP. GEBV were recalculated for 
each set but excluded genotypes and all phenotypes of 
the young, genotyped animals. SNP effects and IP were 
computed from the recalculated GEBV using POSTGSF90 
(Misztal et al., 2014) and PREDF90 (Misztal et al., 2014) 
respectively. The calculation of SNP effects (â) given the 
calculated GEBV (û) also considered blending and tuning 
(Lourenco et al., 2020):

where the subscript xx varies from ‘bc’, ‘cb’, ‘bv’, or ‘vb’ ac-
cording to the blending and tuning scenario. The ‘marker’ 
estimated breeding values on a genomic base (ÎP

∗
) were cal-

culated as

To transform ÎP
∗
 to be ‘marker’ estimated breeding values 

on a pedigree scale and comparable to GEBV, a constant (�̂ ) 
is back solved as the difference between pedigree and ge-
nomic bases and added (Legarra et al., 2022):

The final ‘marker’ estimated breeding value on pedigree 
scale (ÎP) is obtained as

GEBV, IP* and IP were compared among the four scenarios 
for both datasets.

2.4  |  Average genomic relationships 
among genotyped relatives

The average estimate of realized relationships of genotyped 
animals for self-relationships and between unilineal (e.g., 
parent–offspring, half-sibs, grandparent–grandoffspring) 
and bilineal (e.g., full-sibs) relatives (Forneris et al., 2016) 
were compared for each method. The estimated realized 
relationships for genotyped animals are the proportions of 
genome-shared identical-by-state and were obtained from 
the diagonal (e.g., self) or off-diagonal (e.g., unilineal and 
bilineal relatives) elements of each G matrix. We obtained 
estimates of these values in each genomic relationship ma-
trix after tuning and blending operations. These estimates 
were compared to the expectation of actual relationships.

3   |   RESULTS AND DISCUSSION

3.1  |  Changes in G between methods

In formulas found in Appendix  A, (A1) to (A4), all the 
components are fixed for a given G and A22 except for �. 
Therefore, the four matrices can be understood as a func-
tion of the proportion of the residual polygenic effect in 
the model. Consequently, the differences between the ma-
trices in formulas (A1) to (A4), which are the differences 
in GEBV when changing the order between blending 
and tuning, are dependent on �. When approaching the 
boundaries of �, that is, zero and one, the resulting matrix 

(11)tv =
(
1 −

�v
2

)

(12)Gxb = (1 − β)Gx + βA22

(13)Gbx = 11��x + txGb

(14)âxx ∣ ûxx = tx(1 − β)(M−2P)�
1

2
∑
pi
�
1 − pi

�G−1
xx ûxx

(15)ÎP
∗

xx ∣ âxx = (M−2P)�âxx

(16)�̂xx ∣ ûxx = E
[
�̂xx|uxx = ûxx

]
= �x(1 − �)1�G−1

xx ûxx

(17)ÎPxx = �̂xx + ÎP
∗

xx
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is unique regardless of which procedure is performed first. 
Logically, when � → 1, the residual polygenic effect is as-
sumed to explain all the genetic variation and G→ A22 for 
both tuning methods. As shown in Appendix B, the maxi-
mum change in GEBV when changing the order between 
blending and tuning using the method of Christensen 
et al. (2012) is attained when:

For the Angus dataset, this value was equal to 0.5001, 
whereas for the Holstein data was equal to 0.5016. The max-
imum absolute difference in the covariance matrix when 
changing the order between blending and tuning for the 
tuning method of Christensen et al.  (2012) is bounded by 
the following equation:

For the Angus data, this value was equal to 1.29 × 10−4 for 
� = 0.05 and 6.82 × 10−4 for � = 0.5001, whereas for the 

Holstein data was 1.59 × 10−3 for � = 0.05 and 9.06 × 10−3 
for � = 0.5016. Appendix  C shows the maximum change 
in GEBV when changing the order between blending and 
tuning and using the tuning method of Vitezica et al. (2011) 
also occurs when � is equal to 0.5. The maximum absolute 
difference in the covariance matrix is bounded by the fol-
lowing equation:

where Fmax denotes the maximum average of the genomic 
and pedigree inbreeding coefficients among the genotyped 
animals and h is half the average difference among the two 
matrices:

where n is the number of genotyped animals. For the 
Angus data, this value was equal to 1.26 × 10−3 for � = 0.05 

(18)� =

√
f (G)f

(
A22

)
− f (G)

f
(
A22

)
− f (G)

(19)�(1 − �)
|||||

f (G) − f
(
A22

)

(1 − �)f (G) + �f
(
A22

)
|||||

(
max
i,j

|||gij
|||
f
(
A22

)
f (G)

+ max
i,j

a22ij + n−2 1�A221

)

(20)
(
� − �2

) |h| (1 + Fmax
)

(21)h =
1�
(
A22 −G

)
1

2n2

F I G U R E  1   Differences in diagonal elements of genomic relationship matrices, G, with � = 0.05 in blending first and tuning first 
scenarios using two different tuning methods, c tuning (Christensen et al., 2012) and v tuning (Vitezica et al., 2011), for genotyped Angus (a 
and b) and Holstein (c and d)
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T A B L E  2   Expected and estimated realized (genomic) relationshipsa when changing the order between blending and tuning for two 
tuning methods using blending parameters, � = 0.05

Relationship N
Expected 
relationship

Genomic relationships

Gbc Gcb Gbv Gvb

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Angus

Self 51,478 1.00 1.05 (0.04) 1.05 (0.04) 1.05 (0.04) 1.05 (0.04)

Parent–offspring 35,684 0.50 0.55 (0.05) 0.55 (0.05) 0.55 (0.05) 0.55 (0.05)

Full-sibs 7,672 0.50 0.55 (0.06) 0.55 (0.06) 0.55 (0.06) 0.55 (0.06)

Half-sibs 9,781,177 0.25 0.31 (0.04) 0.31 (0.04) 0.31 (0.04) 0.31 (0.04)

Grandparent–
grandoffspring

3,788 0.25 0.33 (0.05) 0.33 (0.05) 0.33 (0.05) 0.33 (0.05)

Holstein

Self 105,116 1.00 1.03 (0.04) 1.03 (0.04) 1.04 (0.04) 1.04 (0.04)

Parent–offspring 150,427 0.50 0.53 (0.04) 0.53 (0.04) 0.54 (0.04) 0.54 (0.04)

Full-sibs 57,314 0.50 0.53 (0.05) 0.53 (0.05) 0.54 (0.06) 0.54 (0.06)

Half-sibs 46,657,929 0.25 0.29 (0.04) 0.29 (0.04) 0.29 (0.04) 0.29 (0.04)

Grandparent–
grandoffspring

134,832 0.25 0.29 (0.05) 0.29 (0.05) 0.29 (0.05) 0.29 (0.05)

aFor the construction of the genomic relationship matrix Gxx, the subscript c refers to Christensen et al. (2012) tuning, v refers to Vitezica et al. (2011) tuning, 
and b refers to blending G and A22. The order of the subscript refers to the order operations were performed.

Data Trait
Tuning 
methodb

Absolute mean 
difference

Absolute maximum 
difference

� = 0.05 � = 0.5 � = 0.05 � = 0.5

Genotyped animals

Holstein UD c 0.006 0.001 0.01 0.02

v 0.004 0.000 0.01 0.02

Angus BW c 0.000 0.001 0.01 0.02

v 0.000 0.000 0.01 0.02

WW c 0.000 0.002 0.01 0.03

v 0.000 0.001 0.01 0.03

PWG c 0.000 0.001 0.01 0.03

v 0.000 0.001 0.01 0.03

Non-genotyped animals

Holstein UD c 0.006 0.001 0.01 0.02

v 0.005 0.000 0.01 0.01

Angus BW c 0.000 0.001 0.00 0.01

v 0.000 0.000 0.00 0.01

WW c 0.000 0.001 0.01 0.02

v 0.000 0.000 0.01 0.02

PWG c 0.000 0.001 0.01 0.03

v 0.000 0.000 0.01 0.01
aAll statistics are expressed in terms of the genetic standard deviation of the trait.
bc refers to the tuning method of Christensen et al. (2012), whereas v refers to the tuning method of 
Vitezica et al. (2011).

T A B L E  3   Statisticsa for changes 
in GEBV for Angus and Holstein data 
sets when changing the order between 
blending and tuning for two tuning 
methods using blending parameters, 
� = {0.05, 0.5}
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and 6.65 × 10−3 for � = 0.5, whereas for the Holstein data 
was 1.12 × 10−3 for � = 0.05 and 5.94 × 10−3 for � = 0.5.

Across scenarios, the differences between GEBV or IP 
arise due to the different covariance matrices employed 

for the prediction. Therefore, if the matrices do not vary 
across the different combinations of blending and tun-
ing, then the GEBV or IP will not vary. The average of 
off-diagonal elements of G in all four scenarios in the 

F I G U R E  2   Scatter plots of GEBV for 51,478 genotyped and 8,184,542 non-genotyped Angus animals' birth weight (BW), weaning weight 
(WW) and post weaning gain (PWG) using � = 0.05 and blending before tuning (Gbx) against predictions using tuning before blending (Gxb) 
for two tuning methods; subscript x varies between c for Christensen et al. (2012) or v for Vitezica et al. (2011) tuning
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F I G U R E  3   Scatter plots of GEBV for 105,116 genotyped and 8,233,333 non-genotyped Holstein animals' udder depth (UD) using 
� = 0.05 and blending before tuning (Gbx) against predictions using tuning before blending (Gxb) for two tuning methods; subscript x varies 
between c for Christensen et al. (2012) or v for Vitezica et al. (2011) tuning

F I G U R E  4   Scatter plots of indirect predictions on the genomic base (IP*) for young, genotyped Angus animals' birth weight (BW), 
weaning weight (WW) and post weaning gain (PWG) calculated using different blending parameters (�) and blending before tuning (Gbx) 
against predictions using tuning before blending (Gxb) for two tuning methods; subscript x varies between c for Christensen et al. (2012) or v 
for Vitezica et al. (2011) tuning
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Angus and Holstein datasets were 0.091 and 0.073 re-
spectively. The distribution of the difference of diagonal 
elements when blending first versus tuning first is dis-
played in Figure 1. It can be observed that the differences 
are only in the ten-thousandths place. Consequently, it 
is expected that the average variation of the predictions 
across scenarios will be small. This is logical because the 
goal of the employed tuning methods is to equalize the 
averages of G and A22 (Christensen et al., 2012; Vitezica 
et al., 2011).

3.2  |  Genomic relationships

Table 2 shows average estimated realized (genomic) rela-
tionships for genotyped animals with respective standard 
deviation (SD) for animals grouped based on pedigree in-
formation. Genomic relationships were greater than the 

expected values, with a SD that varied from 0.04 to 0.06. In 
the Angus dataset, the values were similar across scenarios 
for self-relationships, parent–offspring, full-sibs, half-sibs 
and grandparent–grandoffspring. Minuscule differences 
were observed in the ten-thousandths place (results not 
shown), with slightly greater values for the tuning method 
proposed by Vitezica et al. (2011). In the Holstein dataset, 
average genomic relationships were slightly higher (0.01) 
when using the previously mentioned tuning method.

3.3  |  Genomic predictions

3.3.1  |  GEBV

Table  3 shows the statistics for changes in GEBV when 
changing the order between blending and tuning, for 
both tuning methods and � = {0.05, 0.5}. As expected, 

F I G U R E  5   Scatter plots of indirect predictions on the genomic base (IP*) for young, genotyped Holstein bulls' udder depth (UD) 
calculated using different blending parameters (�) and blending before tuning (Gbx) against predictions using tuning before blending (Gxb) 
for two tuning methods; subscript x varies between c for Christensen et al. (2012) or v for Vitezica et al. (2011) tuning
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changes in GEBV were negligible because the maxi-
mum change in the genomic relationship matrix is small. 
However, changes were greater for � near 0.5 as shown in 
Appendices B and C. Scatter plots of GEBV when using 
blending first versus tuning first for the two tuning meth-
ods and � = 0.05 are shown in Figure  2 for Angus and 
Figure 3 for Holstein. Scatterplots for GEBV using � = 0.5 
are not shown but appear visually identical to Figures 2 
and 3 despite the differences shown in Table  3. As ex-
pected, in light of Appendices B and C and Table 3, when 
changing the order between blending and tuning, GEBV 
were almost identical. For all the animals in the evalua-
tion, the GEBV did not differ considerably when changing 
the order of blending and tuning for both datasets. The 
same results were observed for the IP*of young, geno-
typed animals.

3.3.2  |  IP* and SNP effects

Graphs for IP*, ‘marker’ estimated breeding values on 
genomic base for the young, genotyped animals are in 
Figure 4 for Angus and Figure 5 for Holstein. The correlation 
for young, genotyped IP* when using � = 0.05 and � = 0.05 
differed across scenarios in the ten thousandth places (not 
shown), however, when rounded to the thousandths place, 
the correlations were the same: 0.93, 0.96, 0.95 and 0.94 for 
UD, BW, WW and PWG respectively. The number of geno-
typed individuals did not affect these changes. The Holstein 
data contained over twice the number of genotyped indi-
viduals as the Angus dataset, yet no considerable differ-
ences were observed for either. Results are consistent even 
when doubling the number of genotyped individuals; this 
is expected to hold for any number of genotyped animals. 

F I G U R E  6   Scatter plots of indirect predictions on pedigree scale (IP) young, genotyped Angus animals' birth weight (BW), weaning 
weight (WW), and post weaning gain (PWG) calculated using different blending parameters (�) and blending before tuning (Gbx) against 
predictions using tuning before blending (Gxb) for two tuning methods; subscript x varies between c for Christensen et al. (2012) or v for 
Vitezica et al. (2011) tuning
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IP* are calculated from SNP effects that are backsolved from 
GEBV; therefore, IP* are a linear function of G−1 (Stranden 
& Garrick, 2009). Given the small changes in G when tuning 
versus blending first, SNP effects were not expected to differ 
among scenarios. SNP effects from tuning first and blending 
first methods and for both tuning methods all had correla-
tions >0.99. For both Holstein and Angus data, SNP effects 
for UD, BW, WW and PWG had slightly greater variation 
when using Vitezica et al.  (2011) tuning; however, the in-
crease in standard deviation was small (i.e., 0.0003, 0.0006, 
0.0030 and 0.0025 respectively) (Figure 5).

3.3.3  |  IP

Graphs for IP, ‘marker’ estimated breeding values on 
the pedigree scale for the young, genotyped animals are 
in Figures  6 and 7 for Angus and Holstein respectively. 
Predictions are shifted by a constant when the order of 

blending and tuning is changed, and this change is exacer-
bated when � = 0.5 is used. This shift is due to the constant 
�̂ added to IP*. The ̂� is a function of the difference between 
genomic and pedigree bases and a proportion (1 − �) of the 
inverse of the final G (after blending and tuning). When G 
is blended before tuning, �̂ is biased because the blended G 
already contains a portion of A22 and refers to a different 
genetic base. Tuning Gb with a residual polygenic effect re-
sults in a suboptimal correction when back solving for the 
difference in the genetic base between the two matrices. 
The inconsistency was small when using a blending param-
eter � = 0.05, but more pronounced when using � = 0.50.

3.4  |  Blending parameter �

When ssGBLUP is applied, G is positive definite if ob-
served allele frequencies are used (resulting in 𝛼v > 0 
or 𝛼c > 0) and the blending parameter � is higher than 

F I G U R E  7   Scatter plots of indirect predictions on pedigree scale (IP) young, genotyped Holstein bulls' udder depth (UD) calculated 
using different blending parameters (�) and blending before tuning (Gbx) against predictions using tuning before blending (Gxb) for two 
tuning methods; subscript x varies between c for Christensen et al. (2012) or v for Vitezica et al. (2011) tuning
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0, for example, equal to 0.05. The choice for � can be 
attained by maximum likelihood (Christensen & 
Lund,  2010) or empirically to minimize bias by cross-
validation (Liu et al.,  2016; Mäntysaari et al.,  2010; 
McMillan & Swan,  2017). VanRaden  (2008) showed 
that � = SD2∕

(
SD2 + 0.125∕m

)
 , where m is the num-

ber of markers and SD is the standard error of predict-
ing the true fraction of shared DNA; this is the SD in 
Table 2. Utilizing this formula in the present study and 
in VanRaden  (2008), � would be close to 0.001; how-
ever, VanRaden  (2008) observed that � = 0.05 resulted 
in slightly more reliable predictions and suggested this 
value could be used in cattle populations. In this study, 
5 and 50% of A22 were added to G in different scenarios 
and evaluated. An alternative to adding A22 is to add a 
proportion of the identity matrix to prevent singular-
ity, in other words, to add a small constant to the diag-
onal values of G. Himmelbauer et al.  (2021) compared 
Mendelian sampling of bull families when a constant 
of 0.001 and 0.01 was added to the diagonal elements of 
G. GEBV from both of these scenarios were correlated 
>0.99, however, when 0.01 was added to G, some traits 
resulted in bias in Mendelian samplings and more outli-
ers were observed from bull lines with many genotyped 
progeny. To reduce bias for bulls with many genotyped 
progeny, the constant added to diagonal elements of G 
should be small and used as a means to make G non-
singular.When tuning is needed in ssGBLUP, changing 
the order of blending and tuning did not create consider-
able changes in genomic relationships, GEBV and IP*. 
However, when IP* are adjusted to a pedigree scale for 
comparison with GEBV, blending first resulted in biased 
estimates.

4   |   CONCLUSIONS

When constructing the realized relationship matrix, scal-
ing G to A22 prior to adding a weighted G and positive-
definite A22 is theoretically more correct and robust. For 
the datasets used in this study, negligible differences were 
observed in GEBV for all animals and IP on genomic base 
for young, genotyped animals when changing the order 
between blending and tuning given the small propor-
tion of residual polygenic effect assumed for the models. 
However, blending prior to tuning for IP adjusted to the 
pedigree scale results in biased estimates. Mathematical 
expressions were derived, which indicate that the blending 
parameter that maximizes these differences when chang-
ing the order of blending and tuning is 0.5. Although the 
changes were minimal or non-existent in our study, apply-
ing tuning before blending avoids theoretical inconsisten-
cies when computing the difference in genetic base.
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APPENDIX A

CONSTRUCTION OF GENOMIC RELATIONSHIP MATRICES USING A DIFFERENT ORDER OF TUNING 
AND BLENDING AND TWO TUNING METHODS

The first set of GEBV (Gbc) was obtained by blending G first and then tuning it following the method of Christensen 
et al. (2012):

Writing the value of tc =
(
diagA22−A22

)
(
diagG−G

)  as tc =
f (A22)
f (G)

 where f :ℝnxn
→ ℝ such that f (M) = tr(M) − n−11�M1 where n is 

the number of genotyped individuals, the resulting Gbc matrix used for the calculation of the first set of GEBV was as 
follows:

where k =
tr(G)1�A221− tr(A22)1�G1

n2
.

The second set of GEBV (Gcb) was calculated by tuning G with the method of Christensen et al. (2012) first and then 
blending. In this case, the obtained G matrix was of the form:

The other two sets, Gbv and Gvb, were analogous to the first two but used the tuning method of Vitezica et al. (2011) 
instead of the method of Christensen et al. (2012), giving the matrices Gbv and Gvb respectively:

and

where h =
1�(A22−G)1

2n2
, half the average difference among the two matrices.

APPENDIX B

DERIVATION FOR MAXIMIZING DIFFERENCES BETWEEN SCENARIOS USING CHRISTENSEN ET 
AL. (2012) TUNING

Shown are the derivations for the proportion of residual polygenic effect (�) that maximizes the differences between 
genomic relationship matrices for the tuning method of Christensen et al. (2012), and an upper bound for the maximum 
change in the genomic relationship matrix when changing the order of blending and tuning.

� that maximizes the metric between Gbc and Gcb

Keeping the same notation as in (A1) and (A2), that difference is evaluated in terms of the metric defined as follows:

(A1)Gbc =
[
(1 − β)G + βA22

] f
(
A22

)

(1 − β)f (G) + βf
(
A22

) + k
1 − β

(1 − β)f (G) + βf
(
A22

)11�

(A2)Gcb = (1 − �)

[
G
f
(
A22

)
f (G)

+
k

f (G)
11�

]
+ �A22

(A3)Gbv =
[
1 − (1 − �)h

][
(1 − �)G + �A22

]
+ (1 − �)2h11�

(A4)Gvb = (1 − �)
[
(1 − h)G + 2h11�

]
+ �A22

(B1)

d1
(
Gbc,Gcb

)
≔max

i,j

|||Gbcij
−Gcbij

||| =max
i,j

||||||
(1 − β)gij

(
f
(
A22

)

(1 − β)f (G) + βf
(
A22

) −
f
(
A22

)
f (G)

)
+ β a22ij

(
f
(
A22

)

(1 − β)f (G) + βf
(
A22

) − 1

)
+ (1 − β)k

(
1

(1 − β)f (G) + βf
(
A22

) −
1

f (G)

)
=
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It is important to remark that max
i,j

 refers to a particular choice of gij and a22ij. gij refers to the genomic relationship be-

tween animal i and animal j and g(�) is the beta that maximizes the metric between Gbc and Gcb. Because gij and a22ij are 

not functions of �, it is valid to proceed with the calculations while ignoring the maximum at the front of the expression. 
Therefore, to find the value of � that maximizes d1

(
Gbc −Gcb

)
, it is necessary to:

Let gbc(β, x, y) = β − x2 and gcb(β, x, y) = 1 − β − y2, then (B2) is equivalent to:

To solve (B3) the following system must be solved:

where ∇ is the gradient, and �1 and �2 are Lagrange Multipliers. Taking the derivative of (B1) with respect to β:

The other two coordinates of ∇g are equal to zero. Also, ∇gbc = ⟨1, − 2x,0⟩ and ∇gcb = ⟨ − 1, 0, − 2y⟩. Because the in-
equality in (B2) is strict, �1 = �2 = 0. Therefore, the system (B4) reduces to:

The first equation in (B6) is solved by setting the derivative in (B5) to zero and rearranging the terms:

The equality in (1.7) will be reached when:

The solutions for the auxiliary variables x and y are as follows:

(B2)argmax
{
d1
(
Gbc −Gcb

)
= g(β) subject to 0 < β < 1

}

(B3)argmax
{
g(β) subject to gbc(β, x, y) = 0 and gcb(β, x, y) = 0

}

(B4)
⎧⎪⎨⎪⎩

∇g=�1∇gbc+�2∇gcb
β−x2=0

1−β−y2=0

(B5)

�d1
(
Gbc,Gcb

)
��

= ±

(
gij

[
f
(
A22

) [
f (G) − f

(
A22

)]
[
(1−β)f (G)+βf

(
A22

)]2 −
f
(
A22

)
f (G)

[
(1−β)f (G)+βf

(
A22

)]2 +
f
(
A22

)
f (G)

]
+ a22ij

[
f
(
A22

)
f (G)

[
(1−β)f (G)+βf

(
A22

)]2 − 1

]
+ k

[
1

f (G)
−

f
(
A22

)
[
(1−β)f (G)+βf

(
A22

)]2
])

(B6)
⎧⎪⎨⎪⎩

∇g=0

β−x2=0

1−β−y2=0

(B7)a22ij f
(
A22

)
f (G) − gijf

(
A22

)2
− f

(
A22

)
k =

(
a22ij − gij

f
(
A22

)
f (G)

−
k

f (G)

)[
(1−β)f (G)+βf

(
A22

)]2

(B8)

[
(1−�)f (G)+�f

(
A22

)]2
= f (G)f

(
A22

)

�=

√
f (G)f

(
A22

)
− f (G)

f
(
A22

)
− f (G)

(B9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x=

�����
�
f (G)f

�
A22

�
− f (G)

f
�
A22

�
− f (G)

y=

�
f (G)f

�
A22

�
− f

�
A22

�

f
�
A22

�
− f (G)
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For a positive semi-definite matrix M, f (M) ≥ 0. The argument is as follows. Let λmax be the largest eigenvalue of M; 
then f (M) ≥ 0 because of the finiteness of tr(M) (Gohberg et al., 2000, p. 63) and that (i) n−11� M1 ≤ λmax (Harville, 2008, 
p. 539), (ii) λmax < ∞ (Golub & Van Loan, 2013; pp. 357) and (iii) tr(M) ≥ λmax. The inequality is strict when M has at 
least two non-zero eigenvalues.

Because f
(
A22

)
, f (G) > 0, it worth noting that (B8) guarantees β ∈ (0, 1) and that when f

(
A22

)
≈ f (G), β→ 0.5 . Finally, 

to check whether (B8) represents a local maximum of d1
(
Gbc,Gcb

)
, the second derivative of d1

(
Gbc,Gcb

)
 with respect to 

β is as follows:

Evaluating it at (B8) gives:

The last term is positive because it is dominated by the positive constants f
(
A22

)
gij and k. Then, assuming gij > a22ij 

and given that k > 0, it can be checked that if f
(
A22

)
> f (G) the plus-minus sign is negative, and that if f

(
A22

)
< f (G), 

the plus-minus sign is positive. Therefore, by the second derivative criterion, (B8) maximizes (B1).

Upper bound for d1
(
Gbc,Gcb,

)

After applying triangle inequality and re-arranging terms, (B1) results in:

Given that k ≤ n−2 1�A221 f (G), (B12) is bounded above by the following:

APPENDIX C

DERIVATION FOR MAXIMIZING DIFFERENCES BETWEEN SCENARIOS USING VITEZICA 
ET AL. (2011) TUNING

Shown are the derivations for the proportion of residual polygenic effect (β) that maximizes the differences between 
genomic relationship matrices for the tuning method of Vitezica et al.  (2011), and an upper bound for the maxi-
mum change in the genomic relationship matrix when changing the order of blending and tuning. In this Appendix, 
the difference between the matrices is evaluated in terms of the metric induced by the Frobenius norm (Horn & 
Johnson, 2013, p. 321).

� that maximizes the metric between Gbv and Gvb

The metric between Gbv and Gvb is defined as follows:

(B10)
�d1

(
Gbc,Gcb

)

�β2
= ±

(
gij

[
2 f

(
A22

)2 [
f
(
A22

)
− f (G)

]
[
(1−β)f (G)+βf

(
A22

)]3
]
+ a22ij

[
2 f

(
A22

)[
f (G) − f

(
A22

)]
[
(1−β)f (G)+βf

(
A22

)]3
]
+ k

[
2 f

(
A22

)[
f
(
A22

)
− f (G)

]
[
(1−β)f (G)+βf

(
A22

)]3
])

(B11)
�d1

�
Gbc,Gcb

�

�β2

⎛⎜⎜⎜⎝
β =

�
f (G)f

�
A22

�
− f (G)

f
�
A22

�
− f (G)

⎞⎟⎟⎟⎠
= ±

2 f
�
A22

��
f
�
A22

�
− f (G)

�
�
f (G)f

�
A22

��3∕2
�
f
�
A22

�
gij − a22ij + k

�

(B12)

d1
(
Gbc,Gcb

)
≤ β(1 − β)max

i,j

|||gij
||| f

(
A22

)|||||
f (G) − f

(
A22

)

f (G)
[
(1 − β)f (G) + βf

(
A22

)]
|||||
+ β(1 − β)max

i,j
a22ij

|||||
f
(
A22

)
− f (G)

(1 − β)f (G) + βf
(
A22

)
|||||
+ β(1 − β)k

|||||
f (G) − f

(
A22

)

f (G)
[
(1 − β)f (G) + βf

(
A22

)]
|||||

(B13)d1
(
Gbc,Gcb

)
≤ β(1 − β)

|||||
f (G) − f

(
A22

)

(1 − β)f (G) + βf
(
A22

)
|||||

(
max
i,j

|||gij
|||
f
(
A22

)
f (G)

+ max
i,j

a22ij + n−2 1�A221

)

(C1)d2
(
Gbv −Gvb

)
≔ ‖‖Gbv−Gvb

‖‖2F = tr
([
(1−β)βh

(
G+A22

)]�[
(1 − β)βh

(
G +A22

)])
= β4h2‖‖G+A22

‖‖2F − 2β3h2‖‖G+A22
‖‖2F + β2h2‖‖G+A22

‖‖2F = β4c − 2β3c + β2c = g(β)
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where c = h2‖‖G+A22
‖‖2F ≥ 0. Thus, d2

(
Gbv −Gvb

)
 is a polynomial of β. To find the value of β that maximizes 

d2
(
Gbv −Gvb

)
, it is necessary to:

Let gbv(β, x, y) = β − x2 and gvb(β, x, y) = 1 − β − y2, then (C2) is equivalent to:

To solve (C3) the following system must be solved:

where ∇ is the gradient, and �1 and �2 are Lagrange Multipliers. The gradients of the three functions over β, x and y are 
as follows:

Therefore, the following system needs to be solved:

Because the inequality in (C2) is strict, �1 = �2 = 0. Therefore, x = y =
√
0.5, and β = 0.5. Finally, the criterion of the 

second derivative of g(β) is used to assess if a local maximum is located at β = 0.5. Hence:

Then, g��(0.5) = − c, and because c is positive, � = 0.5 maximizes d2
(
Gbv −Gvb

)
.

Value for max
i,j

|||Gbvij
−Gvbij

|||
Given:

where Fmax is the maximum average of the genomic and pedigree inbreeding coefficients among genotyped animals.

(C2)argmax
{
d2
(
Gbv −Gvb

)
= g(β) subject to 0 < β < 1

}

(C3)argmax
{
g(β) subject to gbv(β, x, y) = 0 and gvb(β, x, y) = 0

}

(C4)
⎧⎪⎨⎪⎩

∇g=�1∇gbv+�2∇gvb
β−x2=0

1−β−y2=0

(C5)
∇g=4�3c−6�2c+2�c, 0, 0

∇gbv=1, −2x, 0

∇gvb= −1, 0, −2y

(C6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2β3−3β2+β−
�1−�2
2c

=0

β−x2=0

1−β−y2=0

−2�1x=0

−2�2y=0

(C7)
g(�)=�4c−2�3c+�2c

g�(�)=4�3c−6�2c+2�c

g��(�)=12�2c−12�c+2c

(C8)max
i,j

|||Gbvij
−Gvbij

||| =max
i,j

||||(1 − β)βh
(
gij + a22ij

)|||| =
(
β − β2

) |h|max
i,j

gij + a22ij =
(
β − β2

) |||Avg
(
G −A22

)|||
(
1 + Fmax

)
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