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Abstract
Single-	step	genomic	BLUP	(ssGBLUP)	relies	on	the	combination	of	the	genomic	
(G)	and	pedigree	relationship	matrices	for	all	(A)	and	genotyped	(A22)	animals.	
The	procedure	ensures	G	and	A22	are	compatible	so	that	both	matrices	refer	to	
the	same	genetic	base	(‘tuning’).	Then	G	 is	combined	with	a	proportion	of	A22	
(‘blending’)	to	avoid	singularity	problems	and	to	account	for	the	polygenic	com-
ponent	not	accounted	 for	by	markers.	This	computational	procedure	has	been	
implemented	in	the	reverse	order	(blending	before	tuning)	following	the	sequen-
tial	research	developments.	However,	blending	before	tuning	may	result	in	less	
optimal	tuning	because	the	blended	matrix	already	contains	a	proportion	of	A22.	
In	this	study,	the	impact	of	‘tuning	before	blending’	was	compared	with	‘blending	
before	tuning’	on	genomic	estimated	breeding	values	(GEBV),	single	nucleotide	
polymorphism	(SNP)	effects	and	indirect	predictions	(IP)	from	ssGBLUP	using	
American	 Angus	 Association	 and	 Holstein	 Association	 USA,	 Inc.	 data.	 Two	
slightly	different	tuning	methods	were	used;	one	that	adjusts	the	mean	diagonals	
and	off-	diagonals	of	G	to	be	similar	to	those	in	A22	and	another	one	that	adjusts	
based	on	the	average	difference	between	all	elements	of	G	and	A22.	Over	6 million	
Angus	growth	records	and	5.9 million	Holstein	udder	depth	records	were	avail-
able.	Genomic	information	was	available	on	51,478	Angus	and	105,116	Holstein	
animals.	Average	realized	relationship	estimates	among	groups	of	animals	were	
similar	across	scenarios.	Scatterplots	show	that	GEBV,	SNP	effects	and	IP	did	not	
noticeably	change	for	all	animals	in	the	evaluation	regardless	of	the	order	of	com-
putations	and	when	using	blending	parameter	of	0.05.	Formulas	were	derived	to	
determine	 the	blending	parameter	 that	maximizes	 changes	 in	 the	genomic	 re-
lationship	matrix	and	GEBV	when	changing	the	order	of	blending	and	tuning.	
Algebraically,	 the	 change	 is	 maximized	 when	 the	 blending	 parameter	 is	 equal	
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1 	 | 	 INTRODUCTION

Single-	step	 genomic	 best	 linear	 unbiased	 prediction	
(ssGBLUP)	 allows	 for	 the	 combination	 of	 phenotypes,	
pedigree	 and	 single	 nucleotide	 polymorphism	 (SNP)	 in-
formation	to	obtain	the	genomic	estimated	breeding	val-
ues	(GEBV)	for	all	the	animals	in	an	evaluation	(Misztal	
et	al., 2009).	 In	 this	method,	 the	 inverse	of	 the	pedigree	
relationship	matrix,	A−1,	is	replaced	by	the	inverse	of	the	
realized	relationship	matrix,	H−1(Aguilar	et	al., 2010).	The	
H−1	is	composed	of	A−1,	the	inverse	of	the	genomic	rela-
tionship	matrix	(G)	and	the	 inverse	of	 the	pedigree	rela-
tionship	matrix	among	genotyped	animals	

(
A22

)
.

When	constructing	H−1	 in	ssGBLUP,	 two	main	chal-
lenges	 arise:	 (i)	 the	 singularity	 of	G	 (VanRaden,  2008),	
and	 (ii)	 the	 compatibility	 between	 G	 and	 A22	
(VanRaden,  2008;	Vitezica	 et	 al.,  2011).	The	 singularity	
of	G	 is	 solved	 in	 a	 procedure	 called	 blending,	 in	 which	
a	 weighted	 sum	 of	G	 and	 a	 positive-	definite	 matrix	 is	
used.	 A	 common	 choice	 of	 blending	 is	 described	 in	
VanRaden  (2008),	where	 the	blended	genomic	 relation-
ship	matrix	Gb = (1 − �)G + �A22	,	with	0 < 𝛽 < 1	known	
as	 the	blending	parameter	or	proportion.	This	blending	
method	is	equivalent	to	fitting	a	residual	polygenic	effect	
in	a	SNP-	BLUP	model	(Liu	et	al., 2016).	Another	option	is	
to	blend	G	with	an	identity	matrix	instead	of	A22.	Although	
the	 second	 option	 is	 computationally	 more	 convenient,	
the	first	option	is	still	preferred	(Legarra	et	al., 2022).	The	
compatibility	between	G	and	A22	is	contingent	on	the	ge-
netic	bases	of	the	two	matrices	as	well	as	the	frequencies	
of	the	selected	SNP	and	centring	of	the	genotypes	in	the	
construction	of	G	(VanRaden, 2008;	Vitezica	et	al., 2011).	
The	 differences	 in	 the	 genetic	 base	 between	G	 and	A22	
arise	 because	G	 is	 not	 constructed	 with	 the	 allele	 fre-
quencies	 of	 the	 base	 population	 (VanRaden,  2008)	 and	
the	pedigree	used	to	construct	A22	might	be	incomplete	
(Misztal	et	al., 2013).	More	often,	G	 is	constructed	with	
allele	frequencies	based	on	the	current,	observed	popula-
tion	(‘centred’	coding)	or	a	constant	0.5,	because	estimat-
ing	 the	 allele	 frequencies	 in	 the	 base	 population	 is	 not	
straightforward	 (Gengler	 et	 al.,  2007).	 Utilizing	 centred	
coding	assumes	 that	 the	expectation	of	breeding	values	
for	 genotyped	 animals	 is	 0	 which	 poses	 another	 obsta-
cle.	When	the	population	has	undergone	selection,	more	

recent	 animals	 should	 have	 higher	 genetic	 values	 than	
the	base.	To	account	for	 this	 fact,	several	methods	were	
proposed	to	establish	compatibility	between	the	relation-
ship	matrices	of	genotyped	animals,	either	to	scale	G	 to	
A22	 (Christensen	et	al., 2012;	Vitezica	et	al., 2011)	or	 to	
scale	A22	to	G	(Christensen, 2012;	Legarra	et	al., 2015).	All	
these	methods	implicitly	estimate	the	difference	between	
the	 genetic	 bases	 in	G	 and	 in	A	 (Vitezica	 et	 al.,  2011).	
The	methods	belonging	to	the	first	group	consist	of	mul-
tiplying	 and	 adding	 constants	 obtained	 from	A22	 to	 the	
elements	of	G	.	The	methods	of	the	second	group	consist	
of	modifying	 the	entire	A−1	with	parameters	 calculated	
from	genomic	information	(Garcia-	Baccino	et	al., 2017).	
Although	the	second	group	of	methods	provides	a	sturdy	
framework	 based	 on	 genetic	 theory,	 there	 is	 a	 need	 to	
estimate	extra	parameters	in	the	model	(Garcia-	Baccino	
et	al., 2017).	This	is	a	difficult	task	for	large-	scale	genetic	
evaluations.	Hereafter,	the	first	group	of	methods	will	be	
referred	to	as	the	tuning	of	G.

In	 the	 early	 stages	 of	 ssGBLUP	 implementation,	
blending	 was	 applied	 before	 tuning.	 Blending	 before	
tuning	 was	 implemented	 as	 the	 default	 order	 of	 oper-
ations	 in	 the	 BLUPF90	 family	 of	 programs	 (Misztal	
et	 al.,  2014)	 until	 version	 1.306	 (2022)	 of	 the	 genomic	
library	 and	 has	 been	 observed	 in	 literature	 (Masuda	
et	al., 2016;	Pocrnic, 2017).	However,	blending	G	before	
tuning	may	add	bias	to	GEBV	because	the	original	G	is	
not	 in	 the	 same	 scale	 as	A22.	 Thus,	 the	 blended	G	 al-
ready	contains	a	portion	of	A22	and	refers	to	a	different	
genetic	base.	Further	tuning	this	resulting	G	with	a	re-
sidual	polygenic	effect	included	creates	a	theoretical	in-
consistency	which	results	in	a	suboptimal	correction	for	
the	difference	in	the	genetic	base	between	the	two	ma-
trices.	The	 inconsistency	 is	 expected	 to	 be	 small	 when	
the	blending	parameter	�	has	a	small	value,	for	example,	
0.05	as	in	VanRaden (2008).	However,	other	evaluations	
(Andersen	et	al., 2021;	Interbull	Centre, 2021;	Alkhoder	
&	 Liu,	 2021)	 use	 higher	 numbers	 of	 0.20	 or	 more	 for	
blending.	These	theoretical	inconsistencies	may	impact	
GEBV	 and	 indirect	 predictions	 (IP)	 as	 IP	 are	 a	 linear	
function	of	GEBV	and	G−1.	 It	 is	 therefore	more	appro-
priate	to	 first,	make	the	original	(unblended,	untuned)	
G	resemble	A22	and	later	blend	it	with	a	polygenic	frac-
tion	 of	A22.	 Thus,	 the	 objectives	 of	 this	 study	 were	 to	

to	0.5.	Overall,	tuning	G	before	blending,	regardless	of	blending	parameter	used,	
had	a	negligible	impact	on	genomic	predictions	and	SNP	effects	in	this	study.

K E Y W O R D S

genetic	base,	indirect	predictions,	residual	polygenic	effect,	scaling	of	genomic	matrices,	
single-	step	genomic	best	linear	unbiased	prediction
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investigate	the	impact	of	changing	the	order	of	blending	
and	tuning	on	the	genomic	relationship	matrix	and	ge-
nomic	predictions.	Changes	in	GEBV	and	IP	were	eval-
uated	using	American	Angus	Association	and	Holstein	
Association	 USA,	 Inc.	 data.	 Mathematical	 expressions	
were	derived	to	determine	the	blending	parameter	that	
maximizes	changes	in	the	genomic	relationship	matrix	
and	 genomic	 predictions	 when	 changing	 the	 order	 of	
blending	and	tuning.

2 	 | 	 MATERIALS AND METHODS

The	 data	 were	 obtained	 from	 existing	 databases;	 there-
fore,	approval	from	the	Animal	Care	and	Use	Committee	
was	not	obtained	for	this	study.

2.1	 |	 Description of data

Phenotypic	 data	 of	 Angus	 animals	 were	 provided	 by	
American	 Angus	 Association	 (AAA,	 Saint	 Joseph,	 MO)	
and	 included	 6,189,661	 birth	 weight	 (BW)	 records,	
6,890,625	 weaning	 weight	 (WW)	 records	 and	 3,387,252	
post-	weaning	gain	(PWG)	records.	There	were	8,236,425	
animals	 in	 the	pedigree	born	between	1955	and	2014.	A	
total	 of	 51,478	 genotyped	 animals	 were	 available	 after	
55	 individuals	 were	 removed	 due	 to	 an	 animal	 call	 rate	
lower	than	0.90.	Angus	cattle	were	genotyped	or	imputed	
to	54,609	SNP	markers	based	on	a	combination	of	several	
different	 SNP	 chips.	 SNP	 with	 call	 rate	 lower	 than	 0.9,	
minor	allele	frequencies	(MAF)	less	than	0.05	and	mono-
morphic	SNP	were	removed	in	quality	control	(Wiggans	
et	al., 2009).	Genotypes	and	phenotypes	of	a	set	of	19,056	
young,	 genotyped	 animals	 born	 in	 2013–	2014	 were	 ex-
tracted	 from	 the	 existing	 data	 for	 computing	 IP.	 These	

genotypes	were	not	used	for	the	estimation	of	marker	ef-
fects.	Pedigrees	of	these	animals	were	kept	for	simplicity,	
but	it	is	known	that	these	pedigrees	carried	negligible	in-
formation	(Lourenco	et	al., 2015).

Holstein	cattle	phenotypic	data	were	provided	by	 the	
Holstein	 Association	 USA,	 Inc.	 and	 included	 5,932,709	
udder	 depth	 (UD)	 records.	 The	 pedigree	 contained	
8,338,450	 animals	 born	 between	 1983	 and	 2014.	 A	 total	
of	105,116	Holstein	animals	were	genotyped	and	then	im-
puted	for	60,671	SNP	based	on	a	combination	of	several	
different	SNP	chips	(Wiggans	et	al., 2016).	Quality	control	
was	carried	out	by	the	data	providers	following	Wiggans	
et	 al.  (2009).	 Again,	 a	 separated	 dataset	 of	 young,	 gen-
otyped	 Holsteins	 was	 created	 for	 IP	 as	 described	 by	 the	
Interbull	validation	method	(Mäntysaari	et	al., 2010).	The	
group	of	animals	for	IP	consisted	of	1,711	genotyped	bulls	
with	no	progeny	records	in	2010,	and	at	least	50	daughters	
with	records	in	2014.	Thus,	progeny	records	of	these	indi-
viduals	did	not	contribute	to	their	IP.

Both	data	providers	conducted	quality	control	on	phe-
notypic	data	prior	to	sharing.	Descriptive	statistics	of	phe-
notypes	are	shown	in	Table 1	for	both	datasets.

2.2	 |	 Models

The	multiple-	trait	model	used	to	evaluate	all	three	AAA	
growth	traits	was	as	follows:

where	y =
(
y�bw y

�
ww y�pwg

)�	was	the	vector	of	phenotypes,	
b	 was	 the	 vector	 of	 fixed	 effects	 of	 contemporary	 groups,	
u = (u�

bw u�
ww u�

pwg)
�
	 was	 the	 vector	 of	 additive	 direct	

genetic	effects,	mat = (mat�bw mat�ww 0�)
�
	was	the	vec-

tor	 of	 maternal	 genetic	 effects,	mpe = (0� mpe�ww 0�)
�
	

was	 the	 vector	 of	 maternal	 permanent	 environmental	 ef-
fects,	e	was	the	vector	of	error	terms	and	X,	Z1,Z2	and	Z3	
were	incidence	matrices.	All	random	effects	were	assumed	
to	be	multivariate	normally	distributed	with	null	expecta-
tion	and	the	following	covariance	structure:

where	 H	 is	 the	 ssGBLUP	 covariance	 matrix	 defined	 in	
Legarra	et	al. (2009),	�ij	denotes	the	covariance	components	
of	the	ith	effect	for	the	jth	combination	of	traits	and	R	is	the	
error	covariance	matrix	among	traits.

(1)y = Xb + Z1u + Z2mat + Z3mpe + e

(2)Var

⎛⎜⎜⎜⎜⎝

u

mat

mpe

e

⎞⎟⎟⎟⎟⎠
=Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ubw
uww
upwg
matbw
matww
mpeww

e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H𝜎2ubw
H𝜎ubw,uww H𝜎ubw,upwg H𝜎ubw,matbw 0 0 0

H𝜎2uww
H𝜎uww,upwg 0 0 0 0

H𝜎2upgw
0 0 0 0

H𝜎2matbw
0 0 0

H𝜎2matww
0 0

symmetric I𝜎2mpeww
0

R⊗I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The	model	used	to	evaluate	UD	for	Holstein	cattle	was	
as	follows:

where	y	was	 the	vector	of	udder	depth	observations,	b	
was	the	vector	of	 fixed	effects	of	herd-	year-	season,	age	
×	parity	and	stage	of	 lactation	×	parity;	u	was	 the	vec-
tor	of	additive	genetic	effects,	hs	was	the	vector	of	herd	
×	 sire	 interaction	 effects,	pe	 was	 the	 vector	 of	 perma-
nent	 environmental	 effects,	e	 was	 the	 vector	 of	 errors	
and	X,	W1,W2	and	W3	were	incidence	matrices	for	vec-
tors	b,u,hs	 and	pe	 respectively.	 As	 before,	 all	 random	
effects	 were	 assumed	 to	 be	 multivariate	 normally	 dis-
tributed	 with	 null	 expectation	 and	 the	 following	 cova-
riance	structure:

2.3	 |	 Construction of genomic 
relationship matrix (G) and genomic 
predictions

In	 all	 analyses,	G	 was	 created	 using	 the	 first	 method	 of	
VanRaden (2008):

where	M	contains	genotypes	coded	as	{0,	1,	2}	and	P	is	a	
matrix	whose	columns	contain	observed	allele	frequencies	
across	the	entire	dataset	of	the	second	allele	at	a	locus	pi.

Here	we	describe	how	the	blending	and	tuning	proce-
dures	work.	A	blended	matrix	is	calculated	as

with	0 < 𝛽 < 1.	A	 tuned	matrix	 is	obtained	by	scaling	
G	to	A22	as

with	constants	�x	and	tx	calculated	from	the	following	tuning	
methods.	The	subscript	x	was	either	c	or	v	for	Christensen	et	
al.  (2012)	or	Vitezica	et	al.  (2011)	 tuning	methods	 respec-
tively.	Christensen	et	al. (2012)	adjust	the	means	of	diagonal	
elements	(diagG)	and	of	all	elements	(G)	of	G	 to	be	simi-
lar	to	those	in	A22	with	constants	�c	and	tc	solving	the	two	
equations:

which	results	in	tc =
(
diagA22−A22

)
(
diagG−G

) 	or,	equivalently	after	some	

algebra	
(
diagA22−offdiagA22

)
(
diagG−offdiagG

) 	and	�c = A22 −G × tc.

Vitezica	et	al. (2011)	adjusts	based	on	Wright's	fixation	
index	(Fst)	with	constants	�v	and	tv:

(3)y = Xb +W1u +W2hs +W3pe + e

(4)Var

⎛⎜⎜⎜⎜⎝

u

hs

pe

e

⎞⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

H�2u 0 0 0

I�2
hs

0 0

I�2pe 0

symmetric I�2e

⎞
⎟⎟⎟⎟⎟⎠

(5)G =
(M − 2P)(M−2P)�

2
∑m

i=1 pi
�
1 − pi

�

(6)Gb = (1 − �)G + �A22

(7)Gx = 11��x + txG

(8)diagG × tc + �c = diagA22

(9)G × tc + �c = A22

(10)�v = A22 −G

Item
No. of animals 
with records

No. of 
records Mean SD

Angus

Genotyped 51,478

BW 50,388 35.85 4.16

WW 51,425 301.91 43.16

PWG 35,995 194.30 72.53

All 6,948,617

BW 6,189,661 36.46 4.43

WW 6,890,625 263.12 44.62

PWG 3,387,252 162.26 67.12

Holstein

Genotyped 105,116

UD 37,292 32.97 8.29

All 10,067,745

UD 10,067,731 28.85 8.57

Abbreviations:	BW,	birth	weight	(kg);	PWG,	post	weaning	gain	(kg/day);	UD,	udder	depth	(score	based	
on	distance	from	udder	floor	to	point	of	the	hock);	WW,	weaning	weight	(kg).

T A B L E  1 	 Mean	and	standard	
deviations	(SD)	of	phenotypes	for	
genotyped	and	all	Angus	and	Holstein	
cattle
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In	 this	 case,	 �v	 is	 Wright's	 Fst	 which	 represents	 the	
difference	 between	 genomic	 and	 pedigree	 bases.	 In	 the	
case	of	Hardy–	Weinberg	equilibrium,	both	methods	give	
nearly	the	same	values	of	�v	and	tv.

It	must	be	noted	that	although	the	algebra	is	quite	gen-
eral,	these	equations	were	conceived	to	be	used	with	ob-
served	frequencies,	in	which	case	�v	and	�c	are	positive	by	
construction.	Otherwise,	for	instance	if	allele	frequencies	
used	to	build	G	are	0.5,	�v	or	�c	may	be	negative	and	this	
may	result	in	not	positive	definite	Gx.

For	actual	building	of	the	final	G	matrix,	there	are	two	
options.	The	first	one	compares	relationship	matrices	and	
achieves	 compatibility,	 then	 modifies	 the	 resulting	 ma-
trix.	In	this	case,	tuning	is	applied	before	blending	and	the	
final	matrix	can	be	understood	as

Alternatively,	if	blending	is	applied	before	tuning,	the	final	
matrix	is

For	 each	 dataset,	 four	 sets	 of	 GEBV	 were	 calculated:	Gbc	,	
Gcb,Gbv	 and	Gvb,	 where	 the	 subscript	 indicates	 the	 order	
(‘b’	 from	blending	comes	earlier	or	 later)	and	 the	 form	of	
tuning	(‘c’	or	‘v’—	either	Christensen	et	al. (2012)	or	Vitezica	
et	al. (2011)).	Expanded	formulas	for	each	genomic	relation-
ship	matrix	can	be	found	in	Appendix A.

In	the	initial	analysis,	a	blending	parameter	of	� = 0.05	
(VanRaden,  2008)	 was	 used	 to	 calculate	 all	 four	 sets	 of	
GEBV.	 Then,	 we	 derived	 equations	 which	 determined	
the	blending	parameter	�	that	maximizes	changes	in	the	
genomic	 relationship	 matrix	 and	 genomic	 predictions	
when	 changing	 the	 order	 of	 blending	 and	 tuning	 using	
Christensen	et	al. (2012)	and	Vitezica	et	al. (2011)	meth-
ods	(Appendices B	and	C).	Analyses	were	repeated	using	
the	blending	parameter	that	maximizes	changes,	� = 0.5.	
After	calculating	each	set	of	GEBV	using	the	BLUP90IOD2	
program	 (Misztal	 et	 al.,  2014),	 a	 separate	 analysis	 was	
conducted	 to	 compute	 IP.	 GEBV	 were	 recalculated	 for	
each	 set	 but	 excluded	 genotypes	 and	 all	 phenotypes	 of	
the	 young,	 genotyped	 animals.	 SNP	 effects	 and	 IP	 were	
computed	from	the	recalculated	GEBV	using	POSTGSF90	
(Misztal	et	al., 2014)	and	PREDF90	(Misztal	et	al., 2014)	
respectively.	The	calculation	of	SNP	effects	(â)	given	the	
calculated	GEBV	(û)	also	considered	blending	and	tuning	
(Lourenco	et	al., 2020):

where	the	subscript	xx	varies	from	‘bc’,	‘cb’,	‘bv’,	or	‘vb’	ac-
cording	to	the	blending	and	tuning	scenario.	The	‘marker’	
estimated	breeding	values	on	a	genomic	base	(ÎP

∗
)	were	cal-

culated	as

To	transform	ÎP
∗
	to	be	‘marker’	estimated	breeding	values	

on	a	pedigree	scale	and	comparable	to	GEBV,	a	constant	(�̂	)	
is	back	 solved	as	 the	difference	between	pedigree	and	ge-
nomic	bases	and	added	(Legarra	et	al.,	2022):

The	 final	 ‘marker’	 estimated	 breeding	 value	 on	 pedigree	
scale	(ÎP)	is	obtained	as

GEBV,	IP*	and	IP	were	compared	among	the	four	scenarios	
for	both	datasets.

2.4	 |	 Average genomic relationships 
among genotyped relatives

The	average	estimate	of	realized	relationships	of	genotyped	
animals	for	self-	relationships	and	between	unilineal	(e.g.,	
parent–	offspring,	 half-	sibs,	 grandparent–	grandoffspring)	
and	bilineal	(e.g.,	full-	sibs)	relatives	(Forneris	et	al., 2016)	
were	compared	for	each	method.	The	estimated	realized	
relationships	for	genotyped	animals	are	the	proportions	of	
genome-	shared	identical-	by-	state	and	were	obtained	from	
the	diagonal	(e.g.,	self)	or	off-	diagonal	(e.g.,	unilineal	and	
bilineal	relatives)	elements	of	each	G	matrix.	We	obtained	
estimates	of	these	values	in	each	genomic	relationship	ma-
trix	after	tuning	and	blending	operations.	These	estimates	
were	compared	to	the	expectation	of	actual	relationships.

3 	 | 	 RESULTS AND DISCUSSION

3.1	 |	 Changes in G between methods

In	 formulas	 found	 in	 Appendix  A,	 (A1)	 to	 (A4),	 all	 the	
components	are	fixed	for	a	given	G	and	A22	except	for	�.	
Therefore,	the	four	matrices	can	be	understood	as	a	func-
tion	of	 the	proportion	of	 the	residual	polygenic	effect	 in	
the	model.	Consequently,	the	differences	between	the	ma-
trices	in	formulas	(A1)	to	(A4),	which	are	the	differences	
in	 GEBV	 when	 changing	 the	 order	 between	 blending	
and	 tuning,	are	dependent	on	�.	When	approaching	 the	
boundaries	of	�,	that	is,	zero	and	one,	the	resulting	matrix	

(11)tv =
(
1 −

�v
2

)

(12)Gxb = (1 − β)Gx + βA22

(13)Gbx = 11��x + txGb

(14)âxx ∣ ûxx = tx(1 − β)(M−2P)�
1

2
∑
pi
�
1 − pi

�G−1
xx ûxx

(15)ÎP
∗

xx ∣ âxx = (M−2P)�âxx

(16)�̂xx ∣ ûxx = E
[
�̂xx|uxx = ûxx

]
= �x(1 − �)1�G−1

xx ûxx

(17)ÎPxx = �̂xx + ÎP
∗

xx
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is	unique	regardless	of	which	procedure	is	performed	first.	
Logically,	when	� → 1,	the	residual	polygenic	effect	is	as-
sumed	to	explain	all	the	genetic	variation	and	G→ A22	for	
both	tuning	methods.	As	shown	in	Appendix B,	the	maxi-
mum	change	in	GEBV	when	changing	the	order	between	
blending	 and	 tuning	 using	 the	 method	 of	 Christensen	
et	al. (2012)	is	attained	when:

For	 the	 Angus	 dataset,	 this	 value	 was	 equal	 to	 0.5001,	
whereas	for	the	Holstein	data	was	equal	to	0.5016.	The	max-
imum	 absolute	 difference	 in	 the	 covariance	 matrix	 when	
changing	 the	 order	 between	 blending	 and	 tuning	 for	 the	
tuning	method	of	Christensen	et	al.  (2012)	 is	bounded	by	
the	following	equation:

For	the	Angus	data,	this	value	was	equal	to	1.29 × 10−4	for	
� = 0.05	 and	 6.82 × 10−4	 for	 � = 0.5001,	 whereas	 for	 the	

Holstein	data	was	1.59 × 10−3	 for	� = 0.05	and	9.06 × 10−3	
for	� = 0.5016.	 Appendix  C	 shows	 the	 maximum	 change	
in	GEBV	when	changing	 the	order	between	blending	and	
tuning	and	using	the	tuning	method	of	Vitezica	et	al. (2011)	
also	occurs	when	�	is	equal	to	0.5.	The	maximum	absolute	
difference	 in	 the	covariance	matrix	 is	bounded	by	 the	 fol-
lowing	equation:

where	Fmax	denotes	the	maximum	average	of	the	genomic	
and	pedigree	inbreeding	coefficients	among	the	genotyped	
animals	and	h	is	half	the	average	difference	among	the	two	
matrices:

where	 n	 is	 the	 number	 of	 genotyped	 animals.	 For	 the	
Angus	data,	this	value	was	equal	to	1.26 × 10−3	for	� = 0.05	

(18)� =

√
f (G)f

(
A22

)
− f (G)

f
(
A22

)
− f (G)

(19)�(1 − �)
|||||

f (G) − f
(
A22

)

(1 − �)f (G) + �f
(
A22

)
|||||

(
max
i,j

|||gij
|||
f
(
A22

)
f (G)

+ max
i,j

a22ij + n−2 1�A221

)

(20)
(
� − �2

) |h| (1 + Fmax
)

(21)h =
1�
(
A22 −G

)
1

2n2

F I G U R E  1  Differences	in	diagonal	elements	of	genomic	relationship	matrices,	G,	with	� = 0.05	in	blending	first	and	tuning	first	
scenarios	using	two	different	tuning	methods,	c	tuning	(Christensen	et	al., 2012)	and	v	tuning	(Vitezica	et	al., 2011),	for	genotyped	Angus	(a	
and	b)	and	Holstein	(c	and	d)
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T A B L E  2 	 Expected	and	estimated	realized	(genomic)	relationshipsa	when	changing	the	order	between	blending	and	tuning	for	two	
tuning	methods	using	blending	parameters,	� = 0.05

Relationship N
Expected 
relationship

Genomic relationships

Gbc Gcb Gbv Gvb

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Angus

Self 51,478 1.00 1.05	(0.04) 1.05	(0.04) 1.05	(0.04) 1.05	(0.04)

Parent–	offspring 35,684 0.50 0.55	(0.05) 0.55	(0.05) 0.55	(0.05) 0.55	(0.05)

Full-	sibs 7,672 0.50 0.55	(0.06) 0.55	(0.06) 0.55	(0.06) 0.55	(0.06)

Half-	sibs 9,781,177 0.25 0.31	(0.04) 0.31	(0.04) 0.31	(0.04) 0.31	(0.04)

Grandparent–	
grandoffspring

3,788 0.25 0.33	(0.05) 0.33	(0.05) 0.33	(0.05) 0.33	(0.05)

Holstein

Self 105,116 1.00 1.03	(0.04) 1.03	(0.04) 1.04	(0.04) 1.04	(0.04)

Parent–	offspring 150,427 0.50 0.53	(0.04) 0.53	(0.04) 0.54	(0.04) 0.54	(0.04)

Full-	sibs 57,314 0.50 0.53	(0.05) 0.53	(0.05) 0.54	(0.06) 0.54	(0.06)

Half-	sibs 46,657,929 0.25 0.29	(0.04) 0.29	(0.04) 0.29	(0.04) 0.29	(0.04)

Grandparent–	
grandoffspring

134,832 0.25 0.29	(0.05) 0.29	(0.05) 0.29	(0.05) 0.29	(0.05)

aFor	the	construction	of	the	genomic	relationship	matrix	Gxx,	the	subscript	c	refers	to	Christensen	et	al. (2012)	tuning,	v	refers	to	Vitezica	et	al. (2011)	tuning,	
and	b	refers	to	blending	G	and	A22.	The	order	of	the	subscript	refers	to	the	order	operations	were	performed.

Data Trait
Tuning 
methodb

Absolute mean 
difference

Absolute maximum 
difference

� = 0.05 � = 0.5 � = 0.05 � = 0.5

Genotyped	animals

Holstein UD c 0.006 0.001 0.01 0.02

v 0.004 0.000 0.01 0.02

Angus BW c 0.000 0.001 0.01 0.02

v 0.000 0.000 0.01 0.02

WW c 0.000 0.002 0.01 0.03

v 0.000 0.001 0.01 0.03

PWG c 0.000 0.001 0.01 0.03

v 0.000 0.001 0.01 0.03

Non-	genotyped	animals

Holstein UD c 0.006 0.001 0.01 0.02

v 0.005 0.000 0.01 0.01

Angus BW c 0.000 0.001 0.00 0.01

v 0.000 0.000 0.00 0.01

WW c 0.000 0.001 0.01 0.02

v 0.000 0.000 0.01 0.02

PWG c 0.000 0.001 0.01 0.03

v 0.000 0.000 0.01 0.01
aAll	statistics	are	expressed	in	terms	of	the	genetic	standard	deviation	of	the	trait.
bc	refers	to	the	tuning	method	of	Christensen	et	al. (2012),	whereas	v	refers	to	the	tuning	method	of	
Vitezica	et	al. (2011).

T A B L E  3 	 Statisticsa	for	changes	
in	GEBV	for	Angus	and	Holstein	data	
sets	when	changing	the	order	between	
blending	and	tuning	for	two	tuning	
methods	using	blending	parameters,	
� = {0.05, 0.5}
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and	6.65 × 10−3	for	� = 0.5,	whereas	for	the	Holstein	data	
was	1.12 × 10−3	for	� = 0.05	and	5.94 × 10−3	for	� = 0.5.

Across	scenarios,	the	differences	between	GEBV	or	IP	
arise	due	to	the	different	covariance	matrices	employed	

for	the	prediction.	Therefore,	if	the	matrices	do	not	vary	
across	 the	 different	 combinations	 of	 blending	 and	 tun-
ing,	 then	 the	 GEBV	 or	 IP	 will	 not	 vary.	The	 average	 of	
off-	diagonal	 elements	 of	G	 in	 all	 four	 scenarios	 in	 the	

F I G U R E  2  Scatter	plots	of	GEBV	for	51,478	genotyped	and	8,184,542	non-	genotyped	Angus	animals'	birth	weight	(BW),	weaning	weight	
(WW)	and	post	weaning	gain	(PWG)	using	� = 0.05	and	blending	before	tuning	(Gbx)	against	predictions	using	tuning	before	blending	(Gxb)	
for	two	tuning	methods;	subscript	x	varies	between	c	for	Christensen	et	al. (2012)	or	v	for	Vitezica	et	al. (2011)	tuning
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F I G U R E  3  Scatter	plots	of	GEBV	for	105,116	genotyped	and	8,233,333	non-	genotyped	Holstein	animals'	udder	depth	(UD)	using	
� = 0.05	and	blending	before	tuning	(Gbx)	against	predictions	using	tuning	before	blending	(Gxb)	for	two	tuning	methods;	subscript	x	varies	
between	c	for	Christensen	et	al. (2012)	or	v	for	Vitezica	et	al. (2011)	tuning

F I G U R E  4  Scatter	plots	of	indirect	predictions	on	the	genomic	base	(IP*)	for	young,	genotyped	Angus	animals'	birth	weight	(BW),	
weaning	weight	(WW)	and	post	weaning	gain	(PWG)	calculated	using	different	blending	parameters	(�)	and	blending	before	tuning	(Gbx)	
against	predictions	using	tuning	before	blending	(Gxb)	for	two	tuning	methods;	subscript	x	varies	between	c	for	Christensen	et	al. (2012)	or	v	
for	Vitezica	et	al. (2011)	tuning
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Angus	 and	 Holstein	 datasets	 were	 0.091	 and	 0.073	 re-
spectively.	The	distribution	of	the	difference	of	diagonal	
elements	 when	 blending	 first	 versus	 tuning	 first	 is	 dis-
played	in	Figure 1.	It	can	be	observed	that	the	differences	
are	 only	 in	 the	 ten-	thousandths	 place.	 Consequently,	 it	
is	expected	that	the	average	variation	of	the	predictions	
across	scenarios	will	be	small.	This	is	logical	because	the	
goal	of	the	employed	tuning	methods	is	to	equalize	the	
averages	of	G	and	A22	(Christensen	et	al., 2012;	Vitezica	
et	al., 2011).

3.2	 |	 Genomic relationships

Table 2	shows	average	estimated	realized	(genomic)	rela-
tionships	for	genotyped	animals	with	respective	standard	
deviation	(SD)	for	animals	grouped	based	on	pedigree	in-
formation.	 Genomic	 relationships	 were	 greater	 than	 the	

expected	values,	with	a	SD	that	varied	from	0.04	to	0.06.	In	
the	Angus	dataset,	the	values	were	similar	across	scenarios	
for	self-	relationships,	parent–	offspring,	full-	sibs,	half-	sibs	
and	 grandparent–	grandoffspring.	 Minuscule	 differences	
were	 observed	 in	 the	 ten-	thousandths	 place	 (results	 not	
shown),	with	slightly	greater	values	for	the	tuning	method	
proposed	by	Vitezica	et	al. (2011).	In	the	Holstein	dataset,	
average	genomic	relationships	were	slightly	higher	(0.01)	
when	using	the	previously	mentioned	tuning	method.

3.3	 |	 Genomic predictions

3.3.1	 |	 GEBV

Table  3	 shows	 the	 statistics	 for	 changes	 in	 GEBV	 when	
changing	 the	 order	 between	 blending	 and	 tuning,	 for	
both	 tuning	 methods	 and	 � = {0.05, 0.5}.	 As	 expected,	

F I G U R E  5  Scatter	plots	of	indirect	predictions	on	the	genomic	base	(IP*)	for	young,	genotyped	Holstein	bulls'	udder	depth	(UD)	
calculated	using	different	blending	parameters	(�)	and	blending	before	tuning	(Gbx)	against	predictions	using	tuning	before	blending	(Gxb)	
for	two	tuning	methods;	subscript	x	varies	between	c	for	Christensen	et	al. (2012)	or	v	for	Vitezica	et	al. (2011)	tuning
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changes	 in	 GEBV	 were	 negligible	 because	 the	 maxi-
mum	change	in	the	genomic	relationship	matrix	is	small.	
However,	changes	were	greater	for	�	near	0.5	as	shown	in	
Appendices B	and	C.	Scatter	plots	of	GEBV	when	using	
blending	first	versus	tuning	first	for	the	two	tuning	meth-
ods	 and	� = 0.05	 are	 shown	 in	 Figure  2	 for	 Angus	 and	
Figure 3	for	Holstein.	Scatterplots	for	GEBV	using	� = 0.5	
are	not	shown	but	appear	visually	 identical	 to	Figures 2	
and	 3	 despite	 the	 differences	 shown	 in	 Table  3.	 As	 ex-
pected,	in	light	of	Appendices B	and	C	and	Table 3,	when	
changing	the	order	between	blending	and	tuning,	GEBV	
were	almost	 identical.	For	all	 the	animals	 in	the	evalua-
tion,	the	GEBV	did	not	differ	considerably	when	changing	
the	 order	 of	 blending	 and	 tuning	 for	 both	 datasets.	 The	
same	 results	 were	 observed	 for	 the	 IP*of	 young,	 geno-
typed	animals.

3.3.2	 |	 IP*	and	SNP	effects

Graphs	 for	 IP*,	 ‘marker’	 estimated	 breeding	 values	 on	
genomic	 base	 for	 the	 young,	 genotyped	 animals	 are	 in	
Figure 4	for	Angus	and	Figure	5	for	Holstein.	The	correlation	
for	young,	genotyped	IP*	when	using	� = 0.05	and	� = 0.05	
differed	across	scenarios	in	the	ten	thousandth	places	(not	
shown),	however,	when	rounded	to	the	thousandths	place,	
the	correlations	were	the	same:	0.93,	0.96,	0.95	and	0.94	for	
UD,	BW,	WW	and	PWG	respectively.	The	number	of	geno-
typed	individuals	did	not	affect	these	changes.	The	Holstein	
data	 contained	 over	 twice	 the	 number	 of	 genotyped	 indi-
viduals	 as	 the	 Angus	 dataset,	 yet	 no	 considerable	 differ-
ences	were	observed	for	either.	Results	are	consistent	even	
when	doubling	 the	number	of	genotyped	 individuals;	 this	
is	expected	to	hold	for	any	number	of	genotyped	animals.	

F I G U R E  6  Scatter	plots	of	indirect	predictions	on	pedigree	scale	(IP)	young,	genotyped	Angus	animals'	birth	weight	(BW),	weaning	
weight	(WW),	and	post	weaning	gain	(PWG)	calculated	using	different	blending	parameters	(�)	and	blending	before	tuning	(Gbx)	against	
predictions	using	tuning	before	blending	(Gxb)	for	two	tuning	methods;	subscript	x	varies	between	c	for	Christensen	et	al. (2012)	or	v	for	
Vitezica	et	al. (2011)	tuning
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IP*	are	calculated	from	SNP	effects	that	are	backsolved	from	
GEBV;	therefore,	IP*	are	a	linear	function	of	G−1	(Stranden	
&	Garrick, 2009).	Given	the	small	changes	in	G	when	tuning	
versus	blending	first,	SNP	effects	were	not	expected	to	differ	
among	scenarios.	SNP	effects	from	tuning	first	and	blending	
first	methods	and	for	both	tuning	methods	all	had	correla-
tions	>0.99.	For	both	Holstein	and	Angus	data,	SNP	effects	
for	UD,	BW,	WW	and	PWG	had	slightly	greater	variation	
when	using	Vitezica	et	al.  (2011)	tuning;	however,	 the	in-
crease	in	standard	deviation	was	small	(i.e.,	0.0003,	0.0006,	
0.0030	and	0.0025	respectively)	(Figure 5).

3.3.3	 |	 IP

Graphs	 for	 IP,	 ‘marker’	 estimated	 breeding	 values	 on	
the	 pedigree	 scale	 for	 the	 young,	 genotyped	 animals	 are	
in	 Figures  6	 and	 7	 for	 Angus	 and	 Holstein	 respectively.	
Predictions	 are	 shifted	 by	 a	 constant	 when	 the	 order	 of	

blending	and	tuning	is	changed,	and	this	change	is	exacer-
bated	when	� = 0.5	is	used.	This	shift	is	due	to	the	constant	
�̂	added	to	IP*.	The	̂�	is	a	function	of	the	difference	between	
genomic	and	pedigree	bases	and	a	proportion	(1 − �)	of	the	
inverse	of	the	final	G	(after	blending	and	tuning).	When	G	
is	blended	before	tuning,	�̂	is	biased	because	the	blended	G	
already	contains	a	portion	of	A22	and	refers	to	a	different	
genetic	base.	Tuning	Gb	with	a	residual	polygenic	effect	re-
sults	in	a	suboptimal	correction	when	back	solving	for	the	
difference	 in	 the	 genetic	 base	 between	 the	 two	 matrices.	
The	inconsistency	was	small	when	using	a	blending	param-
eter	� = 0.05,	but	more	pronounced	when	using	� = 0.50.

3.4	 |	 Blending parameter �

When	 ssGBLUP	 is	 applied,	G	 is	 positive	 definite	 if	 ob-
served	 allele	 frequencies	 are	 used	 (resulting	 in	 𝛼v > 0	
or	𝛼c > 0)	and	 the	blending	parameter	�	 is	higher	 than	

F I G U R E  7  Scatter	plots	of	indirect	predictions	on	pedigree	scale	(IP)	young,	genotyped	Holstein	bulls'	udder	depth	(UD)	calculated	
using	different	blending	parameters	(�)	and	blending	before	tuning	(Gbx)	against	predictions	using	tuning	before	blending	(Gxb)	for	two	
tuning	methods;	subscript	x	varies	between	c	for	Christensen	et	al. (2012)	or	v	for	Vitezica	et	al. (2011)	tuning
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0,	 for	 example,	 equal	 to	 0.05.	 The	 choice	 for	�	 can	 be	
attained	 by	 maximum	 likelihood	 (Christensen	 &	
Lund,  2010)	 or	 empirically	 to	 minimize	 bias	 by	 cross-	
validation	 (Liu	 et	 al.,  2016;	 Mäntysaari	 et	 al.,  2010;	
McMillan	 &	 Swan,  2017).	 VanRaden  (2008)	 showed	
that	 � = SD2∕

(
SD2 + 0.125∕m

)
	,	 where	m	 is	 the	 num-

ber	of	markers	and	SD	 is	 the	standard	error	of	predict-
ing	 the	 true	 fraction	 of	 shared	 DNA;	 this	 is	 the	SD	 in	
Table 2.	Utilizing	this	formula	in	the	present	study	and	
in	 VanRaden  (2008),	 �	 would	 be	 close	 to	 0.001;	 how-
ever,	 VanRaden  (2008)	 observed	 that	� = 0.05	 resulted	
in	slightly	more	reliable	predictions	and	suggested	 this	
value	could	be	used	in	cattle	populations.	In	this	study,	
5	and	50%	of	A22	were	added	to	G	in	different	scenarios	
and	evaluated.	An	alternative	to	adding	A22	 is	 to	add	a	
proportion	 of	 the	 identity	 matrix	 to	 prevent	 singular-
ity,	in	other	words,	to	add	a	small	constant	to	the	diag-
onal	 values	 of	G.	 Himmelbauer	 et	 al.  (2021)	 compared	
Mendelian	 sampling	 of	 bull	 families	 when	 a	 constant	
of	0.001	and	0.01	was	added	to	the	diagonal	elements	of	
G.	 GEBV	 from	 both	 of	 these	 scenarios	 were	 correlated	
>0.99,	however,	when	0.01	was	added	to	G,	some	traits	
resulted	in	bias	in	Mendelian	samplings	and	more	outli-
ers	were	observed	from	bull	lines	with	many	genotyped	
progeny.	To	reduce	bias	for	bulls	with	many	genotyped	
progeny,	 the	constant	added	 to	diagonal	elements	of	G	
should	 be	 small	 and	 used	 as	 a	 means	 to	 make	G	 non-	
singular.When	tuning	is	needed	in	ssGBLUP,	changing	
the	order	of	blending	and	tuning	did	not	create	consider-
able	 changes	 in	 genomic	 relationships,	 GEBV	 and	 IP*.	
However,	when	IP*	are	adjusted	to	a	pedigree	scale	for	
comparison	with	GEBV,	blending	first	resulted	in	biased	
estimates.

4 	 | 	 CONCLUSIONS

When	constructing	the	realized	relationship	matrix,	scal-
ing	G	 to	A22	 prior	 to	 adding	 a	 weighted	G	 and	 positive-	
definite	A22	is	theoretically	more	correct	and	robust.	For	
the	datasets	used	in	this	study,	negligible	differences	were	
observed	in	GEBV	for	all	animals	and	IP	on	genomic	base	
for	 young,	 genotyped	 animals	 when	 changing	 the	 order	
between	 blending	 and	 tuning	 given	 the	 small	 propor-
tion	of	residual	polygenic	effect	assumed	for	the	models.	
However,	blending	prior	to	tuning	for	IP	adjusted	to	the	
pedigree	 scale	 results	 in	 biased	 estimates.	 Mathematical	
expressions	were	derived,	which	indicate	that	the	blending	
parameter	that	maximizes	these	differences	when	chang-
ing	the	order	of	blending	and	tuning	is	0.5.	Although	the	
changes	were	minimal	or	non-	existent	in	our	study,	apply-
ing	tuning	before	blending	avoids	theoretical	inconsisten-
cies	when	computing	the	difference	in	genetic	base.
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APPENDIX A

CONSTRUCTION OF GENOMIC RELATIONSHIP MATRICES USING A DIFFERENT ORDER OF TUNING 
AND BLENDING AND TWO TUNING METHODS

The	first	set	of	GEBV	(Gbc)	was	obtained	by	blending	G	 first	and	then	tuning	it	 following	the	method	of	Christensen	
et	al. (2012):

Writing	the	value	of	tc =
(
diagA22−A22

)
(
diagG−G

) 	as	tc =
f (A22)
f (G)

	where	 f :ℝnxn
→ ℝ	such	that	 f (M) = tr(M) − n−11�M1	where	n	is	

the	number	of	genotyped	individuals,	the	resulting	Gbc	matrix	used	for	the	calculation	of	the	first	set	of	GEBV	was	as	
follows:

where	k =
tr(G)1�A221− tr(A22)1�G1

n2
.

The	second	set	of	GEBV	(Gcb)	was	calculated	by	tuning	G	with	the	method	of	Christensen	et	al. (2012)	first	and	then	
blending.	In	this	case,	the	obtained	G	matrix	was	of	the	form:

The	other	two	sets,	Gbv	and	Gvb,	were	analogous	to	the	first	two	but	used	the	tuning	method	of	Vitezica	et	al. (2011)	
instead	of	the	method	of	Christensen	et	al. (2012),	giving	the	matrices	Gbv	and	Gvb	respectively:

and

where	h =
1�(A22−G)1

2n2
,	half	the	average	difference	among	the	two	matrices.

APPENDIX B

DERIVATION FOR MAXIMIZING DIFFERENCES BETWEEN SCENARIOS USING CHRISTENSEN ET 
AL. (2012) TUNING

Shown	are	 the	derivations	 for	 the	proportion	of	 residual	polygenic	effect	(�)	 that	maximizes	 the	differences	between	
genomic	relationship	matrices	for	the	tuning	method	of	Christensen	et	al. (2012),	and	an	upper	bound	for	the	maximum	
change	in	the	genomic	relationship	matrix	when	changing	the	order	of	blending	and	tuning.

� that maximizes the metric between Gbc and Gcb

Keeping	the	same	notation	as	in	(A1)	and	(A2),	that	difference	is	evaluated	in	terms	of	the	metric	defined	as	follows:

(A1)Gbc =
[
(1 − β)G + βA22

] f
(
A22

)

(1 − β)f (G) + βf
(
A22

) + k
1 − β

(1 − β)f (G) + βf
(
A22

)11�

(A2)Gcb = (1 − �)

[
G
f
(
A22

)
f (G)

+
k

f (G)
11�

]
+ �A22

(A3)Gbv =
[
1 − (1 − �)h

][
(1 − �)G + �A22

]
+ (1 − �)2h11�

(A4)Gvb = (1 − �)
[
(1 − h)G + 2h11�

]
+ �A22

(B1)

d1
(
Gbc,Gcb

)
≔max

i,j

|||Gbcij
−Gcbij

||| =max
i,j

||||||
(1 − β)gij

(
f
(
A22

)

(1 − β)f (G) + βf
(
A22

) −
f
(
A22

)
f (G)

)
+ β a22ij

(
f
(
A22

)

(1 − β)f (G) + βf
(
A22

) − 1

)
+ (1 − β)k

(
1

(1 − β)f (G) + βf
(
A22

) −
1

f (G)

)
=



   | 17MCWHORTER et al.

It	is	important	to	remark	that	max
i,j

	refers	to	a	particular	choice	of	gij	and	a22ij.	gij	refers	to	the	genomic	relationship	be-

tween	animal	i	and	animal	j	and	g(�) is the beta that maximizes the metric between Gbc	and	Gcb.	Because	gij	and	a22ij	are	

not	functions	of	�,	it	is	valid	to	proceed	with	the	calculations	while	ignoring	the	maximum	at	the	front	of	the	expression.	
Therefore,	to	find	the	value	of	�	that	maximizes	d1

(
Gbc −Gcb

)
,	it	is	necessary	to:

Let	gbc(β, x, y) = β − x2	and	gcb(β, x, y) = 1 − β − y2,	then	(B2)	is	equivalent	to:

To	solve	(B3)	the	following	system	must	be	solved:

where	∇	is	the	gradient,	and	�1	and	�2	are	Lagrange	Multipliers.	Taking	the	derivative	of	(B1)	with	respect	to	β:

The	other	two	coordinates	of	∇g	are	equal	to	zero.	Also,	∇gbc = ⟨1, − 2x,0⟩	and	∇gcb = ⟨ − 1, 0, − 2y⟩.	Because	the	in-
equality	in	(B2)	is	strict,	�1 = �2 = 0.	Therefore,	the	system	(B4)	reduces	to:

The	first	equation	in	(B6)	is	solved	by	setting	the	derivative	in	(B5)	to	zero	and	rearranging	the	terms:

The	equality	in	(1.7)	will	be	reached	when:

The	solutions	for	the	auxiliary	variables	x	and	y	are	as	follows:

(B2)argmax
{
d1
(
Gbc −Gcb

)
= g(β) subject to 0 < β < 1

}

(B3)argmax
{
g(β) subject to gbc(β, x, y) = 0 and gcb(β, x, y) = 0

}

(B4)
⎧⎪⎨⎪⎩

∇g=�1∇gbc+�2∇gcb
β−x2=0

1−β−y2=0

(B5)

�d1
(
Gbc,Gcb

)
��

= ±

(
gij

[
f
(
A22

) [
f (G) − f

(
A22

)]
[
(1−β)f (G)+βf

(
A22

)]2 −
f
(
A22

)
f (G)

[
(1−β)f (G)+βf

(
A22

)]2 +
f
(
A22

)
f (G)

]
+ a22ij

[
f
(
A22

)
f (G)

[
(1−β)f (G)+βf

(
A22

)]2 − 1

]
+ k

[
1

f (G)
−

f
(
A22

)
[
(1−β)f (G)+βf

(
A22

)]2
])

(B6)
⎧⎪⎨⎪⎩

∇g=0

β−x2=0

1−β−y2=0

(B7)a22ij f
(
A22

)
f (G) − gijf

(
A22

)2
− f

(
A22

)
k =

(
a22ij − gij

f
(
A22

)
f (G)

−
k

f (G)

)[
(1−β)f (G)+βf

(
A22

)]2

(B8)

[
(1−�)f (G)+�f

(
A22

)]2
= f (G)f

(
A22

)

�=

√
f (G)f

(
A22

)
− f (G)

f
(
A22

)
− f (G)

(B9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x=

�����
�
f (G)f

�
A22

�
− f (G)

f
�
A22

�
− f (G)

y=

�
f (G)f

�
A22

�
− f

�
A22

�

f
�
A22

�
− f (G)
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For	a	positive	semi-	definite	matrix	M,	 f (M) ≥ 0.	The	argument	is	as	follows.	Let	λmax	be	the	largest	eigenvalue	of	M;	
then	 f (M) ≥ 0	because	of	the	finiteness	of	tr(M)	(Gohberg	et	al., 2000,	p.	63)	and	that	(i)	n−11� M1 ≤ λmax	(Harville, 2008,	
p.	539),	(ii)	λmax < ∞	(Golub	&	Van	Loan, 2013;	pp.	357)	and	(iii)	tr(M) ≥ λmax.	The	inequality	is	strict	when	M	has	at	
least	two	non-	zero	eigenvalues.

Because	f
(
A22

)
, f (G) > 0,	it	worth	noting	that	(B8)	guarantees	β ∈ (0, 1)	and	that	when	f

(
A22

)
≈ f (G),	β→ 0.5	.	Finally,	

to	check	whether	(B8)	represents	a	local	maximum	of	d1
(
Gbc,Gcb

)
,	the	second	derivative	of	d1

(
Gbc,Gcb

)
	with	respect	to	

β	is	as	follows:

Evaluating	it	at	(B8)	gives:

The	last	term	is	positive	because	it	is	dominated	by	the	positive	constants	 f
(
A22

)
gij	and	k.	Then,	assuming	gij > a22ij	

and	given	that	k > 0,	it	can	be	checked	that	if	 f
(
A22

)
> f (G)	the	plus-	minus	sign	is	negative,	and	that	if	 f

(
A22

)
< f (G),	

the	plus-	minus	sign	is	positive.	Therefore,	by	the	second	derivative	criterion,	(B8)	maximizes	(B1).

Upper bound for d1
(
Gbc,Gcb,

)

After	applying	triangle	inequality	and	re-	arranging	terms,	(B1)	results	in:

Given	that	k ≤ n−2 1�A221 f (G),	(B12)	is	bounded	above	by	the	following:

APPENDIX C

DERIVATION FOR MAXIMIZING DIFFERENCES BETWEEN SCENARIOS USING VITEZICA 
ET AL. (2011) TUNING

Shown	are	the	derivations	for	the	proportion	of	residual	polygenic	effect	(β)	that	maximizes	the	differences	between	
genomic	 relationship	 matrices	 for	 the	 tuning	 method	 of	 Vitezica	 et	 al.  (2011),	 and	 an	 upper	 bound	 for	 the	 maxi-
mum	change	in	the	genomic	relationship	matrix	when	changing	the	order	of	blending	and	tuning.	In	this	Appendix,	
the	 difference	 between	 the	 matrices	 is	 evaluated	 in	 terms	 of	 the	 metric	 induced	 by	 the	 Frobenius	 norm	 (Horn	 &	
Johnson, 2013,	p.	321).

� that maximizes the metric between Gbv and Gvb

The	metric	between	Gbv	and	Gvb	is	defined	as	follows:

(B10)
�d1

(
Gbc,Gcb

)

�β2
= ±

(
gij

[
2 f

(
A22

)2 [
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(
A22

)
− f (G)

]
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(
A22

)]3
]
+ a22ij

[
2 f

(
A22

)[
f (G) − f

(
A22

)]
[
(1−β)f (G)+βf

(
A22

)]3
]
+ k

[
2 f

(
A22

)[
f
(
A22

)
− f (G)

]
[
(1−β)f (G)+βf

(
A22

)]3
])

(B11)
�d1

�
Gbc,Gcb

�

�β2

⎛⎜⎜⎜⎝
β =

�
f (G)f

�
A22

�
− f (G)

f
�
A22

�
− f (G)

⎞⎟⎟⎟⎠
= ±

2 f
�
A22

��
f
�
A22

�
− f (G)

�
�
f (G)f

�
A22

��3∕2
�
f
�
A22

�
gij − a22ij + k

�

(B12)

d1
(
Gbc,Gcb

)
≤ β(1 − β)max

i,j

|||gij
||| f

(
A22

)|||||
f (G) − f

(
A22

)

f (G)
[
(1 − β)f (G) + βf

(
A22

)]
|||||
+ β(1 − β)max

i,j
a22ij

|||||
f
(
A22

)
− f (G)

(1 − β)f (G) + βf
(
A22

)
|||||
+ β(1 − β)k

|||||
f (G) − f

(
A22

)

f (G)
[
(1 − β)f (G) + βf

(
A22

)]
|||||

(B13)d1
(
Gbc,Gcb

)
≤ β(1 − β)

|||||
f (G) − f

(
A22

)

(1 − β)f (G) + βf
(
A22

)
|||||

(
max
i,j

|||gij
|||
f
(
A22

)
f (G)

+ max
i,j

a22ij + n−2 1�A221

)

(C1)d2
(
Gbv −Gvb

)
≔ ‖‖Gbv−Gvb

‖‖2F = tr
([
(1−β)βh

(
G+A22

)]�[
(1 − β)βh

(
G +A22

)])
= β4h2‖‖G+A22

‖‖2F − 2β3h2‖‖G+A22
‖‖2F + β2h2‖‖G+A22

‖‖2F = β4c − 2β3c + β2c = g(β)
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where	 c = h2‖‖G+A22
‖‖2F ≥ 0.	 Thus,	 d2

(
Gbv −Gvb

)
	 is	 a	 polynomial	 of	 β.	 To	 find	 the	 value	 of	 β	 that	 maximizes	

d2
(
Gbv −Gvb

)
,	it	is	necessary	to:

Let	gbv(β, x, y) = β − x2	and	gvb(β, x, y) = 1 − β − y2,	then	(C2)	is	equivalent	to:

To	solve	(C3)	the	following	system	must	be	solved:

where	∇	is	the	gradient,	and	�1	and	�2	are	Lagrange	Multipliers.	The	gradients	of	the	three	functions	over	β,	x	and	y	are	
as	follows:

Therefore,	the	following	system	needs	to	be	solved:

Because	the	inequality	in	(C2)	is	strict,	�1 = �2 = 0.	Therefore,	x = y =
√
0.5,	and	β = 0.5.	Finally,	the	criterion	of	the	

second	derivative	of	g(β)	is	used	to	assess	if	a	local	maximum	is	located	at	β = 0.5.	Hence:

Then,	g��(0.5) = − c,	and	because	c	is	positive,	� = 0.5	maximizes	d2
(
Gbv −Gvb

)
.

Value for max
i,j

|||Gbvij
−Gvbij

|||
Given:

where	Fmax	is	the	maximum	average	of	the	genomic	and	pedigree	inbreeding	coefficients	among	genotyped	animals.

(C2)argmax
{
d2
(
Gbv −Gvb

)
= g(β) subject to 0 < β < 1

}

(C3)argmax
{
g(β) subject to gbv(β, x, y) = 0 and gvb(β, x, y) = 0

}

(C4)
⎧⎪⎨⎪⎩

∇g=�1∇gbv+�2∇gvb
β−x2=0

1−β−y2=0

(C5)
∇g=4�3c−6�2c+2�c, 0, 0

∇gbv=1, −2x, 0

∇gvb= −1, 0, −2y

(C6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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(
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