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Abstract: Poplar (Populus spp.) is a fast-growing tree planted to meet the growing global demand for
wood products. In France, the country with the largest area planted with poplar in Europe, accurate
and up-to-date maps of its spatial distribution are not available at the national scale. This makes it
difficult to estimate the extent and location of the poplar resource and calls for the development of a
robust and timely stable approach for mapping large areas in order to ensure efficient monitoring. In
this study, we investigate the potential of the Sentinel-2 time series to map the diversity of poplar
plantations at the French countrywide scale. By comparing multiple configurations of spectral
features based on spectral bands and indices over two years (2017 and 2018), we identify the optimal
spectral regions with their respective time periods to distinguish poplar plantations from other
deciduous species. We also define a novel poplar detection index (PI) with four variants that combine
the best discriminative spectral bands. The results highlight the relevance of SWIR followed by red
edge regions, mainly in the growing season, to accurately detect poplar plantations, reflecting the
sensitivity of poplar trees to water content throughout their phenological cycle. The best performances
with stable results were obtained with the PI2 poplar index combining the B5, B11, and B12 spectral
bands. The PI2 index was validated over two years with an average producer’s accuracy of 92% in
2017 and 95% in 2018. This new index was used to produce the national map of poplar plantations in
2018. This study provides an operational approach for monitoring the poplar resource over large
areas for forest managers.

Keywords: populus; spectral index; feature selection; tree species; image classification; countrywide;
time series; forest

1. Introduction

Timely and accurate mapping of the distribution and composition of forest stands is
essential for both forest management and biodiversity assessment [1]. According to the
most recent Global Forest Resources Assessment by the Food and Agriculture Organization
(FAO), the total area of the world’s forests is 4.06 billion hectares, of which 93% is naturally
regenerating forests and 7% is planted forests [2]. While the area of naturally generating
forests has been decreasing since 1990, planted forests have increased by about 123 million
hectares over the same period, indirectly compensating for some of the area lost through
deforestation [3]. The importance of planted forests has continued to increase as wood
has become an increasingly crucial raw material for industry and an attractive source of
bioenergy. In the last two decades, short-rotation coppice (SRC) plantations such as poplar
have been among the most important fast-growing planted tree species. Poplar plantations
are widely distributed throughout the world and mainly cultivated in China, western
Europe, and North America for their high-quality timber, high growth rate, and short
rotation cycle of about 20 years [4].

In France, poplar plantations are an important economic resource mainly exploited to
satisfy the growing demand for wood. According to the latest report by the International
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Poplar Commission, the surface area of poplar plantations in France was estimated at
0.2 million hectares [4] (i.e., one tenth of the national forest). These area estimates come
from forest databases, cadastral surveys, or statistical forest inventories, but have never
been established synchronously using a homogeneous approach throughout the country,
and the extent and location of the plantations are generally not reported. Consequently, it is
difficult to accurately estimate the surface area of these plantations and regularly monitor
the dynamics of the poplar resource.

Different remote sensing techniques have been developed to map forest stands [5] by
identifying forest cover and the dominant leaf type (e.g., broadleaf or coniferous) [6,7] and
even go as far as characterising the composition of forest tree species [8–11].

Some studies have focussed more specifically on mapping forest plantations [12]
notably rubber [13–15], palm oil [16,17], and eucalyptus [18–20], as well as acacia [21].
Although significant efforts have been made to identify some natural poplars (mainly
European aspen, Populus tremula L. and quaking aspen, Populus tremuloides Michx.) [22–24],
little effort has been devoted to hybrid poplar plantations in temperate regions (Populus
deltoides × Populus nigra; Populus deltoides × Populus trichocarpa; Populus trichocarpa ×
Populus maximowiczii), including the many different cultivars used and stand development
stages [25–29].

Chardenon and Flouzat [25] tested the capabilities of Landsat-2 imagery to classify
poplar stands in France (in the Garonne River plain) and Italy (in the Pô valley), with
different canopy cover rates related to stand age. These authors achieved only limited
success using a single image acquired in May, July, and October 1972 and in June, July,
and September 1975. Discrimination was improved using a bitemporal classification based
on images acquired in June and September 1975, with 49.4% accuracy for young planta-
tions (cover rate < 25%) and 80.8% for older (cover rate > 25%). Young plantations were
difficult to identify due to the presence of herbaceous understory vegetation. The authors
also remarked on the inadequacy of the Landsat-2 spatial resolution (80 m) to identify
many small poplar stands (<1 ha). In another study, Borry et al. [26] concluded that the
discrimination of poplar stands at different development stages is possible using one single
image acquired in the full growing season. Their results, in contrast to those of Chardenon
and Flouzat [25], were obtained with SPOT-1 HRV (20 m spatial resolution) and Landsat-5
TM (30 m) images. Based on a per-field classification, young stands were classified with
80–94% accuracy, middle age stands with 45–77% accuracy, and older with 46–74% accuracy,
depending on the spectral band and the date selected. The authors found that combining
several dates did not improve the discrimination. The stand sizes were relatively small,
ranging from 0.5 to 2 hectares, with different types of understorey vegetation (herbaceous
layer, dense or scattered shrubs). Object-based classification of poplar plantations us-
ing very-high-spatial-resolution (Ikonos and Quickbird) imagery was also investigated
by Grignetti et al. [27]. Overall accuracy ranging from 74% to 82% was obtained but with
very unreliable identification in the case of new plantations (<3 years old), as in [29]. Other
interesting approaches at the tree level and stand level are reported in [24] based on LiDAR
data, airborne photogrammetry, and multispectral and hyperspectral imaging. However,
most concern aspen trees in natural contexts, especially in boreal forest landscapes.

The above-mentioned studies produced contrasting results concerning the ability to
produce accurate maps of poplar plantations in various management contexts. Differences
in the levels of reflectance between plantations of poplar species and other tree species in
natural forests were not examined, nor was the possible identification of specific wave-
length regions or spectral indices for poplar discrimination. In addition, it is not clear
whether integrating the temporal dimension in the classification procedure is useful for
poplar, even though seasonal variations in vegetation (i.e., phenology) could improve
performances [30,31]. Moreover, previous studies were limited to local areas, making it
difficult to evaluate if identical findings would be obtained for larger areas.

In this study, we investigated the automatic classification of all hybrid poplar planta-
tions at the French national scale using optical Sentinel-2 (S2) time series. We hypothesised
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that time-series data would enable better classification than mono-temporal images. S2
data has been recently explored to identify poplar plantations [29]. However, the study
was conducted on a limited number of S2 image tiles in Northern Italy and for plantations
mainly composed of the I214 (P. × euroamericana) cultivar. Here, our main objective was
to define a generic methodological approach to map the wide range of hybrid poplar
plantations in an operational context and to identify the key spectral features for poplar
recognition. After a preliminary spectral analysis based on visual interpretation, we used a
feature selection technique to select optimal bands and spectral indices at specific dates
for poplar discrimination. We also defined a new S2 poplar detection index (PI) with
four variants to improve the classification. We evaluated its stability over two years on
three contrasting poplar sites at different stand development stages. The best version of PI
was then used to produce the map of poplar plantations at the national scale. This study
provides a practical approach for monitoring the poplar resource in the near future by
plantation managers.

2. Materials
2.1. Satellite Data

In collaboration with forest partners, we chose three S2 image tiles (each covering
100 km × 100 km) to conduct the analysis. These tiles are located in the north-east, centre,
and south-west of France (Figure 1). They cover the most contrasting poplar sites in terms
of diversity related to silvicultural practices, types of cultivars planted, soil, and climate
conditions. The 31UEQ tile is located in the degraded oceanic climate region of the north
and centre plains. The 30TYT tile is located in the altered oceanic climate, while the 31TCJ
is characterised by the southwest basin climate with possible summer drought [32].

Poplar plantationsPoplar plantations

Figure 1. Sentinel-2 image tiles used in this study (right): 31UEQ, 30TYT, and 31TCJ. The extent
of each tile is displayed as a red square with 100 km sides. S2 tiles are shown in the UTM/WGS84
projection. On the (left), the map shows the distribution of poplar plantations (red points) in 2017
estimated from a national sampling by IGN [33].

Two years, 2017 and 2018, were considered independently to check the concordance
of the results between years. All available S2 images of the three tiles and for the two years
were downloaded from the French THEIA Land Data Center, including both S2A and S2B
data. Top of atmosphere (TOA) surface reflectance products (level 2A) were used, meaning
the data have been orthorectified and corrected for topographic and atmospheric effects.
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Images were pre-processed by THEIA with the MAJA platform, and a cloud mask was
provided with each acquisition [34].

We only selected the 10 m and 20 m spectral bands of the two S2 satellites, the other
bands (1, 9, and 10) at 60 m spatial resolution being dedicated to atmospheric correction
and cloud screening. At 10 m, four spectral bands are available: blue (B2), green (B3), red
(B4), and near infrared (B8). At 20 m, six spectral bands are provided: red edge (B5, B6, B7),
near infrared (8A), and short-wave infrared (B11, B12). The precise characteristics of the S2
spectral bands are summarised in Table 1.

Table 1. Sentinel-2 MSI band characteristics of both S2A and S2B defined by ESA (European Space
Agency) at 10 m and 20 m spatial resolution.

S2A S2B

Band Central
Wavelength

(nm)
Bandwidth

Central
Wavelength

(nm)
Bandwidth Spatial

Resolution (m)

B2 492.7 65 492.3 65 10
B3 559.8 35 558.9 35 10
B4 664.6 30 664.9 31 10
B5 704.1 14 703.8 15 20
B6 740.5 14 739.1 13 20
B7 782.8 19 779.7 19 20
B8 832.8 105 832.9 104 10
B8A 864.7 21 864.0 21 20
B11 1613.7 90 1610.4 94 20
B12 2202.4 174 2185.7 184 20

Because of specific sensor constraints (e.g., different relative orbits) or the cloud cover,
the acquisitions of one year are non-synchronous in the three study tiles. Therefore, for each
S2 time series of the same year, all the images were resampled to 10 m spatial resolution
with nearest-neighbour resampling and with the same 10-day time step for all tiles. While
performing the temporal resampling, missing data (i.e., pixels that were invalid due to
clouds or cloud shadows) were filled using a multi-temporal linear interpolation. This
involved replacing each cloudy and shady pixel (detected in the cloud mask) with an
interpolated value derived from the nearest valid pixels in the times series [35]. The
resulting gap-filled image time series comprise 340 features in 2017 (34 dates × 10 spectral
bands) and 360 features in 2018 (36 dates × 10 spectral bands).

The resampled dates are detailed in Appendix A.

2.2. Reference Data

Reference polygons for training and testing were drawn in the three S2 tiles from the
latest version of the French National Forest Inventory (NFI) spatial database (BD Forêt®

IGN, v.2) produced by the national mapping agency (IGN). This database provides a vector
map of forest stands (polygons) with a minimum area of 0.5 hectares. The composition
of each stand was obtained by interpreting aerial stereo images complemented by field
surveys. This map was produced progressively, district by district, starting in 2007. Na-
tional coverage was completed in 2018. We only considered classes of deciduous species in
this forest map, including poplar plantations. Coniferous species were excluded. Pure and
mixed stands of deciduous species were retained. While pure stands consist of polygons
covered by 75% of a single dominant deciduous species, mixed stands of predominant
deciduous have only 50% to 75% coverage, with no information about the species. In the
database, poplar plantation polygons are always referred to as pure stands.

Since there is a time lag between the year when the forest database was made available
(between 2007 and 2018, depending on the district) and the year of acquisition of the
S2 time series, all poplar polygons for both 2017 and 2018 were checked through photo
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interpretation, each of them by three different experts. This step ensured up-to-date
references as poplar stands may change over time due to their short rotation cycle. The
photo interpretation was based on high-resolution (HR) aerial orthophotos from IGN dating
from 2016, 2018, or 2019, depending on the district, but also from Google Earth and Google
Street View, paying attention to the date of the available images. Poplar plantations are easy
to recognise in HR images because of the regular spacing of trees, the stand homogeneity,
and the ovoid shape of the tree tops [36]. In each tile, we selected references of various
stand ages (from 3 to 20 years and sometimes more in tile 31UEQ, some plantations being
abandoned), but very young plantations (<3 years approximately) were excluded because
of their limited canopy cover rate and the difficulty involved in identifying them accurately
through photo interpretation. We also selected various cultivars in each tile, with a total
of at least 30 cultivars for the three tiles. This number was estimated by forest partners
based on the past and current list of cultivars eligible for state subsidies, but their respective
proportions in the reference dataset is unknown (the cultivars not being available in the
forest database).

A set of reference poplar polygons from the southwestern tile (31TCJ) was validated
in the field by forest partners. Out of a total of 230 photo-interpreted polygons, two were
eucalyptus plantations, representing less than 1% misidentification. As a separate test, a set
of 85 field-checked polygons was also used to study the effect of the stage of development
of the poplar stand on the detection by S2 data. Reference pixels for the other deciduous
species were drawn directly from the forest database, without checking or updating. All of
them were considered as non-poplar class after classification.

A data-cleaning step was applied to all the pixels included in the reference polygons
of the three S2 tiles to eliminate outliers arising from undetected clouds in the time series
(i.e., for which no gap-filling had been performed) or from pixels that differ significantly
from their membership class (e.g., urban pixels or pixels showing bare soil in pure stands).
The outlier detection procedure followed the 1.5 interquartile range rule (1.5 IQR), which
considers values outside the interval [Q1 − 1.5 IQR ; Q3 + 1.5 IQR] as outliers, where Q1
and Q3 denote the first and third quartiles, respectively. The outlier detection procedure
first consisted in eliminating all pixels outside the predefined interval in each band of the
time series and for each tree species class separately. Thereafter, and proceeding by class,
only the valid pixels common to all bands in the time series were retained. In this way, if
pixels were detected as outliers in only one band, they were automatically removed from
the sample set. Finally, the number of samples per class was set so that the smallest class
was fully sampled.

The total number of sampled pixels in each tile and for each year, after removal of the
outliers, is listed in Table 2. The sample size for poplars varied between 2500 and 7700 pixels
in 2017 and between 3200 and 5000 in 2018. The difference between the number of samples
in 2017 and 2018 is due to the fact there were more outliers in 2018. The black locust
tree class was removed from tile 31UEQ in 2018 because the majority of its samples were
identified as outliers and the number of remaining pixels was too small to be considered as
a specific class in the learning process.
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Table 2. Total number of reference samples per class extracted from each S2 tile, after the removal
of outliers.

Sample Size in Pixels per Class

Year Tile
Code

Poplar (hybrid) (P. x
eur/interamericana or

Balsam P.)

Black locust (Robinia
pseudoacacia L.)

European chestnut
(Castanea sativa)

Oak (Quercus
pubescens, petraea,

robur L.)

European
beech (Fagus
sylvatica L.)

Closed
Deciduous

Forest
(Mixed)

Open
Deciduous

Forest
(Mixed)

2017
31UEQ 2500 2500 NA 1 2500 2500 2500 2500
30TYT 4000 4000 4000 4000 NA 1 4000 4000
31TCJ 7700 7700 7700 7700 NA 1 7700 7700

2018
31UEQ 3700 NA 1 NA 1 3700 3700 3700 3700
30TYT 3200 3200 3200 3200 NA 1 3200 3200
31TCJ 5000 5000 5000 5000 NA 1 5000 5000

1 Class not available in the study area or poorly represented.

3. Methods

We used a statistical approach based on the sequential forward floating selection
(SFFS) algorithm to measure the importance of spectral features and to select the best subset
of bands and spectral indices for the classification of poplar stands among the other tree
species. The analysis was conducted in three steps. First, we detected the most important
spectral features and time periods for poplar identification using a combination of all
S2 spectral bands and acquisitions of the time series (Figure 2a). This was carried out
separately for 2017 and 2018. Then, based on these results, we identified a set of existing
potentially discriminative spectral indices. We also defined a new S2 poplar detection
index (PI) with four variants to improve the classification. We selected features from
this set of data to identify the most relevant combination of spectral indices in terms of
poplar recognition (Figure 2b). Finally, we evaluated each spectral feature independently
using all available dates in each time series (Figure 2c,d) and compared the classification
performances with those of the previous subsets of features (combination of spectral bands
or indices). The best feature subset with the most stable performance for the two years was
used to produce the map of poplar plantations at the national scale.

  Best combination 
of bands and dates

Time series of 
spectral bands

(a) Time series of 
spectral indices

(b)

Best combination of 
indices and dates

Time series of 
spectral bands

(c) Time series of 
spectral indices

(d)

Best single band 
and dates

Best single index 
and dates

Multi-feature SFFS Single-feature SFFS

B R SWIR B R SWIRNDVI SWISI PI NDVI SWISI PI

Figure 2. Single and multi-feature SFFS configurations to measure the subsets of spectral features
that are the most relevant for mapping poplar stands countrywide.

3.1. Feature Selection with SFFS

Several techniques have been proposed to address the problem of identifying a subset
of relevant variables (features) in a large input dataset [37,38]. In remote sensing, this
helps to identify specific spectral features and periods related to the classes of interest,
before examining the possible origins and before trying to understand the underlying
physical processes. This also reduces the effect of the curse of dimensionality (or Hughes
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phenomenon [39]), which appears with too many features and has a negative impact on
classification performance [31]. In addition, it eliminates redundant or noisy features and
reduces the computation time required to process the data.

In this study, we used SFFS, a wrapper-based feature selection algorithm [40]. SFFS
is a standard method that has already been shown to provide a good trade-off between
computation time and efficiency [41,42]. Compared to feature extraction techniques that rely
on data transformation methods (such as principal component analysis) independently of
the classification, wrapper-based approaches perform feature selection using a classification
algorithm to evaluate subsets, the predictive performance being the objective function [38].

SFFS is a bottom-up search procedure that selects an optimal subset of features, starting
from an empty set, and at each iteration, adds the most important feature (i.e., the one with
the highest value for the objective function) to the pool of selected features. SFFS is a more
flexible version of the initial sequential forward selection (SFS) method, in which individual
features are permanently conserved after selection, with no backtracking. The floating
search approach overcomes the so-called nesting effect by performing a backward selection
after each SFS step to conditionally exclude one of the previously selected features, thus
avoiding a local minimum [40]. The feature is removed if a subset of the same size achieves
better accuracy according to a given performance criterion. In this way, it is possible to
rectify the inclusion of previous features and to replace them with new better features in
order to converge towards the optimal solution. The iteration continues until the required
number of features is added or the expected performance is reached.

This method was used to identify the most relevant subsets that offer the best classi-
fication performance in each feature space. This was carried out until ten features were
included in the subset, to limit computation time, and after checking that the addition of
extra features did not improve the classification performance. This selection was applied
for both multi-feature and single-feature SFFS configurations (Figure 2). In the so-called
single-feature SFFS configuration, the spectral band or index remains unique, but several
dates can be selected (with a maximum of 10).

3.2. Sample Selection, Classification and Comparison of Performances

A total of 512 reference polygons (forest stands) were available in the dataset, with
254 polygons in image tile 31TCJ, 155 in tile 31UEQ, and 103 in tile 30TYT. After pooling,
reference polygons were randomly separated into 50% for training and 50% for testing. The
S2 pixels (10 m square) were then sampled in each subset of polygons, and feature values
were extracted from each gap-filled time series in 2017 and 2018. To ensure the balance of
classes in each tile, training and testing pixels were selected from reference polygons using
stratified random sampling of equal size for each class. Training and testing pixels were
collected from spatially disjoint reference polygons in order to limit spatial autocorrelation
effects [43].

SFFS was computed only on the training set (50% of the samples) with five-fold cross-
validation. Each model with the best subset of ten features (one for each SFFS configuration)
was then evaluated on the independent test set (50% of the remaining samples).

We used random forest (RF) as a supervised classification algorithm [44]. Tuning
the hyperparameters, including the number of decision trees, the maximum depth of the
trees, and the number of features considered by each tree when splitting a node, was
based on a grid-search strategy and five-fold cross-validation. The number of trees tested
ranged from 10 to 150, with a step of 10. The values tested for trees depth included the
maximum possible value that expands the tree nodes until all the leaves become pure, as
well as intermediate values between 5 and 50, with an interval of 10. As recommended,
the number of features to split each node was set to the square root of the total number of
input variables [44,45] in addition to a range of values between 1 to 20, with a step of 2.

Classification performance was assessed in terms of producer’s accuracy (PA), also
known as recall, for the poplar class. PA was used as the objective function (i.e., performance
predictor) in SFFS. It is a non-prevalence-dependent performance measure that, for a
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given class, corresponds to the number of correctly identified samples among all reference
samples assigned to that class. Confusion matrix with user’s accuracy (UA) and F-score
(harmonic mean of UA and PA) were also computed. As recommended by Foody [46], we
deliberately disregarded the kappa metric.

The performances of the best models (i.e., those built with the optimal feature subsets
derived for each configuration in Figure 2) were compared using McNemar’s statistical
test [47], which is a non-parametric alternative to the T-test to examine the statistical
significance of performance differences between two classifiers [48]. McNemar’s test is
based on a 2 × 2 contingency matrix relying on a binary distinction between correct and
incorrect class assignments [49]. The McNemar test was applied to compare each pair of
models separately under the null hypothesis that their predictive performances were equal
to a significance level of α = 0.05.

The feature selection, classification, and performance evaluation were implemented in
Python using the mlxtend [50] and scikit-learn [51] libraries.

3.3. Sentinel-2 Poplar Detection Index (PI)

Prior to statistical processing, the spectral profiles were analysed visually and changes
in poplar profiles over time evaluated by comparing the poplar reference samples and the
other deciduous species (Figure 3). Beyond the expected phenological profile of deciduous
trees and poplars (leaf emergence in spring and leaf senescence in autumn all over France),
this analysis revealed a specific spectral pattern for poplars: from mid-April to early
September, an absorption valley appeared in the SWIR bands B11 and B12, with no overlap
with the other deciduous tree species (Figure 4). The reflectance of the SWIR bands
decreased for all species during this period, but the decline was more pronounced for
poplar plantations, especially in B11. This pattern was observed in both the 2017 and 2018
S2 time series.

Based on these observations, we established a new S2 poplar detection index (PI) with
four variants (1, 2, 3, 4) as alternatives to spectral bands or existing spectral indices. The
formulations are as follows:

PI1 = B11− B12 (1)

PI2 = B5− (B11 + B12) (2)

PI3 =
B5− (B11 + B12)
B5 + (B11 + B12)

(3)

PI4 = B11 + B12 (4)

The PI1 index is expressed as the difference between SWIR1 (1610 nm) and SWIR2
(2190 nm). This difference was more pronounced for poplar stands than for the other tree
species. This was also true between SWIR1 and other spectral bands (e.g., B8A, B8), but
this difference was tested using other existing spectral indices (see below). The PI2 index is
defined as the addition of the two SWIR bands, which is then substracted to the red edge
band (B5 centered at ∼704 nm). The interest of this formulation is using two wavelength
regions and a spectral band with very close reflectance values for poplar stands and other
species, in addition to the SWIR bands B11 and B12. This formulation accentuates the gaps.
A normalised version is proposed with the PI3 index. Other red edge bands (B6 and B7)
were tested in the formulation of PI2 and PI3, but we kept the best one (B5). The most
intuitive PI4 is a simple addition of the SWIR bands, which are expected to be lower for
poplar stands. However, because PI4 and PI2 were highly correlated (Spearman’s ρ = 0.95 in
2017 and 0.93 in 2018; Appendix B), we excluded PI4 from the multi-feature SFFS analysis.
Results are only provided for the single-feature SFFS configuration. PI2 was preferred
because of the potential interest of the red edge band.
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(a) 6 April 2017 (b) 26 May 2017

(c) 5 July 2017 (d) 22 November 2017

Figure 3. Spectral reflectance (multiplied by a factor of 10,000) of poplar plantations versus deciduous
tree species on four different dates in 2017. The solid lines represent the median signal, and the
surrounding shaded areas represent the interquartile range, in green for poplar and in grey for the
other deciduous species.

These new indices were compared to existing spectral indices. Here, we only selected
standard indices (e.g., NDVI) or indices including SWIR bands or red edge domains
(Table 3). A more exhaustive list of indices was tested, but for the sake of clarity, these less
competitive indices are only reported in Appendix C.

A total of 16 spectral indices were computed for each S2 acquisition, resulting in 544
features in 2017 (i.e., 16 spectral indices × 34 dates) and 576 features in 2018 (36 dates).
Using only spectral bands, the number of features was lower (340 and 360 for 2017 and
2018, respectively). In the single-feature SFFS configurations, the number of features for
one band or one spectral index was directly linked to the number of acquisition dates
(multi-temporal selection of a unique type of feature).
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Figure 4. Temporal profile of reflectance (multiplied by a factor of 10,000) in poplar plantations versus
deciduous tree species in 2017 for (a) band 11 and (b) band 12. The dashed lines represent the median
signal, and the surrounding shaded areas represent the interquartile range, in green for poplar and
in grey for the other deciduous species. The pale yellow box highlights the most discriminating
spring–summer period for poplars.
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Table 3. List of the spectral indices compared with the corresponding formulas and references.

Indices Formulas References

Normalised Difference Vegetation Index NDVI = B8−B4
B8+B4 [52]

Simple ratio Moisture Index MSI = B11
B8 [53]

Simple ratio Disease Water Index 4 DSWI4 = B3
B4 [54]

Normalised Pigment Chlorophyll ratio Index NPCRI = B4−B2
B4+B2 [55]

Normalised Burned Ratio Index NBRI = B8−B12
B8+B12 [56]

Shortwave Infrared Water Stress Index SIWSI = B8A−B11
B8A+B11 [57]

Anthocyanin Reflectance Index ARI = 1
B3 −

1
B5 [58]

Soil Adjusted Vegetation Index OSAVI = (1+0.16)∗(B8−B4)
(B8+B4+0.16)

[59]

Leaf Chlorophyll Index LCI = B8−B5
B8+B4 [60]

Modified Chlorophyll Absorption in Reflectance Index MCARI = (B5−B4)−0.2∗(B5−B3)∗( B5
B4 ) [54]

Red edge Index 2 Red edge2 = B5−B4
B5+B4 [61]

SWIR ratio SWIR ratio = B12
B11 [62]

Poplar Index 1 PI1 = B11−B12 Equation (1)

Poplar Index 2 PI2 = B5−(B11+B12) Equation (2)

Poplar Index 3 PI3 = B5−(B11+B12)
B5+(B11+B12)

Equation (3)

Poplar Index 4 PI4 = B11+B12 Equation (4)

3.4. National Mapping of Poplar Plantations

The best subset of features identified by SFFS was retained to map poplar plantations
at the national scale from a full model. For this purpose, we used the iota2 processing chain,
which is designed for operational land cover mapping at the country scale and enables
optimal management of large volumes of satellite data [63].

Iota2 was configured to use S2 data of the 2018 time series. All the images were
subjected to the same pre-processing steps, including gap-filling, resampling of all bands to
a 10 m spatial resolution, and temporal resampling with a 10-day step. The RF classification
model was trained with the whole set of available references in the three study tiles and
was then used to predict the 90 S2 tiles that cover the whole of France. The French Space
Agency (CNES) computing infrastructure was used to process and store all the data.

Predictions in the resulting national map were partially masked with the freely avail-
able pan-European Copernicus High-Resolution Layers (HRL) 2018 forest layer of dom-
inant leaf type at 10 m resolution (see https://land.copernicus.eu/pan-european/high-
resolution-layers/forests (accessed on 4 January 2021)) to only retain pixels of forest with
their membership class. The surface area of each poplar plantation in each municipality
was then computed and mapped with its median confidence value.

4. Results
4.1. Multi-Feature SFFS

The results of feature selection with SFFS on the pool of spectral bands (i.e., multi-band
configuration) are summarised in Figure 5. These graphs provide, for each number of
features selected, the best performance achieved in terms of average poplar producer’s
accuracy (PA, based on 5-fold CV), and the best bands selected with their correspond-
ing dates.

In both years, the best band selected with SFFS was B11 (SWIR spectral range), which
reached poplar PA values of 88% in 2017 and 90% in 2018 using one date. The dates of
this best single feature were the 5th of June in 2017 and the 15th of July in 2018. In 2017
and 2018, the performance improved to, respectively, 98% and 99%, and then levelled off
with the addition of six and five features belonging exclusively to the SWIR (B11 and B12)
and red edge (B5 and B6) domains. Although the dates of the best feature subsets differed
between the two years, the selection period was mainly from early spring (March) to late

https://land.copernicus.eu/pan-european/high-resolution-layers/forests
https://land.copernicus.eu/pan-european/high-resolution-layers/forests
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summer (September). In addition, despite the fact that SFFS can exclude some selected
features in the newly updated set due to the floating search approach, we observed that
each time a feature was selected, it was no longer excluded from the subset.
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Figure 5. Average poplar PA as a function of the number of features selected with SFFS in the
multi-band configuration: in (a), multi-band SFFS results in 2017; in (b), multi-band SFFS results in
2018. The y-axis represents the number of features, from 1 to a maximum of 10, and the corresponding
spectral bands are listed in the x-axis in their order of appearance. The colours on the red-yellow-
green scheme palette reflect the poplar’s PA values, also displayed in front of each number of features
(grey cells on the right). The dates of the selected bands are given inside the cells. If a cell contains
more than one date, it implies that the band was selected several times on different dates. Empty cells
in light grey indicate that the band in the x-axis was not selected for the given number of features on
the y-axis.

When feature selection was based on the spectral indices (i.e., multi-index configura-
tion), the best first features differed between the two years (Figure 6). PI1 emerged for 2017
(Figure 6a), while PI2 was first selected for 2018 (Figure 6b). Considering only these indices,
the poplar PA reached 91% in 2017 and 93% in 2018, that is, a difference of 3 percentage
points to B11, which ranked first in the previous configuration. The dates of these first
indices coincide with those of the best bands. The addition of other indices of different
dates enabled maximum performance to be reached. Although the combination of indices
differed in 2017 and 2018, some were the same (MCARI, SIWSI) in addition to PI1 and PI2.
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Figure 6. Average poplar PA as a function of the number of features selected with SFFS in the
multi-index configuration: in (a), multi-index SFFS results in 2017; in (b), multi-index SFFS results in
2018. The y-axis represents the number of features, from 1 to a maximum of 10, and the corresponding
spectral indices are listed in the x-axis in their order of appearance. The colours on the red-yellow-
green scheme palette reflect the poplar’s PA values, also displayed in front of each number of features
(grey cells on the right). The dates of the selected indices are given inside the cells. If a cell contains
more than one date, it implies that the index was selected several times on different dates. Empty cells
in light grey indicate that the index on the x-axis was not selected for the given number of features on
the y-axis.

In these two multi-feature configurations involving all spectral bands or all spectral
indices, the results highlight the interest of the SWIR and red edge domains, either by using
the raw bands directly or by combining them in spectral indices. With a single feature,
the multi-index configuration performed slightly better than the multi-band configuration.
However, with the addition of new features, the two configurations performed equally well.

In both cases, and in the two years, although the best dates varied, the selected time
period was from early spring (March) to late summer (September). In all cases, the best
selected single feature matched a summer date (June or July). After the initial selection, no
further features were removed from the subset.

4.2. Single-Feature SFFS

When we considered each spectral band separately and applied SFFS to all the dates in
the 2017 (34 dates) and the 2018 (36 dates) time series, B11 and B12 from the SWIR spectral
range achieved the best poplar PA values with the fewest features (Figure 7). Indeed,
maximum performance was obtained with four features and reached 96% and 97% with
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B11 and 94% and 96% with B12 in 2017 and 2018, respectively. The performance was
slightly better with B11 but was 2 percentage points lower than that achieved with the best
combination of bands (i.e., in the multi-band configuration; Section 4.1).
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Figure 7. Average poplar PA as a function of the number of features selected with SFFS in the
single-band configuration: in (a), single-band SFFS results in 2017; in (b), single-band SFFS results in
2018. The y-axis represents the number of features, from 1 to a maximum of 10, for each individual
spectral band on the x-axis. The colours on the red-yellow-green scheme palette reflect the poplar’s
PA values. The selected dates are given inside the cells.
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Beyond four features, the PA values no longer increased. Some dates were eliminated
immediately after being selected and sometimes re-integrated in the following subsets.
This was the case with B11, for which the date of 14 August was introduced in the subset
of seven features and replaced by the date of 24 August in the following subset of eight
features but selected again in the subset of nine features.

B5 and B6 of the red edge ranked second in importance in the multi-band configuration
after the SWIR bands, performed less well with the first dates, but improved to reach their
maximum value after six features. For instance, the poplar’s PA of B5 was 40% with one
date in 2017 but increased with additional dates and levelled off at 84%.

The same trend was observed for the remaining bands of the NIR (B7, B8, and B8A)
and visible (B2, B3, and B4) domains whose initially low PA values increased with the
addition of dates to reach their maximum performance, generally below that of the SWIR
and red edge bands.

In the same SFFS configuration but using the 15 spectral indices, two stood out in
both 2017 and 2018: PI2 and SIWSI (Figure 8). The best poplar PA values were achieved
from three features, scoring 96% and 98% with PI2 and 96% and 97% with SIWSI in
the two respective years. Other indices also produced similar performances in the two
years, including PI1 and MSI. Although PI1 performed best in 2017 with only one date
(poplar PA = 91%), PI2 slightly outperformed it with three dates to achieve the highest
poplar PA in this single-index configuration. In 2018, PI2 always performed the best
regardless of the number of dates.

Like in the multi-feature configuration, the selection period ranged mainly between
spring and late summer/early autumn, with a shift in April instead of March (except for
PI4) and a shift in October instead of September. For the best features, the same summer
dates were always identified first, namely the 5th of June in 2017 and the 15th of July
in 2018.

4.3. Predictive Performances Using Another Independent Dataset

In the previous results, the predictive performance used to select features was
based on a 5-fold CV applied on 50% of the reference dataset (i.e., the training set; see
Section 3.2). Thus, the performances were computed on five independent subsets (named
validation sets) by cross-validation. Here, performance values are given using the remaining
50% of references (i.e. the test set). The best results are summarised in Table 4 for each SFFS
configuration and for both 2017 and 2018. The test score represents the poplar PA using
the test set. The validation score represents the poplar PA based on cross-validation for
comparison (results of Sections 4.1 and 4.2). The results of both test and validation scores
are based on the ten best subsets of features identified using SFFS.

We observed consistent results with the test set compared to validation scores. The
performance gap between test and validation scores ranged from 3 to 27 percentage points
depending on the year and the SFFS configuration. Using PI2 in the single-feature config-
uration, the difference was 3 percentage points in 2017 and 4 percentage points in 2018,
whereas using B5, it reached 27 and 16 percentage points, respectively, in 2017 and 2018.

Considering only the test set, the best performance in 2017 was obtained with PI2 in
the single-feature SFFS configuration with a poplar PA of 92%. In the multi-feature configu-
ration, the combination of indices obtained the best PA (94%). According to the McNemar
statistical test, the predictive performances differed significantly (p-values < 0.001; see
Appendix D) in the single- and multi-index configurations, indicating that the combination
of indices produced the best result in 2017. However, the combination of indices or bands
(multi-feature configurations) produced equivalent performances (p-value = 0.395).
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Figure 8. Average poplar PA as a function of the number of features selected with SFFS in the
single-index configuration: in (a) single-index SFFS results in 2017; in (b), single-index SFFS results in
2018. The y-axis represents the number of features, from 1 to a maximum of 10, for each individual
spectral index of the x-axis. The colours on the red-yellow-green scheme palette reflect the poplar’s
PA values. The selected dates are given inside the cells.
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Table 4. Poplar PA scores obtained using the 10 best feature subsets based on SFFS in the single- and
multi-feature configurations. The test score gives the poplar PA after prediction based on the test set
(50% of reference data). The validation score is based on a 5-fold CV applied on the training set (50%
of reference data used for feature selection). The highest test scores are highlighted in bold.

Single-Feature SFFS Multi-Feature SFFS

Year Poplar PA Scores Bands Indices Multi-Bands Multi-IndicesB5 B11 B12 PI2 SIWSI

2017
validation
score 84% 96% 94% 96% 96% 98% 98%

test score 57% 87% 89% 92% 89% 93% 94%

2018
validation
score 96% 97% 96% 98% 97% 99% 99%

test score 80% 93% 90% 95% 87% 95% 94%

See the best results using 10 features in Sections 4.1 and 4.2.

For the year 2018, PI2 still produced the best performance of the single-feature config-
urations (see also confusion matrix in Appendix E for additional information on accuracy).
The combination of bands ensured the highest poplar PA in the multi-feature configuration.
In both cases, the poplar PA was 95%, with no significant difference (p-value = 0.523). The
results of the other single- or multi-index configurations were less good.

4.4. National Map of Poplar Plantations Using the PI2 Index

The first map of poplar plantations at the French national scale was produced for the
year 2018 using the PI2 index in a single-feature configuration. This simple configuration
ensures optimal performance with stable results regardless of the year. A confidence map
associated with the classification was also produced with a confidence level ranging from
0 to 100% for the class assigned to each pixel. The closer the confidence value to 100, the
more confidence one can have in the algorithm for the predicted class.

Some extracts are illustrated in Figures 9–11. Mature plantations were generally well
detected, with a high confidence level >= 75% (Figure 9). In contrast, young stands with
limited canopy covers were either not mapped or detected with a confidence level of
less than 50%. In some stands for which the year of plantation was known, as expected,
plantations less than three years old were not detected. However, in the case of plantations
between four and six years old, the age limit for detection varied. Indeed, in Figure 9c,
four-year-old plantations were detected with a confidence level of between 50% and 90%,
whereas in Figure 9f, six-year-old plantations were not systematically detected. This high
variability of detection for young plantations has been analysed using the additional set
of 85 field-checked polygons (see Section 2.2), highlighting the impact of the cultivar
(Figure 12).
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(a) (b) (c)

(d) (e) (f)

Figure 9. Map extracts located in the Lot-et-Garonne department in tile 30TYQ: (a,d) are the 2018
orthophotos, (b,e) show the classification results, and (c,f) are the confidence maps associated with
the red-yellow-green scheme palette (the highest confidence rates are in green).

(a) (b) (c)

(d) (e) (f)

Figure 10. Map extracts located in the Indre department in tile 31TCM: (a,d) are the 2018 orthophotos,
(b,e) are the confidence maps with a red-yellow-green scheme palette for the classified poplars (the
highest confidence rates in green), and (c,f) show the overlay of the forest mask derived from the
national forest database (BDForêt® IGN, v.2).
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(a) (b) (c)

Figure 11. Map extracts located in the Gironde department in tile 30TYQ: (a) is the 2018 orthophoto,
(b) the confidence map with a red-yellow-green scheme palette for the classified poplars (the highest
confidence rates are in green), and (c) shows the overlay of the forest mask derived from the national
forest database (BDForêt® IGN, v.2) on the confidence map.

Figure 12. Distribution of classification prediction confidence values as a function of the age of the
detected plantations and of the cultivar planted. These values were extracted from 85 field-checked
plots provided by the forest partners located in the Lot-et-Garonne department in southwest France
(S2 30TYQ image tile).

False positives in agricultural fields were also observed before masking non-forest
areas (Figure 10a). In general, these cases were associated with low confidence values
(<=25%) (Figure 10b) and can be excluded using a forest/non-forest mask (Figure 10c).
Nevertheless, because of possible imperfections in the forest/non-forest mask, some poplar
plantations with high confidence values were also excluded (see Figures 10f and 11c).

Figure 13 shows the national map of poplar plantations with their prediction confi-
dence level. A first estimate of the area under poplar based on pixel counting was produced
for each municipality with either a low density of poplar trees with a high level of confi-
dence (in blue) or the opposite, a high density of poplar trees with a low level of confidence
(in yellow). Poplar forested areas are mainly distributed in north, central, and southwest
France, as expected. Non-forest areas were masked using the 10 m Copernicus HRL 2018
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forest layer. This mask helped to reduce over-detection in agricultural fields while retaining
identified poplar stands.

  
Confidence (%)
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228

2235
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100 km
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Figure 13. Bivariate choropleth map of France showing the density of poplar plantations in each
municipality with the median prediction confidence values for the year 2018. The map was produced
from the PI2 index using each image of the 2018 S2 time series (10-day frequency after resampling).
Municipalities with no plantations or with a planted area of less than 5 ha are in white. The black
lines represent the administrative boundaries of the 96 French departments. Non-forest areas were
masked using the 10 m Copernicus HRL 2018 forest layer.

5. Discussion

In this study, two years of 10-day resampled S2 time series were used to identify the
optimal set of features and period needed to distinguish poplar plantations at broad scale.
Based on a single-feature configuration using SFFS, we investigated the ability of specific
wavelength regions and spectral indices with their respective dates to classify poplars. We
also assessed the interest of combining multiple bands or indices using a multi-feature SFFS
configuration. A new poplar detection index based on a SWIR and red edge S2 bands was
defined and used to map plantations at the French countrywide scale. To our knowledge,
this is the first attempt to analyse the most discriminating spectral regions of hybrid poplar
plantations with S2 time series and to provide a S2-based poplar index to map poplar
plantations including a large number of cultivars in different management contexts and
over large areas.

5.1. Single-Feature vs. Multi-Feature: Less Is More

We observed no difference in accuracy between combinations of spectral bands or
indices in the multi-feature configuration. This was true for both years even when only
two features were selected. The results we obtained using single- and multi-feature con-
figurations with the ten best feature subsets—whether by cross-validation or on another
test set—were very close (∆PA ≤ 2%). The single PI2 index at 10 dates provides almost
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the same performances as a combination of 8 different spectral bands at 8–10 dates or
a combination of 8–9 spectral indices at 9 dates. This suggests that a simple approach
based on a specific multi-temporal single feature is adapted to classify poplar plantations
accurately. The temporal information compensates for the spectral information provided
by the combination of multiple bands or indices. The increase in precision with an increase
in the number of features obtained with the PI2 index quickly reached a plateau beyond
four features (i.e., dates) spread out between May and October. Thus, a very parsimonious
approach with only few dates can be used to distinguish poplar plantations with the highest
performance. This makes processing highly efficient in terms of computational complexity
and load. This strategy for mapping poplars over large areas complements the previously
defined strategy based on active learning [64]. The advantage of the latter is that it requires
fewer reference samples, but its implementation involves a more complex learning process.

5.2. S2 Spectral Bands in the SWIR and Red Edge Domains Are Required to Identify Poplar

The results of variable selection with SFFS showed the relevance of the SWIR spectral
region (B11 and B12) in distinguishing poplar plantations from other deciduous species. The
results also highlighted the secondary importance of the red edge domain and particularly
B5. Interestingly, these findings are in line with those reported by Viinikka et al. [23], who
used airborne hyperspectral data with 460 spectral bands covering the visible, NIR, and
SWIR ranges to discriminate European aspen from three other species in southern Finland.
These authors found that the most discriminative bands of aspen trees were located in
the red edge (ρ724–727 nm) and SWIR (ρ1520–1564 nm and ρ1684–1706 nm) ranges. This does not
perfectly fit the approximate wavelength range of B5 (ρ697–711 nm) and B11 (ρ1565–1659 nm) in
Sentinel-2, but does refer to adjacent wavelengths.

Theoretically, the reflectance in the SWIR range is predominantly affected by leaf water
content [65]. Changes in water content can be observed with the SWIR bands located near
the major water absorption features at approximately the 1200 nm, 1450 nm, 1950 nm,
and 2500 nm wavelengths of the spectrum [66], and most notably around 1450 nm and
1950 nm [67]. In case of high water contents, these absorptions bands become saturated,
which induces a sensitivity to difference in leaf water content in the regions of intermediate
absorptions near 1650 nm and 2200 nm [68], which coincides with B11 and B12 in S2. A
high correlation between water status of Populus spp. and spectral indices based on SWIR
bands (especially between 1500 and 1750 nm) was already observed in [69].

A number of remote sensing studies showed that SWIR bands’ reflectance decreased
with an increase in leaf water content [65,70], suggesting that poplar leaves should have
higher water content during the spring–summer period according to the results. This is
consistent with the fact that high growth rate of poplar is associated with a high water
demand. Irrigation, in addition to nutrient supply, is a common cultivation practice for
poplar plantations [71]. For poplar, Zhang et al. [72] analysed seasonal (June to September)
trends in the water consumption of trees in a temperate climate and showed that the
increase in solar radiation was followed by an increase in evaporative demand. At the
beginning of the summer season, the increase in transpiration was offset by an increase
in the absorption of water available in the soil due to the typical capacity of poplar to
exploit groundwater. Later in the season, soil water content decreased, and absorption
reached a low plateau, leading to different adaptation mechanisms, such as stomatal closure
to control losses through transpiration. This behaviour is consistent with the temporal
profiles of the two SWIR bands, where in early spring (March), SWIR reflectance decreases
rapidly as a result of increased water consumption to reach a low plateau, which continues
throughout the dry season (July–August) (see Figure 4). Available information from past
studies makes it hard to properly compare the seasonal variation of water contents between
hybrid cultivated poplars and other deciduous trees with the corresponding spectral curves
(e.g., see [73]). However, the LOPEX and ANGERS leaf optical properties databases provide
water content values for different tree species [74,75]. For LOPEX, leaves were collected
during early summer (June), and for some of them, also in early autumn (September).
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No information is provided for ANGERS. The poplar species available show rather high
equivalent water thickness (EWT) values compared to other common tree species, especially
Carolina poplar, which is a hybrid of P. x euramericana (Populus nigra x Populus deltoides),
as we have in this study (Table 5). These values are independent of any irrigation practice.

Table 5. Equivalent water thickness (EWT) and chlorophyll a (Ca) and b (Cb) concentrations at
leaf level for different tree species derived from the LOPEX and ANGERS leaf optical properties
databases [74,75].

Tree Species
EWTleaf

(in g/cm2)
Ca (in µg/cm2) Cb (in µg/cm2)

European beech (Fagus sylvatica L.) 0.0046 33.11 13.68
European aspen (Populus tremula L.) 0.0065 33.34 10.88
Northern red oak (Quercus rubra L.) 0.0065 32.54 9.85
European chestnut (Castanea sativa) 0.0066 28.33 7.98
Black locust (Robinia pseudoacacia L.) 0.0076 28.83 8.44
European ash (Fraxinus excelsior L.) 0.0080 49.94 16.82
European birch (Betula pendula) 0.0081 27.85 8.86
Downy oak (Quercus pubescens) 0.0083 37.47 11.56
Sycamore maple (Acer pseudoplatanus L.) 0.0084 31.26 10.60
White poplar (Populus alba L.) 0.0089 42.65 16.50
European alder (Alnus glutinosa L.) 0.0090 47.71 15.67
Carolina poplar (Populus x canadensis) 0.0098 21.83 7.92
White willow (Salix alba L.) 0.0098 34.49 10.83
English walnut (Juglans regia L.) 0.0124 39.84 12.70

However, the reflectance of vegetation canopies does not only depend on the leaf
optical properties. Other factors are involved, such as viewing geometry and background
signal, in addition to the canopy leaf area index (LAI) and the leaf angle distribution
(LAD). Thus, at the stand level, the contribution of water content in spectral reflectance is
modulated by these other factors [76,77]. Since high correlation may exist between SWIR
bands and LAI (e.g., at 1650, 2100, and 2260 nm according to [78]), the variation in B11
and B12 may be related to the variation in LAI, in addition to water content. This is also
true for spectral indices that exploit water absorption bands such as SIWSI, NBRI, and
MSI [77]. The last one, whose performance was quite high in the single-index configuration,
is correlated to the canopy LAI of poplar plantations [76]. More generally, in addition to
the sensitivity towards water content, these indices respond to LAI and LAD in Sentinel-2
and possible other confounding structural drivers (e.g., stem density and crown diameter),
as demonstrated by Morcillo-Pallarés et al. [77] from simulations at the leaf and forest
canopy levels. Therefore, a possible functional convergence among optical traits could be
suspected to explain the specific reflectance pattern of poplars in the SWIR bands.

An alternative assumption is the difference in phenolic compounds. More than 160 dif-
ferent types of phytochemical compounds have been identified in poplar species, including
various phenolics including flavonoids, glucosides, acids, alcohol, lignan, and others [79].
Absorption features (depth, width, and area) centred near 1660 nm have been identified as
robust indicators to quantify plant phenolic concentrations using reflectance spectra [80].
Variability in phenolics concentrations and compounds between poplar and non-poplar
species may contribute to making B11 important. Further research is needed to verify this.

Concerning the red edge, this spectral region (680–780 nm) proved to be highly
sensitive to the chlorophyll content of the vegetation [81,82] and has been used to esti-
mate structural features such as LAI [83,84], or nutritional status such as N concentration
(e.g., [85]). Recently, Kyaw et al. [86] showed that leaf reflectance of hybrid poplars at
712 nm (i.e., included in the B5 range) was a significant wavelength for predicting nitrogen
content per unit leaf area (Narea), even if the observed correlation was weak (R2 = 0.29
with a LASSO model). This relation was found using 105 leaf sample data of 62 Popu-
lus genotypes across seven taxa. Leaves were measured in July and early September in
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two young plantations located in upland regions of Mississippi, USA. In deciduous tree
species, photosynthetic activity increases during the spring growing season (starting in
March–April in temperate regions) along with the concentration of chlorophyll resulting
from foliage growth [87,88]. Like with the SWIR bands, reflectance decreases at the start
of the growing season, reflecting an increase in photosynthetic activity and in chlorophyll
concentration [81]. The temporal signature of B5 reflects this trend with a decrease in
reflectance from the end of March to mid-September (see Appendix F). However, only
a marginal difference can be observed between plantations of poplar and those of other
deciduous species, which may explain the minor importance of the red edge compared
to that of SWIR for the discrimination of poplar plantations. The seasonal pattern of B5
suggests a possible higher chlorophyll content in poplars, especially in May and June, but
this contradicts the low values available in the LOPEX and ANGERS leaf optical properties
databases (Table 5). However, as for EWT, this comparison is rather unreliable because of
the influence of the species-specific canopy structure on the spectral behaviour [89]. Further
analysis is required to advance our understanding of the underlying biophysical process.
It can be mentioned that S2 red edge band B5 was previously shown to be important for
discriminating tree species in temperate forests, as well as SWIR bands B11 and B12 [90–92].

Finally, the PI2 index, combining both B11 and B12 and subtracting them from B5,
makes it possible to accentuate the difference between the reflectance of poplar and of
other tree species. The lower the reflectances in the SWIR, the higher the value of PI2
(Appendix F). This formulation was more competitive than the other variants of the Poplar
index (PI1, PI3, PI4) even if the results of PI1 (based on B11 and B12 only) were very close
to the results obtained in the single-index configuration. This was also true using B11 or
B12 alone or the SIWSI spectral index (a normalised difference combining B11 and B8a), for
which the difference in performance was significantly smaller (Appendix D). The PI index
defined from S2 imagery could be adapted for other sensors, and in particular, Landsat 8-9
by selecting bands 6 (SWIR 1 at ∼1560–1660 nm) and 7 (SWIR 2 at ∼2100–2300 nm).

5.3. Poplar Recognition Is Not Driven by Phenological Differences with the Other
Deciduous Species

Even if multitemporal data is required, our results show that the ability to discriminate
poplar plantations from the other deciduous species is not related to subtle phenological
differences in key periods of the vegetation cycle (e.g., timing of bud burst or leaf emer-
gence). Recognition is possible because of a marked difference in spectral response, mainly
in the SWIR bands (B11 and B12), throughout the growing season. The best dates selected
using the Poplar index PI2 are: 5 June, 25 July, 24 August, and 23 October in 2017 and 6 May,
25 June, 15 July, and 13 October in 2018. The first three dates are in the spring–summer
period. The timing of flowering is already over, and the leaves are well developed. There
is no specific phenological event during this period. By contrast, October coincides with
the period of leaf senescence, with a yellowing phase. An important difference between
poplar and the other deciduous species could explain the selection of this month. However,
the senescence period of poplar overlaps with that of some other tree species, as observed
in the spectral profiles. The temporal profiles of PI2 for poplar and non-poplar classes
show very close reflectance in October (as in late Winter, before March), suggesting an
insignificant contribution of autumnal variations in species discrimination. Phenological
differences are also reduced by the climate gradient due to the spatial extent (S2 image tiles
were selected in contrasting climate regions) and by the existence of poplar cultivars with
contrasting phenology (i.e., from early to late leaf emergence). At present, we have no clear
explanation to understand the importance of the dates selected in October.

5.4. The National Map of Poplar Plantations Requires Field Validation

A first version of the national map was produced using the PI2 index. As the feature
selection analysis revealed, the map could have been produced using only a few dates
between May and August, in addition to October, using this new index. However, because
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of cloudy acquisitions that vary from one region to another, the possible influence of
residual noisy pixels (undetected clouds), and the existence of some evergreen deciduous
species (e.g., eucalyptus plantations), we used the full year time series of PI2 to generate the
national map in 2018 (36 dates). After checking, we found that classification performances
were not affected by the addition of all the dates (no Hughes phenomenon).

This map now needs to be validated in the field by forest partners to detect specific
confusion with other species (missing from the reference set), the possible influence of
the understorey vegetation in some regions where plantations were abandoned, and the
detection limit related to the stage of development of the plantations. We assumed that no
plantations less than three years old were mapped due to insufficient canopy cover and
a possible effect of soil, but in practice, the minimum age for detection is more gradual
because other factors have to be taken into consideration such as site conditions and the
cultivar planted. Plantations can present different growth patterns with, for instance, a
maximum growth rate in the first two years or a slow growth rate at the beginning and an
increase in the growth rate later in the cycle [93,94]. We conducted a first analysis with a
specific dataset of reference samples for which the cultivars and the age of the plantations
were known. We observed an increase in the confidence values of the detected plantations
with age, but this depended to a great extent on the cultivar concerned. Additional field-
checked references are required to better define the detectability threshold of plantations.
The absence of confusion with other short-rotation coppice (SRC) plantations, such as
willow (Salix), which have higher water requirements, should also be verified. A previous
study revealed a clear distinction between poplar and willow, but willow was growing in a
natural context and not in SRC plantations [31].

The national map identified the main poplar plantation sites in France, but also a
large number of municipalities with either a low density of poplar trees with a high level
of confidence (in blue), or the opposite, a high density of poplar trees with a low level of
confidence (in yellow). In the first case, in addition to the few plantations, this coincides
with the presence of poplar in riparian areas. Some natural patches of poplar were detected
along waterways. No precise evaluation was carried out to estimate the true ability to
discriminate these poplars, but it opens up possibilities for such areas of high conservation
value [95]. Over-detection was also observed in some places with low confidence values
despite a high density of poplars. Closer examination revealed that these cases often refer
to confusions with coniferous stands (or agricultural fields). From the modelling point
of view, these errors are not surprising, since only references of deciduous species were
used for training. Rather, they highlight the imperfection of the forest/non-forest mask
used to only retain areas with deciduous species. The HRL Dominant Leaf Type 2018 was
considered as the best candidate currently available, but its quality directly influenced our
poplar plantation layer. In the future, the reference dataset could be enriched with conifer
samples derived from the French NFI spatial database to distinguish between coniferous
and deciduous trees in the classification process. An alternative would be the adoption of
a novelty detection approach to identify test data (unseen pixels) that differ significantly
from the training set [96]. This would make the method more independent of the existence
of an accurate forest/non-forest mask.

We are confident about the accuracy of the French NFI spatial database and the way
we used it as a reference dataset to limit classification bias. For the poplar class, the database
was only used to identify a potential location of plantations, and each of them was checked
by visual interpretation before integrating it into the reference dataset. Misidentification
(evaluated by field campaigns) was considered negligible (<1%) and below the level that
may affect the performance of the random forest classifier [97]. Moreover, unlike sub-
natural forests, poplar plantations are monospecific and even-aged, composed of clones,
which makes them very homogeneous and does not require a precise GPS survey to position
trees. On the contrary, stands of other deciduous trees have not been checked. Therefore, it
is possible that in some cases, the land use has changed or the species have been replaced
by others since the year of the production of the forest database. According to the NFI
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statistics, the average timber extraction of deciduous trees from 2011 to 2019 is estimated at
approximately 0.1 millions (M) m3/year in tile 31TCJ, 0.35 Mm3/year in tile 30TYT, and
0.55 Mm3/year in tile 31UEQ. The reference dataset can be affected by this noise. However,
this imperfection should have a limited impact on poplar recognition because it mainly
concerns the non-poplar class, with possible confusions between species within this class.
Another source of imperfection is the possible existence of natural poplars in the mixed
class of deciduous species. There is no specific pure class of natural poplars in the database,
contrary to poplar plantations that are never assigned to the mixed class, whatever the
stand area. In this case, the learning process could be affected, and some pixels of poplar
could be predicted in the mixed class (and vice versa). Once again, this noise is probably
too marginal to affect the model, and what appear to be confusions are not always in this
case (see the matrix in Appendix E). Ultimately, we think that the most important bias for
the countrywide prediction is the fact that the non-poplar class is not fully representative
of the diversity of all the deciduous species. Only the species existing in the three image
tiles were integrated. This limit can be easily overcome by collecting additional non-poplar
references from the NFI spatial database in other image tiles.

6. Conclusions

The present study investigated the potential of S2 time series to discriminate poplar
plantations over large areas, including their diversity related to cultivars, development
stages, management practices, and climatic conditions.

Based on the results compared over two years, we draw the following conclusions:

• There is no added value to be obtained by combining multiple spectral bands or differ-
ent spectral indices at different dates to classify poplar accurately. If optimal features
are selected, a multi-temporal single-feature approach provides equivalent results.

• Only a few dates are required to identify poplar among deciduous species, the optimal
period being the growing season; no significant improvement is achieved beyond
four or five acquisition dates, but adding more dates can make the classification more
robust to residual noise at the national scale without being affected by the curse of
dimensionality (because of the single-feature strategy). Using the PI2 poplar index,
the best three dates are between May and August, with an additional date in October.

• SWIR followed by red edge spectral regions are the most useful to differentiate poplars
from other deciduous species. This reflects the sensitivity of poplar trees to water
content throughout their phenological cycle. The best S2 spectral bands are B11, B12,
B5, and B6. The best performances with stable results regardless of the year were
obtained when some of these bands were combined through the PI2 poplar index.
Significant but limited differences were found with the PI1 or SIWSI indices (which
are the other competitive ones).

• Because the model was trained using reference samples of deciduous species only, the
national map of poplar plantations strongly depends on the quality of the forest/non-
forest layer used to mask the unfocused areas.

The short-term future outlook of this work is to produce a national map of poplar
plantations for other years. Comparing the different years should enable better evaluation of
the potential errors in the maps, and limit a possible year effect in some regions. Comparing
multi-year production is also the first step towards monitoring poplar resources and
detecting harvest. It should help overcome the challenges related to young plantations,
which were not reliably detected due to their open canopy but would become detectable
over the years.

Another future objective is to make the approach less dependent on the availability and
quality of a forest/non-forest mask. The detection of forest tree cover before distinguishing
poplar is one possible option, based on S2, but also multitemporal Sentinel-1 data [98]. This
would ensure an up-to-date mask for each annual production of the poplar layer.
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Appendix A. Resampled Dates for 2017 and 2018 Time Series

Table A1. Common resampled dates over 2017 and 2018 time series.

Resampled Dates (in 2017) Resampled Dates (in 2018)

NA 6 January 2018
NA 16 January 2018
26 January 2017 26 January 2018
5 February 2017 5 February 2018
15 February 2017 15 February 2018
25 February 2017 25 February 2018
7 March 2017 7 March 2018
17 March 2017 17 March 2018
27 March 2017 27 March 2018
6 April 2017 6 April 2018
16 April 2017 16 April 2018
26 April 2017 26 April 2018
6 May 2017 6 May 2018
16 May 2017 16 May 2018
26 May 2017 26 May 2018
5 June /2017 5 June 2018
15 June 2017 15 June 2018
25 June /2017 25 June 2018
5 July 2017 5 July 2018
15 July 2017 15 July 2018
25 July 2017 25 July 2018
4 August 2017 4 August 2018
14 August 2017 14 August 2018
24 August 2017 24 August 2018
3 September 2017 3 September 2018
13 September 2017 13 September 2018
23 September /2017 23 September 2018
3 October 2017 3 October 2018
13 October 2017 13 October 2018
23 October 2017 23 October 2018
2 November 2017 2 November 2018
12 November 2017 12 November 2018
22 November 2017 22 November 2018
2 December /2017 2 December 2018
12 December 2017 12 December 2018
22 December 2017 22 December 2018
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Appendix B. Correlation between the Poplar Index (PI) Variants
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Figure A1. Spearman’s ρ correlation coefficients between poplar index (PI) variants based on all
resampled dates for 2017 and 2018 S2 time series.

Appendix C. Additional Spectral Indices Tested

Table A2. List of additional spectral indices tested and their corresponding formulas.

Indices Formulas References

Normalised Difference Moisture Index NDMI = B8−B11
B8+B11 [99]

Normalised Difference Snow Index NDSI = B3−B11
B3+B11 [100]

Normalised Difference Water Index NDWI = B3−B8
B3+B8 [65]

Bare Soil Index BSI = (B11+B4)−(B8+B2)
(B11+B4)+(B8+B2) [101]

Normalised Difference Salinity Index NDSI2 = B11−B12
B11+B12 [102]

Burned Area Index for Sentinel-2 BAIS2= (1−
√

B6∗B7∗B8A
B4 )∗( B12−B8A√

B12+B8A
+1) [103]

Inverted Red-Edge Chlorophyll Index IRECI = B7−B4
B5
B6

[104]

Appendix D. McNemar Test p-Values

Table A3. Classification comparison with the p-values derived from the McNemar significance test of
performance on the test set. Values less than the significance level of α = 0.05 indicate a statistically
significant difference between the two models at the 95% confidence interval. Otherwise, if the
p-values > α (highlighted in bold), the null hypothesis cannot be rejected.

Band 11 Band 12 PI2 SIWSI Bands Indices PI1 PI3 PI4

Year
2017

Band 5 <0.001 <0.001 <0.001 <0.001 0 0 <0.001 <0.001 <0.001
Band 11 - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Band 12 - - <0.001 0.097 <0.001 <0.001 <0.001 <0.001 0.041

PI2 - - - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
SIWSI - - - - <0.001 <0.001 <0.001 <0.001 0.014
Bands - - - - - 0.395 <0.001 <0.001 <0.001
Indices - - - - - - <0.001 <0.001 <0.001

PI1 - - - - - - - <0.001 <0.001
PI3 - - - - - - - - <0.001

Year
2018

Band 5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Band 11 - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.015
Band 12 - - <0.001 <0.001 <0.001 <0.001 0.069 <0.001 <0.001

PI2 - - - <0.001 0.523 <0.001 <0.001 0 <0.001
SIWSI - - - - <0.001 <0.001 <0.001 <0.001 <0.001
Bands - - - - - <0.001 <0.001 0 <0.001
Indices - - - - - - <0.001 0 <0.001

PI1 - - - - - - - <0.001 <0.001
PI3 - - - - - - - - <0.001
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Table A4. Poplar PA scores achieved with the ten best feature subsets based on SFFS in the single-
feature configuration using the three variants of the poplar index: PI1, PI3, and PI4. The test score gives
the poplar PA after prediction on the test set (50% of reference data). These values are significantly
lower than the best PA scores obtained with PI2: 92% in 2017 and 95% in 2018 (see Table 4 in the core
of the manuscript).

Year Poplar PA Scores PI1 PI3 PI4

2017 test score 84.9 73.9 88.3
2018 test score 89.7 73.3 92.2

Appendix E. Confusion Matrix of the Classification Based on PI2 in the Single-Feature
Configuration for Year 2018
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Figure A2. Confusion matrix in (a) pixels and (b) percent. The PA of poplar class is 95%. The UA is
94%, and the F-score is 94.5%.
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Appendix F. Spectral Signatures
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Figure A3. Temporal profile of band 5 reflectance in poplar plantations versus other deciduous tree species. In (a) the profile in 2017
and in (b) the profile in 2018. Dashed lines refer to the median signal and the surrounding shaded areas represent the interquartile
range, shown in red for poplar and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring-summer period for poplars.
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Figure A4. Temporal profile of band 12 reflectance in poplar plantations versus other deciduous tree species. In (a) the profile in 2017
and in (b) the profile in 2018. Dashed lines refer to the median signal and the surrounding shaded areas represent the interquartile
range, shown in red for poplar and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring-summer period for poplars.

Figure A3. Temporal profile of band 5 reflectance in poplar plantations versus other deciduous
tree species: in (a), the profile in 2017; in (b), the profile in 2018. Dashed lines refer to the median
signal, and the surrounding shaded areas represent the interquartile range, shown in red for poplar
and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring–summer period for poplars.
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Figure A3. Temporal profile of band 5 reflectance in poplar plantations versus other deciduous tree species. In (a) the profile in 2017
and in (b) the profile in 2018. Dashed lines refer to the median signal and the surrounding shaded areas represent the interquartile
range, shown in red for poplar and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring-summer period for poplars.
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Figure A4. Temporal profile of band 12 reflectance in poplar plantations versus other deciduous tree species. In (a) the profile in 2017
and in (b) the profile in 2018. Dashed lines refer to the median signal and the surrounding shaded areas represent the interquartile
range, shown in red for poplar and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring-summer period for poplars.

Figure A4. Temporal profile of band 12 reflectance in poplar plantations versus other deciduous
tree species: in (a), the profile in 2017; in (b), the profile in 2018. Dashed lines refer to the median
signal, and the surrounding shaded areas represent the interquartile range, shown in red for poplar
and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring–summer period for poplars.
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Figure A5. Temporal profile of PI2 reflectance in poplar plantations versus other deciduous tree
species: in (a), the profile in 2017; in (b), the profile in 2018. Dashed lines refer to the median signal,
and the surrounding shaded areas represent the interquartile range, shown in purple for poplar
and in grey for other deciduous species. The light yellow box highlights the most discriminating
spring–summer period for poplars.
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