Chronic exposure to the food additive silicon dioxide (E551) at a human-relevant dose blocks induction of oral tolerance to dietary antigens

Author Block: N. Martins Breyner, E. Gaultier, C. Cartier, B. Lamas, and E. Houdeau. Toxalim (Research Centre in Food Toxicology), Team Enterisk, INRAE, Toulouse, France. Sponsor: D. Zalko

Abstract:
Food-grade SiO$_2$ (E551 in EU), composed of aggregated nanoparticles (NPs), is used as an anticaking and antifoaming agent in powdered foods, with chronic dietary exposure in humans (0.8-74 mg/kg/day). Because SiO$_2$-NP models block induction of oral tolerance (OT, an immune mechanism for food antigen acceptance), the current study in mice aimed at evaluating whether chronic exposure to E551 at a human-relevant dose, added to a solid food matrix or in liquid suspension, alters the establishment of OT towards a food antigen model.

Mice were daily treated for 60 days without (controls) or with E551 (10mg/kg BW/day) in water suspension (gastric gavage) or incorporated into food pellets (solid matrix). Food intake was controlled. At day 41, mice were orally exposed to the dietary antigen ovalbumin (OVA) (20mg/mouse) or PBS vehicle for 3 days. All mice were subsequently immunized by subcutaneous injection of OVA (100µg/mouse) on day 48. Blood was collected 1 week after for anti-OVA IgG serum titers to evaluate OT induction in OVA-tolerized mice exposed or not to E551. In all groups, to further assess OT to food antigens, mice were de novo challenged by oral OVA (25µg/mouse) for 5 days before sacrifice. Isolated immune cells from mesenteric lymph nodes (MLN) were activated by PMA/ionomycin to assess pro- (IFNγ) and anti-inflammatory (IL-10, TGFβ) cytokine secretion measured by ELISA. Fecal lipocalin (Lcn)-2 level was used as a global marker of gut inflammation.

In control mice, OVA tolerance protocol (oral OVA) lowered by 87% circulating anti-OVA IgG levels ($p<0.0001$) compared to oral PBS group, showing normal OT induction to OVA. In contrast, anti-OVA IgG titers did not decrease in OVA-tolerized mice chronically exposed to E551 regardless of the vehicle, showing blockade of OT to food antigens. In OVA-tolerized mice exposed to E551 through food pellets, de novo oral challenge with OVA increased ($p<0.05$) fecal Lcn-2 levels (+131%) and IFNγ (+139%) production by MLN cells, together with a drop ($p<0.05$) of TGFβ (-46%) and IL10 (-46%) compared to OVA-tolerized controls, demonstrating gut inflammation. These results showed that chronic E551 exposure at a human dietary level in solid or liquid matrix impairs OT to dietary antigens, and promotes intestinal inflammation supporting food intolerance.

Presentation Preference (Complete): Platform or Poster
Category (Complete): Nanotoxicology, In Vivo ; Animal Models ; Food Safety/Nutrition
COI/Keywords (Complete):
Keyword 1: Nanotechnology
Keyword 2: Inflammation
Keyword 3: Reference Dose
Keyword Other: Gastrointestinal
Chemical Entity: Silicon dioxide (SiO2)

Sponsor (Complete):
Are you or another author of the abstract an SOT member?: No
If NO, do you have a sponsor of the abstract who is a member of SOT?: Yes
Sponsor First Name: Daniel
Sponsor Last Name: Zalko
Sponsor Affiliation: National Research Institute for Agriculture, Food and Environment (INRAe)
Sponsor Email: daniel.zalko@inrae.fr

Abstract Submission Fee (Complete): Your credit card order has been processed on Wednesday 1 December 2021 at 5:09 AM.

Status: Complete
Society of Toxicology
61st Annual Meeting and ToxExpo
March 27-31, 2022
Society of Toxicology
11190 Sunrise Valley Drive, Suite 300
Reston, VA 20191
703-438-3115 Office
sotinfo@toxicology.org
http://www.toxicology.org/
Feedback

Powered by cOASIS, The Online Abstract Submission and Invitation System© 1996 - 2021 CTI Meeting Technology All rights reserved Privacy Policy