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The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads
from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated
competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and
agricultural science communities. From this first experience, a few avenues for improvements have been identified
regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined,
relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat
heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse,
and less noisy than the GWHD_2020 version.

1. Introduction

Quality training data is essential for the deployment of
deep learning (DL) techniques to get a general model that
can scale on all the possible cases. Increasing dataset size,
diversity, and quality is expected to be more efficient than
increasing network complexity and depth [1]. Datasets like
ImageNet [2] for classification or MS COCO [3] for
instance detection are crucial for researchers to develop
and rigorously benchmark new DL methods. Similarly,
the importance of getting plant- or crop-specific datasets
is recognized within the plant phenotyping community
([4–10], p. 2, [11–13]). These datasets allow benchmarking
the algorithm performances used to estimate phenotyping
traits while encouraging computer vision experts to further
improvement ([10], p. 2, [14–17]). The emergence of
affordable RGB cameras and platforms, including UAVs
and smartphones, makes in-field image acquisition easily
accessible. These high-throughput methods are progressively
replacing manual measurement of important traits such as
wheat head density. Wheat is a crop grown worldwide, and
the number of heads per unit area is one of the main compo-
nents of yield potential. Creating a robust deep learning
model performing over all the situations requires a dataset
of images covering a wide range of genotypes, sowing density
and pattern, plant state and stage, and acquisition conditions.
To answer this need for a large and diverse wheat head data-
set with consistent and quality labeling, we developed in 2020
the Global Wheat Head Detection (GWHD_2020) [18] that
was used to benchmark methods proposed in the computer
vision community and recommend best practices to acquire
images and keep track of the metadata.

The GWHD_2020 dataset results from the harmoniza-
tion of several datasets coming from nine different institu-
tions across seven countries and three continents. There
are already 27 publications [19–45] (accessed July 2021) that
have reported their wheat head detection model using the
GWHD_2020 dataset as the standard for training/testing
data. A “Global Wheat Detection” competition hosted by
Kaggle was also organized, attracting 2245 teams across the
world [14], leading to improvements in wheat head detec-
tion models [23, 25, 31, 41]. However, issues with the
GWHD_2020 dataset were detected during the competition,
including labeling noise and an unbalanced test dataset.

To provide a better benchmark dataset for the commu-
nity, the GWHD_2021 dataset was organized with the fol-
lowing improvements: (1) the GWHD_2020 dataset was
checked again to eliminate few poor-quality images, (2)
images were re-labeled to avoid consistency issues, (3) a

wider range of developmental stages from the GWHD_
2020 sites was included, and (4) datasets from 5 new coun-
tries (the USA, Mexico, Republic of Sudan, Norway, and
Belgium) were added. The resulting GWHD_2021 dataset
contains 275,187 wheat heads from 16 institutions distrib-
uted across 12 countries.

2. Materials and Methods

The first version of GWHD_2020, used for the Kaggle com-
petition, was divided into several subdatasets. Each subdata-
set represented all images from one location, acquired with
one sensor while mixing several stages. However, wheat head
detection models may be sensitive to the developmental
stage and acquisition conditions: at the beginning of head
emergence, a part of the head is barely visible because it is
still not fully out from the last leaf sheath and possibly
masked by the awns. Further, during ripening, wheat heads
tend to bend and overlap, leading to more erratic labeling.
A redefinition of the subdataset was hence necessary to help
investigate the effect of the developmental stage on model
performances. The new definition of a subdataset was then
formulated as “a consistent set of images acquired over the
same experimental unit, during the same acquisition session
with the same vector and sensor.” A subdataset defines
therefore a domain. This new definition forced to split the
original GWHD_2020 subdatasets into several smaller ones.
The UQ_1 was split into 6 much smaller subdatasets,
Arvalis_1 was split into 3 subdatasets, Arvalis_3 into 2 sub-
datasets, and utokyo_1 into 2 subdatasets. However, in the
case of utokyo_2 which was a collection of images taken by
farmers at different stages and in different fields, the original
subdataset was kept. Overall, the 11 original subdatasets in
GWHD_2020 were distributed into 19 subdatasets for
GWHD_2021.

Almost 2000 new images were added to GWHD_2020,
constituting a major improvement. A part of the new images
comes from the institutions already contributing to
GWHD_2020 and was collected during a different year
and/or at a different location. This was the case for Arvalis
(Arvalis_7 to Arvalis_12), University of Queensland (UQ_7
to UQ_11), Nanjing Agricultural University (NAU_2 and
NAU_3), and University of Tokyo (Utokyo_1). In addition,
14 new subdatasets were included, coming from 5 new coun-
tries: Norway (NMBU), Belgium (Université of Liège [46]),
United States of America (Kansas State University [47],
TERRA-REF [7]), Mexico (CIMMYT), and Republic of
Sudan (Agricultural Research Council). All these images
were acquired at a ground sampling distance between 0.2
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and 0.4mm, i.e., similar to that of the images in GWHD_
2020. Because none of them was already labeled, a sample
was selected by taking no more than one image per micro-
plot, which was randomly cropped to 1024 × 1024px patches
that will be called images in the following for the sake of
simplicity.

With the addition of 1722 images and 86,000 wheat
heads, the GWHD_2021 dataset contains 6500 images and
275,000 wheat heads. The increase in the number of subda-
tasets from 18 to 47 leads to a larger diversity between them
which can be observed on Figure 1. The subdatasets are
described in Table 1. However, the new definition of a sub-
dataset led also to more unbalanced subdatasets: the smallest
(Arvalis_8) contains only 20 images, while the biggest
(ETHZ_1) contains 747 images. This provides the opportu-
nity to possibly take advantage of the data distribution to
improve model training. Each subdataset has been visually
assigned to several development stage classes depending on
the respective color of leaves and heads (Figure 2): postflow-
ering, filling, filling-ripening, and ripening. Examples of the
different stages are presented in Figure 2. While being
approximative, this metadata is expected to improve model
training.

3. Dataset Diversity Analysis

In comparison to GWHD_2020, the GWHD_2021 dataset
puts emphasis on metadata documentation of the different
subdatasets, as described in the discussion section of David
et al. [18]. Alongside the acquisition platform, each subdata-
set has been reviewed and a development stage was assigned
to each, except for Utokyo_3 (formerly utokyo_2) as it is a

collection of images from various farmer fields and develop-
ment stages. Globally, the GWHD_2021 dataset covers well
all development stages ranging from postanthesis to ripen-
ing (Figure 2).

The diversity between images within the GWHD_2021
dataset was documented using the method proposed by
Tolias et al. [48]. The deep learning image features were first
extracted from the VGG-16 deep network pretrained on the
ImageNet dataset that is considered representing well the
general features of RGB images. We then selected the last
layer which has a size of 14 × 14 × 512 and summed it into
a unique vector of 512 channels, which is then normalized.
Then, the UMAP dimentionality reduction algorithm [49]
was used to project representations into a 2D space. The
UMAP algorithm is used to keep the existing clusters during
the projection to a low-dimension space. This 2D space is
expected to capture the main features of the images. Results
(Figure 3) demonstrate that the test dataset used for
GWHD_2020 was biased in comparison to the training
dataset. The subdatasets added in 2021 populate more
evenly the 2D space which is expected to improve the
robustness of the models.

4. Presentation of Global Wheat Challenge 2021
(GWC 2021)

The results from the Kaggle challenge based on GWHD_
2020 have been analyzed by the authors [14]. The findings
emphasize that the design of a competition is critical to
enable solutions that improve the robustness of the wheat
head detection models. The Kaggle competition was based
on a metric that was averaged across all test images, without

Figure 1: Sample images of the Global Wheat Head Detection 2021. The blue boxes correspond to the interactively labeled heads.
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Table 1: The subdatasets for GWHD_2020 and GWHD_2021. The column “2020 name” indicates the name given to the subdatasets for
GWHD_2020, which were split into several new subdatasets.

GWHD_2021
subdataset name

GWHD_2020
subdataset name

Owner Country Location
Acquisition

date
Platform

Development
stage

Number
of images

Number of
wheat head

Ethz_1 ethz_1 ETHZ Switzerland Usask 06/06/2018 Spidercam Filling 747 49603

Rres_1 rres_1 Rothamsted UK Rothamsted 13/07/2015 Gantry
Filling-
ripening

432 19210

ULiège-GxABT_1
Uliège/

Gembloux
Belgium Gembloux 28/07/2020 Cart Ripening 30 1847

NMBU_1 NMBU Norway NMBU 24/07/2020 Cart Filling 82 7345

NMBU_2 NMBU Norway NMBU 07/08/2020 Cart Ripening 98 5211

Arvalis_1 arvalis_1 Arvalis France Gréoux 02/06/2018 Handheld Postflowering 66 2935

Arvalis_2 arvalis_1 Arvalis France Gréoux 16/06/2018 Handheld Filling 401 21003

Arvalis_3 arvalis_1 Arvalis France Gréoux 07/2018 Handheld
Filling-
ripening

588 21893

Arvalis_4 arvalis_2 Arvalis France Gréoux 27/05/2019 Handheld Filling 204 4270

Arvalis_5 arvalis_3 Arvalis France VLB ∗ 06/06/2019 Handheld Filling 448 8180

Arvalis_6 arvalis_3 Arvalis France VSC ∗ 26/06/2019 Handheld
Filling-
ripening

160 8698

Arvalis_7 Arvalis France VLB ∗ 06/2019 Handheld
Filling-
ripening

24 1247

Arvalis_8 Arvalis France VLB ∗ 06/2019 Handheld
Filling-
ripening

20 1062

Arvalis_9 Arvalis France VLB ∗ 06/2020 Handheld Ripening 32 1894

Arvalis_10 Arvalis France Mons 10/06/2020 Handheld Filling 60 1563

Arvalis_11 Arvalis France VLB ∗ 18/06/2020 Handheld Filling 60 2818

Arvalis_12 Arvalis France Gréoux 15/06/2020 Handheld Filling 29 1277

Inrae_1 inrae_1 INRAe France Toulouse 28/05/2019 Handheld
Filling-
ripening

176 3634

Usask_1 usask_1 USaskatchewan Canada Saskatchewan 06/06/2018 Tractor
Filling-
ripening

200 5985

KSU_1
Kansas State
University

US KSU 19/05/2016 Tractor Postflowering 100 6435

KSU_2
Kansas State
University

US KSU 12/05/2017 Tractor Postflowering 100 5302

KSU_3
Kansas State
University

US KSU 25/05/2017 Tractor Filling 95 5217

KSU_4
Kansas State
University

US KSU 25/05/2017 Tractor Ripening 60 3285

Terraref_1
TERRA-REF

project
US

Maricopa,
AZ

02/04/2020 Gantry Ripening 144 3360

Terraref_2
TERRA-REF

project
US

Maricopa,
AZ

20/03/2020 Gantry Filling 106 1274

CIMMYT_1 CIMMYT Mexico
Ciudad
Obregon

24/03/2020 Cart Postflowering 69 2843

CIMMYT_2 CIMMYT Mexico
Ciudad
Obregon

19/03/2020 Cart Postflowering 77 2771

CIMMYT_3 CIMMYT Mexico
Ciudad
Obregon

23/03/2020 Cart Postflowering 60 1561

Utokyo_1 utokyo_1 UTokyo Japan
NARO-
Tsukuba

22/05/2018 Cart
∗∗
̲ Ripening 538 14185

Utokyo_2 utokyo_1 UTokyo Japan
NARO-
Tsukuba

22/05/2018 Cart
∗∗
̲ Ripening 456 13010

Utokyo_3 utokyo_2 UTokyo Japan
NARO-
Hokkaido

Multi-

years
∗∗∗

̲ Handheld Multiple 120 3085

Ukyoto_1 UKyoto Japan Kyoto 30/04/2020 Handheld Postflowering 60 2670

NAU_1 NAU_1 NAU China Baima n.a Handheld Postflowering 20 1240

NAU_2 NAU China Baima 02/05/2020 Cart Postflowering 100 4918
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distinction for the subdatasets, and it was biased toward a
strict match of the labelling. This artificially enhances the
influence on the global score of the largest datasets such as
utokyo_1 (now split into Utokyo_1 and Utokyo_2). Further,
the metrics used to score the agreement with the labeled

heads and largely used for big datasets, such as MS COCO,
appear to be less efficient when some heads are labeled in a
more uncertain way as it was the case in several situations
depending on the development stage, illumination condi-
tions, and head density. As a result, the weighted domain

Table 1: Continued.

GWHD_2021
subdataset name

GWHD_2020
subdataset name

Owner Country Location
Acquisition

date
Platform

Development
stage

Number
of images

Number of
wheat head

NAU_3 NAU China Baima 09/05/2020 Cart Filling 100 4596

UQ_1 uq_1 UQueensland Australia Gatton 12/08/2015 Tractor Postflowering 22 640

UQ_2 uq_1 UQueensland Australia Gatton 08/09/2015 Tractor Postflowering 16 39

UQ_3 uq_1 UQueensland Australia Gatton 15/09/2015 Tractor Filling 14 297

UQ_4 uq_1 UQueensland Australia Gatton 01/10/2015 Tractor Filling 30 1039

UQ_5 uq_1 UQueensland Australia Gatton 09/10/2015 Tractor
Filling-
ripening

30 3680

UQ_6 uq_1 UQueensland Australia Gatton 14/10/2015 Tractor
Filling-
ripening

30 1147

UQ_7 UQueensland Australia Gatton 06/10/2020 Handheld Ripening 17 1335

UQ_8 UQueensland Australia McAllister 09/10/2020 Handheld Ripening 41 4835

UQ_9 UQueensland Australia Brookstead 16/10/2020 Handheld
Filling-
ripening

33 2886

UQ_10 UQueensland Australia Gatton 22/09/2020 Handheld
Filling-
ripening

53 8629

UQ_11 UQueensland Australia Gatton 31/08/2020 Handheld Postflowering 42 4345

ARC_1 ARC Sudan Wad Medani 03/2021 Handheld Filling 30 888

Total 6515 275187

∗VLB: Villiers le Bâcle; VSC: Villers-Saint-Christophe. ∗∗Utokyo_1 and Utokyo_2 were taken at the same location with different sensors. ∗∗∗Utokyo_3 is a
special subdataset made from images coming from a large variety of farmers in Hokaido between 2016 and 2019. Italic: Europe: bold: North America;
underline: Asia; bold italic: Oceania; bold underline: Africa.

4-Ripening

3-Filling - ripening

2-Filling

1-Post-flowering

Multiple

0 2 4 6 8

Estimated stage

Leaf: green
Spike: green

Leaf: green
Spike: yellow

Leaf: green/yellow
Spike: yellow

Leaf: yellow
Spike: yellow

10 12 14

Figure 2: Distribution of the development stage. The x-axis presents the number of subdataset per development stage.
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accuracy is proposed as a new metric [14]. The accuracy
computed over image i belonging to domain d, AIdðiÞ, is
classically defined as

AId ið Þ = TP
TP + FN + FP

, ð1Þ

where TP, FN, and FP are, respectively, the number of true
positive, false negative, and false positive found in image i.
The weighted domain accuracy (WDA) is the weighted aver-
age of all domain accuracies:

WDA=
1
D
〠
D

d=1

1
nd

∗ 〠
nd

i=1
AIdi, ð2Þ

where D is the number of domains (subdatasets) and nd is
the number of images in domain d. The training, validation,
and test datasets used are presented in Section 5.

The results of the Global Wheat Challenge 2021 are
summarized in Table 2. The reference method is a
faster-RCN with the same parameters than in the research
paper GWHD_2020 [18] and trained on the GWHD_2021
(Global Wheat Challenge 2021 split) training dataset. The

full leaderboard can be found at https://www.aicrowd.com/
challenges/global-wheat-challenge-2021/leaderboards.

5. How to Use/FAQ

(i) How to download? The dataset can be download on
Zenodo: https://zenodo.org/record/5092309

(ii) What is the license of the dataset? The dataset is
under the MIT license, allowing for reuse without
restriction

(iii) How to cite the dataset? The present paper can be
cited when using the GWHD_2021 dataset. How-
ever, cite preferentially [18] for wheat head detec-
tion challenges or when discussing the difficulty to
constitute a large datasets

(iv) How to benchmark? Depending on the objectives of
the study, we recommend two sets of training, vali-
dation, and test (Table 3):

(a) The Global Wheat Challenge 2021 split when the
dataset is used for phenotyping purpose, to allow
direct comparison with the winning solutions

(b) The “GlobalWheat-WILDS” split is the one used for
the WILDS paper [50]. We recommand to use the
GlobalWheat-WILDS split when working on out-
of-domain distribution shift problems

It is further recommended to keep the weighted domain
accuracy for comparison with previous works.

–15

GWC 2020 - test dataset
GWC 2020 - train dataset
GWHD 2021 - additional data

–10 –5 0
UMAP dimension 1

U
M

A
P 

di
m

en
sio

n 
2

5 10 15 20
–15

–10

–5

0

5

10

15

20

25

Figure 3: Distribution of the images in the two first dimensions defined by the UMAP algorithm for the GWHD 2021 dataset. The
additional subdatasets as well as the training and test datasets from GWHD_2020 are represented by colors.

Table 2: Presentation of the Global Wheat Challenge 2021 results.

Solution name WDA

randomTeamName (1st place) 0.700

David_jeon (2nd place) 0.695

SMART (2nd place) 0.695

Reference (faster-RCNN) 0.492
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6. Conclusion

The second edition of the Global Wheat Head Detection,
GWHD_2021, alongside the organization of a second Global
Wheat Challenge is an important step for illustrating the
usefulness of open and shared data across organizations
to further improve high-throughput phenotyping methods.
In comparison to the GWHD_2020 dataset, it represents
five new countries, 22 new subdatasets, 1200 new images,
and 120,000 new-labeled wheat heads. Its revised organiza-
tion and additional diversity are more representative of the
type of images researchers and agronomists can acquire
across the world. The revised metrics used to evaluate the
models during the Global Wheat Challenge 2021 can help
researchers to benchmark one-class localization models on
a large range of acquisition conditions. GWHD_2021 is
expected to accelerate the building of robust solutions. How-
ever, progress on the representation of developing countries
is still expected and we are open to new contributions from
South America, Africa, and South Asia. We started to include
nadir view photos from smartphones, to get a more compre-
hensive dataset and train reliable models for such affordable
devices. Additional works are required to adapt such an
approach to other vectors such as a camera mounted on
unmanned aerial vehicle, or other high-resolution cameras
working in other spectral domains. Further, it is planned to
release wheat head masks alongside the bounding box given
the very large number of boxes that already exists and pro-
vides more associated metadata.

Data Availability

The dataset is available on Zenodo (https://zenodo.org/
record/5092309).
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