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A B S T R A C T   

Passive microwave remote sensing of soil moisture is an underdetermined problem, as observed microwave 
emission from the landscape is affected by a variety of unknown surface parameters. Increasing observation 
information is an effective means to make retrievals more robust. In this study, a multi-temporal and multi- 
angular (MTMA) approach is proposed using SMOS (Soil Moisture and Ocean Salinity) satellite L-band data 
for retrieving vegetation optical depth (VODp, p indicates the polarization with H for horizontal and V for ver
tical)), effective scattering albedo (ωp

eff), soil surface roughness (Zp
s), and soil moisture (SMp). The advantage of 

the MTMA approach is that it does not need auxiliary data as inputs or constraints. SMOS polarization-dependent 
VOD are produced and compared at a global scale for the first time, and it is found that the polarization dif
ference of vegetation effects should not be ignored in the SM retrieval algorithm. The MTMA VOD retrievals are 
found to have a reasonable global spatial distribution, which is generally consistent with the VOD retrievals 
obtained from the SMOS Level 3 (SMOS-L3) and SMOS-IC Version 2 (V2) (referred to as SMOS-IC), except for 
showing relatively lower values over densely vegetated areas compared with the other two SMOS products. The 
spatial distribution of retrieved ωp

eff generally shows a dependence on both VOD and land cover types. In 
addition, the values of MTMA-ωV

eff are higher than that of MTMA-ωH
eff, indicating stronger microwave scattering of 

V-pol in the vegetation layer than that of H-pol. The retrieved surface roughness parameter (Zp
s) ranges from 0.04 

to 0.22 cm, and its spatial distribution is partially different from the existing roughness products/auxiliary data 
from SMOS and SMAP. The retrieved MTMA SM shows generally high correlations with in-situ measurements (11 
dense observation networks) with overall correlation coefficients of > 0.75. The overall ubRMSE of MTMA-SMH 
and MTMA-SMV are < 0.055 m3/m3 and lower than that of SMOS-IC and SMOS-L3 products. SMOS-IC generally 
presents higher correlation coefficients compared to MTMA in most sites outside China; in China, RFI filtering is 
crucial and makes it very difficult when comparing algorithms based on different brightness temperature 
products. The number of effective retrievals of MTMA-SMH and MTMA-SMV ranges from 1409 to 1640 and 1104 
to 1603 respectively, which is more than that from SMOS-IC (from 236 to 1358) over the selected 11 networks. 
Therefore, it is concluded that by incorporating multi-temporal SMOS data, the proposed method of MTMA can 
be used to systematically retrieve SM, VOD and additional surface parameters (effective scattering albedo and 
surface roughness) with comparable or better performance of SM than that of SMOS-IC and SMOS-L3. Moreover, 
this paper for the first time produced a polarization-dependent SMOS VOD product at a global scale.   
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1. Introduction 

Surface soil moisture (SM) usually refers to the soil moisture in the 
upper soil layer of 0–5 cm, and plays a key role in governing the ex
changes of water and energy between the land and the atmosphere. 
Accurate estimation of SM is required for many studies, such as agri
cultural productivity forecasts, flood and drought monitoring, regional 
water resources management, and the global water cycle (Seneviratne 
et al., 2010; Zhao et al., 2020b). 

Currently, microwave L-band radiometer is considered an appro
priate tool for spatial SM mapping from space due to its strong pene
tration of vegetation covers and sensitivity to surface SM conditions 
(Kerr et al., 2001). Satellites with L-band radiometer mainly include the 
Soil Moisture Active Passive (SMAP) from National Aeronautics and 
Space Administration (NASA) of the United States of America (USA), 
SMOS from European Space Agency (ESA) and Aquarius/SAC-D (Satélite 
de Aplicaciones Científicas D) from the joint efforts by NASA and 
CONAE (Comisión Nacional de Actividades Espaciales) of Argentina. 
Moreover, the Copernicus Imaging Microwave Radiometer (CMIR) 
mission (Kilic et al., 2018) and the China's Terrestrial Water Resources 
Satellite (TWRS) (Zhao et al., 2020b) may bring continuity to micro
wave L-band radiometry from space. Launched by the ESA in 2009, 
SMOS was the first satellite to operate with a L-band (1.4 GHz) radi
ometer. SMOS acquires multi-angular brightness temperature (TB) 
globally with a spatial resolution of approximately 43 km. Currently, 
there are two global SM products provided routinely based on SMOS 
observations, i.e., the SMOS products released by the Centre Aval de 
Traitement des Données (CATDS) (referred to as SMOS-Level 2 (L2)/ 
Level 3 (L3)) and SMOS-IC V2 (version 2) product released by INRAE 
(l'Institut national de recherche pour l'agriculture, l'alimentation et 
l'environnement). The multi-angular retrieval algorithms of SMOS L2 
(Kerr et al., 2012) and L3 (Al Bitar et al., 2017) SM products are all based 
on the forward model of L-band Microwave Emission of the Biosphere 
(L-MEB) (Wigneron et al., 2007), and both SM and VOD are simulta
neously retrieved with empirical and static model parameters 
(Wigneron et al., 2021). Numerous validation/evaluation studies of 
SMOS L2/L3 SM products have been carried out during the last decade 
and some of them show that the SMOS L2/L3 SM products might present 
underestimation when compared with ground measurements (Gher
boudj et al., 2012; Peng et al., 2015; Chen et al., 2017; Wigneron et al., 
2017). The underestimations may be partially attributed to the sun glint 
and the radio frequency interference (RFI) which increases the observed 
TB, and partially attributed to the SM retrieval algorithm, e.g., the VOD 
retrieved by the SMOS L2/L3 algorithm was found to be relatively noisy 
(Grant et al., 2012; Zhao, 2018), and thus leading to corresponding 
uncertainties in SM retrievals (Jackson et al., 2012; Schlenz et al., 2012; 
Chen et al., 2017). 

Considering the above mentioned issues, the SMOS-IC algorithm was 
developed by the activities funded by ESA- and CNES (Centre national 
d'études spatiales) aiming at improving SMOS algorithms (Fernandez- 
Moran et al., 2017a; Wigneron et al., 2021). In contrast to the SMOS L2/ 
L3 algorithms, the SMOS-IC algorithm assumes that the pixels are ho
mogeneous and thus becomes independent of the ECMWF (European 
Centre for Medium-Range Weather Forecasts) SM information, which 
has to be used as auxiliary information for forward model simulations in 
the subordinate pixel fractions of heterogeneous pixels in the SMOS L2/ 
L3 algorithms (Li et al., 2020); SMOS-IC uses SMOS-L3 TB data at fixed 
view-angle ranging from 20◦ to 55◦ ± 2.5◦ and does not consider cor
rections of the antenna pattern and the complex SMOS viewing angle 
geometry (Ebrahimi-Khusfi et al., 2018). Furthermore, new empirical 
but static parameters of effective scattering albedo (ωp

eff), which de
scribes the vegetation scattering effects and soil roughness, are imple
mented in SMOS-IC by calibrating the L-MEB model for different IGBP 
land cover types (Fernandez-Moran et al., 2017b) based on a global map 
of soil roughness (Parrens et al., 2016). Although the SMOS-IC SM and 
VOD products performed very well compared with those of SMOS L2/L3 

(Fernandez-Moran et al., 2017a; Ebrahimi-Khusfi et al., 2018; Rodrí
guez-Fernández et al., 2018; Tian et al., 2018; Al-Yaari et al., 2019; 
Wigneron et al., 2021), it was found that the SMOS-IC SM product could 
still be improved (Diego et al., 2018; Li et al., 2020), since those model 
parameters are arbitrarily assumed to be constant in time and inde
pendent on the incident angle and polarization (Griend and Owe, 1994; 
Kerr et al., 2012; Fernandez-Moran et al., 2017a). For example, the new 
SMOS-IC V2 retrieval algorithm introduces the average VOD values 
from previous days as the initial value of VOD for subsequent retrievals, 
instead of using average VOD values over the years to initialize VOD 
(Wigneron et al., 2021). 

Both the SMOS L2/L3 and SMOS-IC algorithms are based on fixed 
empirical/theoretical parameters of ωp

eff and soil roughness. However, 
ωp

eff not only depends on the land cover types with associated errors but 
also varies for the same vegetation type (Konings et al., 2016; 2017). 
Kurum (2013) found that ωp

eff showed significant polarization depen
dence for specific vegetation types and Wigneron et al. (2004a) found 
that both the temporal and polarization variations of ωp

eff were signifi
cant over crop fields. Zhao et al. (2020a) showed that the optimized ωp

eff 

depended on both incidence angle and polarization at L-band. In addi
tion, Davenport et al. (2005) and Fernandez-Moran et al. (2017b) 
confirmed that errors in ωp

eff could increase the uncertainties in the re
trievals of SM and VOD, because the dependence of ωp

eff on polarization 
and its variation over time were not fully considered in the current 
implementation of the SMOS L2/L3 and SMOS-IC SM retrieval algo
rithms, and even not in the SMAP algorithms. 

Another parameter that reflects the impact of vegetation is VOD, 
which depends on time, polarization, frequency, vegetation water con
tent, vegetation structure, etc. (Wigneron et al., 1995; Wigneron et al., 
2004a; Konings et al., 2021). The vegetation layer not only emits mi
crowave radiation, but also attenuates the microwave radiation of the 
soil layer. When the thickness of vegetation layer increases, it may even 
lead to the failure of the soil layer signal to break through the vegetation 
layer, thus affect the retrieval of soil moisture. Wigneron et al. (1995) 
considered VOD was polarization dependent and introduced the Cp 
parameter to account for such effect. This polarization dependence was 
also analyzed in Wigneron et al. (2004a). Konings et al. (2021) also 
argued that in view of the large variations of vegetation water content (i. 
e., VOD is the function of vegetation water content) within different 
vegetation components or types, the polarization dependence should be 
considered in the SM retrieval algorithm, otherwise it would cause the 
uncertainty and insufficient understanding of VOD retrievals. 

Soil roughness also affects the microwave emission of land surface, 
and the roughness effects vary with frequencies, angles of incidence and 
polarizations (Wigneron et al., 2011; Montpetit et al., 2015; Zhao et al., 
2015a; Parrens et al., 2016; Peng et al., 2017; Wigneron et al., 2017). 
The roughness model used in SMOS L2/L3 and SMOS-IC is a semi- 
empirical model, in which the roughness effects are characterized by 
three parameters, i.e. the polarization mixing factor (Qr), parameter Hr 

and Np
r (Hr describes influences of both geometric roughness and 

dielectric roughness, NV
r , and NH

r describes angular effects) (Lawrence 
et al., 2013). Many studies have described the optimization of these 
roughness parameters under different surface conditions (Parrens et al., 
2016; Al Bitar et al., 2017; Wigneron et al., 2017). The roughness pa
rameters in the SMOS L2/L3 and SMOS-IC algorithms are assumed to be 
time-invariant. However, the soil roughness varies with time due to 
wind erosion, rainfall, irrigation and farming, etc.. Parrens et al. (2016) 
and Chaubell et al. (2020) demonstrated that the SM retrievals could be 
improved by using optimized surface roughness parameters. 

As a summary, effective scattering albedo and soil roughness have 
direct impacts on the retrievals of SM and VOD. However, their variation 
with time and the polarization-related properties of the retrievals are 
poorly understood. To fill this gap and further improve the performance 
of the SM and VOD retrievals using the SMOS data, a multi-temporal and 
multi-angular approach, MTMA, is proposed in this paper to systemat
ically retrieve four parameters including VOD, SM, effective scattering 
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albedo and surface roughness. The multi-temporal approach, which 
assumes that the vegetation does not change in temporal adjacent 
overpasses, has been previously used to increase the independent in
formation used as input in the retrieval algorithms and thus improve the 
capabilities of the retrieval algorithms (Wigneron et al., 2000; Konings 
et al., 2016; Konings et al., 2017; Li et al., 2021a; Li et al., 2022). In this 
study, the SMOS V-pol MVIs was proposed based on the SMOS H- 
polarized microwave vegetation indices (MVIs) (Cui et al., 2015), in 
which only VOD was retrieved through three pairs of TBs at (30◦, 40◦), 
(35◦, 45◦) and (40◦, 50◦). The MTMA approach developed in this study is 
a further development of the multi-angular approach based on the SMOS 
MVIs by Cui et al. (2015). The adoption of a combined multi-angular and 
multi-temporal/orbital information is expected to increase the robust
ness of the VOD and SM retrievals and make the systematic retrievals of 

effective scattering albedo and soil roughness possibly with more inde
pendent information incorporated as inputs in the retrieval algorithm. 
Therefore, the method proposed in the study would be more suitable for 
the retrievals of SM and VOD at the global scale. 

The proposed MTMA method presented in this study is different from 
the SMOS and SMOS-IC algorithms in several aspects and the main ones 
are: (1) four parameters (vegetation optical depth VODp, effective scat
tering albedo ωp

eff, soil surface roughness Zp
s , and surface soil moisture 

SMp) are retrieved systematically; (2) vegetation parameters (VODp and 
ωp

eff) and soil parameters (SMp and Zp
s) are retrieved in two physically 

separated steps to reduce the uncertainties due to the mutual coupling of 
the vegetation and soil information; (3) the proposed MTMA algorithm 
is implemented with the use of single polarization observation instead of 
using two polarizations that commonly ignore the polarization depen
dence of vegetation effects; (4) a parametric Hp model (Zhao et al., 
2015a), which describes the complex roughness effects depending on 
incidence angle and polarization, is used to retrieve SM and surface 
roughness. 

The detailed description of the method is given in the following 
sections. 

2. Data and pre-processing 

2.1. Satellite products and auxiliary data 

In this study, the refined SMOS Level 1C (SMOS L1C) and the original 
Level 3 (L3) TB data are applied to the MTMA algorithm for retrievals. 
The VOD and SM from SMOS-IC V2 and SMOS L3 products are used for 
inter-comparison. The auxiliary data, including the MODIS NDVI 
product (MOD13C1), the ESA CCI aboveground biomass (AGB), soil 
roughness (h) products/ancillary and the ECMWF precipitation data are 
used to evaluate the MTMA performance of retrievals. In order to 
facilitate comparative analysis, the data used in this study are resampled 
to 25-km spatial resolution. Table 1 summarizes the data used in this 
study with more details provided in Appendix A-1. 

2.2. In-situ data 

In-situ SM data are collected from 11 SM observation networks from 
the International Soil Moisture Network (ISMN) and the Long-Term 
Agroecosystem Research (LTAR) network to verify the retrieval results 
of the MTMA algorithm. More details for these in-situ SM observation 
networks are provided in Appendix A-1. 

3. Method 

3.1. General description of the algorithm 

The zero-order radiative transfer model (τ − ω model) (Mo et al., 
1982) (Appendix A-2) is generally used to describe the surface 

Table 1 
Information of the datasets used in this study  

Variable name Product name Spatial (gridded) resolution Temporal resolution Unit Download address 

TB SMOS L1C 15 km Daily K smos-diss.eo.esa.int 
SMOS L3 25 km Daily K http://www.catds.fr/ 

SM and VOD SMOS L3 25 km Daily SM (m3/m3) 
VOD (no unit) 

http://www.catds.fr/ 

SMOS-IC 25 km Daily SM (m3/m3) 
VOD (no unit) 

https://ib.remote-sensing.inrae.fr/ 

NDVI (MOD13C1) MODIS 0.05◦ 16 days – https://search.earthdata.nasa.gov/ 
AGB ESA CCI 100 m – mg/ ha http://cci.esa.int/biomass/ 
soil roughness (h) SMAP SCA 9 km – cm https://nsidc.org/data/SMAP/ 

SMAP DCA 9 km – cm https://nsidc.org/data/SMAP/ 
SMOS 25 km – cm http://www.catds.fr/ 

soil temperature and precipitation ECMWF 15 km Daily Soil temperature (K) 
Precipitation (mm) 

smos-diss.eo.esa.int  

Fig. 1. Flow chart of the multi-temporal and multi-angular approach for sys
tematically retrieving VODp, ωp

eff, SMp and Zp
s . 
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microwave radiative transfer process, and the unknown parameters in 
τ − ω model (see Appendix A-2) mainly include Es

p (related to soil 

moisture and roughness), VODp and ωeff
p . 

Since the observed microwave radiation of land surfaces are the 
composition of vegetation and soil emissions, the major challenge for 
accurate retrieval of SM is to decouple the soil and vegetation contri
butions, which is also the main difference between existing retrieval 
algorithms. One of the approaches for decoupling soil-vegetation effects 
is the use of MVIs (Shi et al., 2008; Shi et al., 2019), which minimizes the 
soil contribution and can be used for deriving vegetation contributions 
independently without any additional inputs regarding to soil parame
ters. This MVIs approach has been demonstrated by a previous study 
(Cui et al., 2015) but only using the H-pol TB with a priory information 
of ωp

eff based on land cover types. In this study, we further introduce the 
multi-temporal information to retrieve both VODp and ωp

eff, which are 
expected to be a more accurate estimation of vegetation effects. The 
retrieved VODp and ωp

eff are then used for retrieving soil emissivity 
(related to SM and soil roughness). 

The implementation of the multi-temporal and multi-angular 
approach in this study is as follows: (1) for each DGG (Discrete Global 
Grid) node, the SMOS multi-angular TB are processed using the two-step 
regression method (Zhao et al., 2015b) to reduce TB uncertainties 
resulted from the RFI and aliasing issues; (2) for each DGG node, the H- 
pol TB at three angle pairs ((30◦, 40◦), (35◦, 45◦) and (40◦, 50◦)) or the 
V-pol TB at three angle pairs ((15◦, 30◦), (20◦, 35◦) and (25◦, 40◦)) from 
two temporal adjacent overpasses are applied to simultaneously retrieve 
VODp and ωp

eff using the MVIs approach, and the soil information (such as 
the soil emissivity related to soil moisture and roughness) is removed in 
this process; (3) after correcting the vegetation effects with the retrieved 
vegetation parameters (VODp and ωp

eff), the SMp and Zp
s were retrieved 

simultaneously using the parametric Hp model (Zhao et al., 2015a), 
which is applied to compute the soil surface emissivity. The flow chart of 
the MTMA method is shown in Fig. 1. 

3.2. Retrieval of vegetation parameters (VODp and ωp
eff) 

Through numerical simulations using the Advanced Integral Equa
tion Model (AIEM), a linear relationship between the soil emissivity at 
two incidence angles was found (Shi et al., 2019): 

Es
p(θ2) = αp

(
θ1, θ2

)
+ βp

(
θ1, θ2

)
⋅Es

p(θ1) (1)  

where subscript “p” indicates the polarization (H: horizontal, or V: 
vertical); αp and βp are regression coefficients; θ1 and θ2 are two inci
dence angles, for example, θ1 is 30◦ and θ2 is 40◦. 

Combining the τ− ω model with Eq. (1), the linear relationship be
tween the TB at two incidence angles is obtained and the soil informa
tion (such as Ep

s) is removed as below: 

TBp(θ2) = αp(θ1, θ2) • Va
p(θ2)+Ve

p(θ2) − βp(θ1, θ2) •
Va

p(θ2)

Va
p(θ1)

• Ve
p(θ1)+ βp(θ1, θ2) •

Va
p(θ2)

Va
p(θ1)

• TBp(θ1) (2)  

where Vp
e and Vp

a are vegetation emission term and attenuation term 
respectively, and written as 

Ve
p(θ) =

(
1 − Γp(θ)

)
•
(
1 − ωp

)
•
(
1+Γp(θ)

)
• Tc (3)  

Va
p(θ) = Γp(θ) • Ts −

(
1 − Γp(θ)

)
•
(
1 − ωp

)
• Γp(θ) • Tc (4)  

where Tc (K) and Ts (K) are the canopy and soil temperature respectively, 
and are assumed to be equal and expressed by the effective soil tem
perature (Teff); Γp is the vegetation transmissivity (Γp = exp (− τp

c/ cos 
(θ))); τp

c means the VODp; ωp
eff is the vegetation effective scattering al

bedo. The unknowns in Eqs. (2)–(4) include two vegetation parameters 

(VODp and ωp
eff) and coefficients (αp(θ1,θ2) and βp(θ1,θ2)). In this study, 

the SMOS H-pol TBs in three angle pairs (i.e., (30◦, 40◦), (35◦, 45◦) and 
(40◦, 50◦)) or SMOS V-pol TBs in three angle pairs (i.e., (15◦, 30◦), (20◦, 
35◦) and (25◦, 40◦)) are used for retrievals of VODp and ωp

eff. The co
efficients of αp(θ1,θ2) and βp(θ1,θ2) in H- or V-polarization (Table 2) are 
obtained by constructing the relationship (i.e., Eq. (1)) using the simu
lated dataset by the AIEM, and the R is the correlation coefficient be
tween the soil emissivity at two incidence angles. The ranges of SM, 
surface roughness, incidence angle and other parameters used in the 
AIEM simulation are shown in Appendix A-3. Therefore, there are only 
two unknowns of vegetation parameters in Eqs. (2)–(4): VODp and ωp

eff. 
In this study, the multi-temporal approach is further introduced to 

include more information to enable the simultaneous retrieval of VODp 
and ωp

eff using H-pol or V-pol MVIs. The multi-temporal approach as
sumes that the vegetation attributes are almost unchanged over a short 
period, that is, they are set as constants (at several temporal adjacent 
overpasses), so that the multi-temporal data can be fused together for 
retrieving a single VODp and ωp

eff (Konings et al., 2016, 2017). The multi- 
temporal approach fuses additional observation to increase the degree of 
information of input data (Konings et al., 2016, 2017). The increase of 
the degree of information of input TB data could make the retrieval 
procedure easier to be convergent and more robust. 

In this study, VODp and ωp
eff are only assumed to be constant for the 

two temporal adjacent overpassing time. The multi-temporal data can be 
applied to the forward model (Eqs. (2)–(4)) and VODp and ωp

eff will be 
resolved simultaneously when the cost function (Eq. (5)) is minimized 
using the least square method, 

min
X=VODp ,ωeff

p

COSTvegetation
p (X) =

∑N

t=1

∑K

i=1

[
TBp

t(θi) − TBo
p

t
(θi)

]2
/

σ
(

TBo
p

)2

(5)  

where t is the overpassing time (as day in this study) of the SMOS sat
ellite, σ is the standard deviation of the SMOS observed TB, N is the 
number of total satellite overpassing time (days) in consideration, K is 
the number of observation angle pairs, TBp(θ) is simulated TB, TBp

o(θ) is 
SMOS observed TB, X (VODp and ωp

eff) is the parameter to be retrieved. 
In this study, only the single H-pol or V-pol SMOS TB is used to avoid 

the assumption that vegetation effects are polarization independent. For 
each retrieval process, the SMOS multi-angular TB data at three angle 
pairs ((30◦, 40◦), (35◦, 45◦) and (40◦, 50◦)) for H-pol or three angle pairs 
((15◦, 30◦), (20◦, 35◦) and (25◦, 40◦)) for V-pol of N overpasses are 
obtained, including 3 • N angle pairs observations for either H-pol or V- 
pol. The multi-temporal data including 3 • N angle pairs observations for 
H-pol or V-pol will be used to retrieve VODp and ωp

eff. N can be taken as a 
certain value as long as it satisfies the assumption that the change in 
vegetation attributes is neglectable over a short period and its value is 
set to 2 days in this study. For a given day t, VODp and ωp

eff are retrieved 
for days (t − 1, t) and for days (t, t + 1). Thus, when two VODp and two 
ωp

eff are obtained, the average values are used as the result of the day 
following previous studies (Konings et al., 2016; 2017). 

The linear relationship (Eq. (2)) between the H-pol (V-pol) TB at two 
incidence angles was derived by combining τ− ω model with a linear 

Table 2 
Parameters α and β for different pairs of TBs in incidence angles at H-pol and V- 
pol obtained by regression of the simulated datasets using AIEM model.  

H-pol V-pol 

θ1, θ2 αH βH R θ1, θ2 αV βV R 

30◦, 
40◦

− 0.0467 1.0135 0.9987 15◦ , 
30◦

0.0660 0.9501 0.9986 

35◦, 
45◦

− 0.0557 1.0122 0.9982 20◦ , 
35◦

0.0842 0.9363 0.9977 

40◦, 
50◦

− 0.0652 1.0081 0.9973 25◦ , 
40◦

0.1046 0.9207 0.9962  
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relationship between soil emissivity at two incidence angles (Eq. (1)), 
however, non physical solutions might be obtained when using Eq. (2) to 
retrieve the VODp and ωp

eff. This is illustrated in Fig. 2 by taking two DGG 
nodes (DGG ID 8098492, open shrublands; DGG ID 225645, grasslands) 
as an example. In Fig. 2, the abscissa represents the difference between 
the TBp(θ2)simulation calculated using Eq. (2) and the SMOS observed 
TBp(θ1), and the ordinate represents VOD. Besides, the blue line repre
sents the difference between the observed TBp(θ2) and the observed 
TBp(θ1), and each curve indicates the change of TB difference with VOD 
at given ωp

eff values. There are two abnormal phenomena in Fig. 2(a) and 
Fig. 2(b): (1) based on the characteristic of the TB varying with incident 
angle, that is, the V-pol TB generally increases with the increase of the 
angle (below Brewster angle), and the H-pol TB decreases with the in
crease of the angle, however, there are abnormal phenomena: 
TBV(θ2)simulation − TBV(θ1) < 0 (V-pol) or TBH(θ2)simulation − TBH(θ1) >
0 (H-pol); (2) the angle characteristics of H-pol or V-pol TB may be 
weakened with the VOD increases, which means that the TB difference 
of two incidence angles decreases with the increases of VOD (corre
sponding to denser vegetation), but there is abnormal phenomenon that 
the TB difference increases with the increases of VOD. 

The above two anomalies may increase the uncertainty of VODp and 
ωp

eff retrievals. Therefore, the constraints needed to be added in the 
retrieval procedure of VODp and ωp

eff using MVIs: 

TBV(θ2)simulation − TBV(θ1)〉0 (6)  

TBH(θ2)simulation − TBH(θ1)〈0 (7)  

∂
(
TBV(θ2)simulation − TBV(θ1)

)/
∂τ < 0 (8)  

∂
(
TBH(θ2)simulation − TBH(θ1)

)/
∂τ > 0 (9) 

Eq. (6) and Eq. (7) correspond to the above mentioned abnormal 
phenomena (1), Eq. (8) and Eq. (9) correspond to the above mentioned 
abnormal phenomenon (2). After adding constraints (Fig. 2(c) and Fig. 2 
(d)), the cases with non-physical situation can be filtered out, leading to 
more physical significance for retrievals of VODp and ωeff

p . 

3.3. Retrieval of soil parameters (SMp and Zp
s) 

After retrieving the vegetation parameters, the rough soil emissivity 
at the 5 • N = 10 for H-pol or 6 • N = 12 for V-pol channels could be 
simulated, with the SMp and Zp

s remaining to be unknowns. These soil 
parameters (SMp and Zp

s) can be retrieved using a parametric soil emis
sivity model (Eq. (10)) developed by Zhao et al. (2015a): 

Es
p(θ) =

(
1 − rs

p(θ)
)
•
[
Ap • exp

(
Bp • Zs

p
2
+Cp • Zs

p

) ]
(10)  

Hp = Ap • exp
(

Bp • Zs
p

2
+Cp • Zs

p

)
(11)  

Ap = 0.068502 • θ2 − 0.058486 • θ+ 0.976321 (12)  

Bp = − 0.051377 • θ2 + 0.014978 • θ+ 0.045456 (13)  

Cp = 0.601618 • θ2 − 0.151848 • θ − 0.607679 (14)  

where Zp
s (cm) is the soil roughness slope parameter and is a function of 

surface soil root mean square height (SD) and correlation length (Lc) 
( Zs

p = SD
2/Lc); rp

s is the plane reflectivity computed by the Fresnel 

Fig. 2. Simulation results of sensitivity of linear relationship between two incidence angles TB to VODp and ωp
eff: (a) H-pol simulation results without constraints; (b) 

V-pol simulation results without constraints; (c) H-pol simulation results with constraints; (d) V-pol simulation results with constraints. The gray line represents 
simulations were filtered out according to constraints. 
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Fig. 3. Global distribution of the monthly-averaged VOD in June 2017: (a) MTMA-VODH, (b) MTMA-VODV, (c) SMOS-L3 VOD at nadir, (d) SMOS-IC VOD, and (e) NDVI (MODIS).  
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equations; Ap, Bp and Cp are regression coefficients. In this model, the 
roughness effects Hp is expressed as a function of a roughness slope (Zp

s) 
parameter and θ. This parametric Hp model could well describe the 
complex roughness effects which are depending on both polarization 
and incidence angle, which is more suitable for SMOS multi-angular 
observation data. 

When auxiliary data (surface effective temperature, soil texture) are 
obtained, SMp and Zp

s can be retrieved using the rough soil emissivity 
combined with the Mironov dielectric constant model (Mironov et al., 
2009) and Fresnel formula, through the cost function as below: 

min
X=SMp ,Zs

p
COSTsoil

p (X) =
∑N

t=1

∑K

i=1

[
Ep

t(θi) − Eo
p

t
(θi)

]2
(15)  

where Ep
t(θ) is the simulated soil emissivity at the overpassing time t, 

Ep
ot(θ) is soil emissivity calculated from observed TB of SMOS with 

retrieved vegetation parameters at the overpassing time t, K is the 
number of observation angle pairs. X (SMp and Zp

s) are soil parameters to 
be retrieved. 

In summary, the method proposed in this study combining H-pol or 
V-pol MVIs with the multi-temporal approach can be used to retrieve 
global vegetation parameters and soil parameters. 

4. Results 

The MTMA method proposed in this study was applied to system
atically retrieve four parameters (VODp, ωp

eff, SMp and Zp
s) using the 

either H-pol or V-pol SMOS multi-angular TB data. Retrievals of these 
vegetation and soil parameters were evaluated against ground mea
surements and compared with the other two SMOS products (SMOS-L3 
and SMOS-IC). 

4.1. Vegetation optical depth retrievals (VODp) 

Fig. 3 presents the global time-averaged VOD in June 2017 retrieved 
from the MTMA (MTMA-VODH for H-pol and MTMA-VODV for V-pol) 
and its global comparison with SMOS-L3 SM, SMOS-IC SM and MODIS 
NDVI. The four VOD products show comparable patterns at the global 
scale, with high VOD values over tropical forests located in Central Af
rica and Amazon areas, and low VOD values in Southern Africa, 
Australia, and the surrounding areas of Sahara. Except for MTMA-VODV, 
the VOD values from MTMA-VODH, SMOS-L3 and SMOS-IC in tropical 
rainforest are higher than that in coniferous forest in northern Asia and 
Europe. The global distribution of these four VOD products is generally 
consistent with the corresponding NDVI values and reflects the vegeta
tion characteristics of different land cover types. However, these four 
VOD products have missing values in different regions, the reason may 

be that: 1) The missing values in VOD products of MTMA and SMOS-L3 
are mainly due to the flagging of non-vegetation areas (such as urban 
areas, snow and ice, water bodies, wetlands and barren soil) according 
to the land cover types, or invalid retrievals out of its physical range. 2) 
The missing values of SMOS-IC VOD products may be due to the quality 
control using TB_RMSE when model simulated TB differed largely from 
the measured SMOS TB as affected by RFI or other issues. 

In the Eastern Europe, Southeast Asia and tropical forests of Amazon 
and Congo, the values of MTMA-VODV are lower than those of MTMA- 
VODH, and in the Northern edge of Russia and Eastern North America, 
the values of MTMA-VODH are lower than those of MTMA-VODV. The 
preliminary exploration of the difference between H-pol and V-pol VOD 
indicate that the vegetation effects can be polarization dependent even 
at large scales for satellite observations. Konings et al. (2021) also found 
that the polarization dependence of VOD should be considered in the SM 
retrieval algorithm due to the large variations of vegetation water 
content (VOD is related to vegetation water content) within different 
vegetation components and types, otherwise it might cause the uncer
tainty and insufficient understanding of VOD retrievals. The difference 
between MTMA-VODH and MTMA-VODV shown in this study provides a 
clue to improve the performance of VOD applications in biomass and 
vegetation water content estimation. 

In Europe, the MTMA-VODH and MTMA-VODV are generally high and 
consistent with high NDVI (meaning abundant vegetation), but the VOD 
values from SMOS-L3 and SMOS-IC products are relatively lower. In the 
South Asian Subcontinent, the VOD products derived from all three 
methods show low values while the NDVI has high values. The RFI in 
some parts of Europe and South Asia may pollute the SMOS observation 
TB, resulting in large uncertainties in the VOD retrievals. The Zhao's 
method (Zhao et al., 2015b) can reduce the influence of RFI and make 
the refined SMOS TB closer to the theoretical expectations, which is 
beneficial for both VOD and SM retrievals (also see Section 5.1). 

The density plots between AGB data and the annual average VOD in 
2017 from MTMA-VODH, MTMA-VODV, SMOS-L3 and SMOS-IC products 
are shown in Fig. 4. The correlation coefficient R between the VOD 
retrieved by the MTMA and AGB are 0.71 (MTMA-VODH) and 0.52 
(MTMA-VODV) respectively, and are lower than that of SMOS-L3 (0.81) 
and SMOS-IC (0.87) products. It can be found that MTMA-VODH and 
MTMA-VODV values over dense vegetated areas are relatively lower than 
those of SMOS-L3 and SMOS-IC products. Although some studies have 
been carried out at the local scale, for example, the VOD values in the 
forest obtained by Ferrazzoli et al. (2002) based on L-band radiometer 
was close to 0.9, and the VOD values in the low biomass coniferous 
forest of Les Landes (biomass ~100 t /ha) was close to 0.6–0.7 (Grant 
et al., 2008), it was difficult to identify which method was closer to the 
reality, as the validation of VOD at the scale of satellite footprints was 
currently challenging (Li et al., 2021a). It should be noted that the 

Fig. 4. Density plot of the relationship between AGB and annual average of VOD in 2017  
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MTMA-VODH and MTMA-VODV might contain larger uncertainties in 
dense vegetation area, since the difference in TB between different 
incidence angles was small due to strong vegetation effects (Cui et al., 
2015). 

The daily VOD at the selected validation sites from January 1, 2010 
to December 31, 2019 are shown in Fig. 5. It can be found that the 
temporal variations of VOD and NDVI at some sites (such as in South 
Fork and Little River sites) are consistent and the retrieved VOD can 

reflect the vegetation seasonal fluctuations. However, there is a time lag 
phenomenon at some sites (such as in Yanco, Kyeamba, South Fork, 
Little River, and Little Washita) so that the peak value of VOD lags 
behind NDVI as found by Lawrence et al. (2014) in the crop areas of the 
USA. The reason of time lag phenomenon may be that the VOD and 
NDVI reflect different vegetation attributes. The VOD tends to reflect the 
characteristics of vegetation water content (including leaves, stem, 
branches and fruits, etc), while the NDVI tends to reflect chlorophyll 

Fig. 5. Time series of VOD from MTMA-VODH, MTMA-VODV, SMOS-L3, and SMOS-IC in 2010–2019 at validation sites: (a) REMEDHUS, (b) Yanco, (c) Kyeamba, (d) 
South Fork, (e) Fort Cobb, (f) Little River, (g) Little Washita, (h) Walnut Gulch, (i) Maqu, and (j) Naqu. For demonstration, the green dotted line represents the peak 
value of NDVI and the blue dotted line represents the peak value of VOD. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article) 
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level of vegetation canopy, specifically the ‘greenness’ of the canopy. 
The spectral information obtained from optical sensors might become 
saturated with crop growth in the optical bands (Tian et al., 2018). 
However, microwave signals can penetrate through vegetation, and the 
VOD derived from microwave sensors can still obtain vegetation 
contribution when the optical band is saturated. The microwave-derived 
VOD may saturate at a higher vegetation water content and contain 
more information of the total vegetation water content contributed by 
leaves, stem, branches and fruits (Jackson et al., 2004; Lawrence et al., 
2014). 

Differences between the four VOD products can be found in some 
sites, for example, the VOD values of SMOS-IC are lower than that of 
MTMA-VODH, MTMA-VODV and SMOS-L3 in REMEDHUS, Kyeamba, 
Yanco and Walnut Gulch sites, while in the Little River site, the MTMA- 
VODH and MTMA-VODV values are lower than that of the SMOS-IC and 
SMOS-L3 products. One of the reasons for the differences between the 
four VOD products may be the different values of ωp

eff used/retrieved in 
the different algorithms (Li et al., 2021a). 

In Fig. 5, the abnormal fluctuations or daily variation of the MTMA- 
VODV is larger than that of the MTMA-VODH at some sites (such as in 
REMEDHUS, South Fork, Walnut Gulch, and Little Washita). The reason 
may be that when the linear relationship between two incidence angles 
TB is constructed using the simulation data from the AIEM, the corre
lation between TB of H-pol in two incidence angles is higher than that of 
V-pol TB. In other words, the multi-angular information contained in the 
H-pol observations is more abundant than that of the V-pol observations. 
Although the algorithm of SMOS-IC is improved with optimized pa
rameters of both ωp

eff and soil roughness, the total number of effective 
retrievals of SMOS-IC is lower compared to that of SMOS-L3, MTMA- 
VODH, and MTMA-VODV according to the statistical results in Table 3. It 
is likely that this is due to the filtering of RFI effects which is conser
vative in the SMOS-IC product. SMOS-IC VOD values are rather low and 
have a very small variation at REMEDHUS site. For the snapshot-based 
retrievals (SMOS-L3 and SMOS-IC), results are more easily affected by 
noise (such as TB uncertainties, surface heterogeneity and RFI). Non- 
physical-meaning values (beyond the physical range of parameters) 
may be obtained in order to force the simulated TB closer to the TB 
observations, resulting in a reduction in the number of effective re
trievals (within a reasonable range, for example, the VOD and SM should 
not be negative) (Konings et al., 2016, 2017). However, except for Naqu 
and Maqu sites, the number of effective retrievals of SMOS-L3 VOD 
generally exceeds the number of effective VOD retrievals from SMOS-IC 
and MTMA products, mainly because the retrievals affected by RFI are 
retained in the SMOS-L3 product of ‘RE07’ version. In Table 3, it can also 
be seen that the effective VOD number of MTMA products is significantly 
higher than that of SMOS-IC. The reason could be: (1) the VODp and ωp

eff 

are retrieved using microwave vegetation indices (Eq. (2)) in which the 
soil information is eliminated and enables the decoupling of soil and 
vegetation signals in the retrieval process; (2) SMOS L1C TB data are 
refined by the two-step regression method (Zhao et al., 2015b) and 
become closer to theoretical expectation, which means that more 

Table 3 
Numbers of effective VOD retrievals from MTMA-VODH, MTMA-VODV, SMOS-L3 
and SMOS-IC in 2010− 2019.   

MTMA-VODH MTMA-VODV SMOS-IC SMOS-L3 

REMEDHUS 1640 1634 1063 1852 
Yanco 1614 1613 1357 1910 
Kyeamba 1572 1571 1290 1829 
South Fork 1634 1629 1076 1584 
Fort Cobb 1527 1525 1227 1819 
Little River 1532 1532 1273 1850 
Little Washita 1545 1544 1224 1834 
Walnut Gulch 1432 1425 1165 1577 
Maqu 1530 1526 427 1075 
Naqu 1446 1432 264 741  
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locations with TB data affected by RFI may also be used for the retrieval 
after refinement; (3) even if the required TB data are missing or lead to a 
failed retrieval, the multi-temporal approach can make up for the defi
ciency by introducing temporal adjacent overpassing data. 

4.2. Effective scattering albedo retrievals (ωp
eff) 

The global monthly average results of ωp
eff in June 2017 are shown in 

the Fig. 6. The values of MTMA-ωH
eff for H-pol and MTMA-ωV

eff for V-pol in 
the tropical forest areas of the Amazon basin in South America and of the 
Congo basin in Africa are higher than those in the low vegetation areas, 
and this result is similar to the distribution of ωp

eff retrieved by Konings 
et al. (2016, 2017). The mean values of MTMA-ωp

eff for different vege
tation types are also calculated and compared with several reference 
data of ωp

eff as shown in Table 4. The values of MTMA-ωH
eff and MTMA-ωV

eff 

for low vegetation (grass and savannas) are in the range of 0–0.046 and 
0–0.122 respectively, and the values for high vegetation (forest) are 
0.035–0.043 and 0.104–0.138, respectively. The values of MTMA-ωV

eff 

for different vegetation types are significantly higher than those of 
MTMA-ωH

eff. The scattering effects of the vegetation layer depends on the 
vegetation structure (stalks, branches, trunks and leaves) and vegetation 
water content, etc. The scattering contribution of different vegetation 
components depends on their leaves/stems orientation, size and shape, 
etc. Kurum (2013) found that for vegetation with stem-dominated 
scattering (such as corn), the dependence of vegetation scattering for 
V-pol was stronger than that of H-pol due to the stalks near vertical 
orientation. Zhao et al. (2020a) also found that the scattering in H-pol in 
vegetation layer was less than that in V-pol and increases with 
increasing incidence angle. Although the dependence of ωp

eff on polari
zation were mainly found at ground-based observations or model sim
ulations, it was found that the scattering effects of vegetation is still 
different at pixel scales of satellite observations. Furthermore, Konings 
et al. (2016) found that the ωp

eff in SM retrieval algorithms had more 
significant influence on the SM retrievals than VOD. Therefore, to 
improve the quality of SM and VOD retrievals, the polarization depen
dence of vegetation effects in terms of both attenuation (VOD) and 
scattering (ωeff) is considered in the proposed MTMA algorithm. 

4.3. Soil moisture retrievals (SMp) 

Using the MTMA approach proposed in this study, the global 

monthly average SM results (MTMA-SMH for H-pol and MTMA-SMV for 
V-pol) in June 2017 are obtained and compared with the SMOS-L3 and 
SMOS-IC products, as shown in Fig. 7. The spatial distribution of all the 
four products is generally consistent and reflects the spatial variations of 
SM in different climatic regions. The SMOS-IC products have the higher 
value compared with SMOS-L3 and MTMA-SMH and MTMA-SMV in 
predominantly wet soil areas, such as the Amazon Forest of South 
America, India and so on. In the densely vegetated area, the sensitivity of 
the SMOS radiometer to SM is reduced due to the strong attenuation of 
the ground emission signal by vegetation, therefore the SM retrievals are 
significantly affected by the VOD retrievals in these dense vegetation 
areas. As mentioned early, the TB difference between two incidence 
angles is small over densely vegetated surface, which will weaken the 
linear relationship between TB at two incidence angles, so that the low 
VOD values lead to relative lower values of SM when compared with 
SMOS-IC. Moreover, the difference between MTMA-SMH and MTMA- 
SMV is also calculated. The Fig. 7(e) shows that the values of MTMA-SMH 
are generally higher than that of MTMA-SMV, and the areas with large 
difference between these two SM mainly occurred in the tropical forests 
of Amazon and Congo, the forest area of North of Eurasia, the forest area 
of Southeast Asia and the forest area of Northwest and Northeast of 
North America. The reason for these differences in SM may be attributed 
to the different vegetation effects as shown in Fig. 3. To be noted, it is 
expected to have very close SM yet different VOD for different 
polarizations. 

Fig. 8 presents the time series of daily SM retrievals from January 1, 
2010 to December 31, 2019 using our method against the ground in-situ 
measurements at sites, and the values from SMOS-L3 and SMOS-IC are 
also given as references. According to the Fig. 8, Fig. 9 and statistical 
metrics (Table 5), the MTMA-SMH and MTMA-SMV are in good agree
ment with the in-situ data with the overall R >0.75, indicating that the 
MTMA-SMp can capture temporal dynamic changes of SM. In addition, 
the ubRMSE of MTMA-SMH varies from 0.022 to 0.057 m3/m3 and is 
better than that of MTMA-SMV (0.029 to 0.063 m3/m3). In terms of 
correlation, SMOS-IC obtained the best results over most sites outside 
China (REMEDHUS, Yanco, Fort Cobb, Little River, Little Washita and 
Walnut Gulch sites), while results of SMOS-IC and SMOS-L3 are poorer 
in China as shown in several previous studies (Liu et al., 2019; Li et al., 
2020). This can be explained by the strong RFI effects which strongly 
affect the SMOS products in China. So, in China, comparison of obtained 
results is difficult, as results strongly depend on the use of RFI filtering 
and on the use of TB product (SMOS-IC and MTMA did not use the same 
input TB data). The improved results obtained by the MTMA in China 
strongly suggest that the use of TB refined by the two-step regression 
approach to filter the RFI is very performant in regions densely affected 
by RFI. 

In addition, except for the REMEDHUS site, the R of MTMA-SMH is 
lower than that of MTMA-SMV, but the ubRMSE of MTMA-SMV is 
generally greater than that for the MTMA-SMH. The different perfor
mance between MTMA-SMH and MTMA-SMV products may be due to the 
uncertainty of the vegetation parameters retrievals (Fig. 5). Although 
the performance of MTMA-SMV is not as good as that of MTMA-SMH and 
SMOS-IC products in most sites, it is still comparable with SMOS-L3 
product. According to the statistical metrics of combining data from 
all the sites together, it can be found that the R of MTMA-SMH is 0.775, 
and are relatively higher than that of MTMA-SMV (R = 0.756), SMOS-IC 
(R = 0.750) and SMOS-L3 (R = 0.733) products. Moreover, the ubRMSE 
of MTMA-SMH (0.050 m3/m3) and MTMA-SMV (0.054 m3/m3) is also 
lower than that of SMOS-IC (0.058 m3/m3) and SMOS-L3 (0.066 m3/m3) 
products. Overall, the MTMA-SMH and MTMA-SMV by the MTMA 
method performed satisfactorily compared with SMOS-L3 and SMOS-IC 
products in the 11 validation sites used in this study. The improved 
performance of the retrievals using MTMA may come from several 
reasons: (1) The two-step regression method is used to refine the 
SMOSL1C TB, which reduced the influence of RFI and aliasing on the 
observed TB. The details of impact assessment of the two-step regression 

Table 4 
Effective scattering albedo obtained by different methods  

landcover SMAP- 
SCA 

SMOS- 
IC 

SMAP- 
DCA 

MTMA- 
ωH

eff 
MTMA- 
ωV

eff 

water bodies 0.000 0.000 0.000 0.000 0.000 
evergreen needleleaf 

forest 
0.050 0.060 0.070 0.041 0.104 

evergreen broadleaf 
forest 

0.050 0.060 0.070 0.035 0.126 

deciduous needleleaf 
forest 

0.050 0.060 0.070 0.035 0.141 

deciduous broadleaf 
forest 

0.050 0.060 0.070 0.043 0.115 

mixed forests 0.050 0.060 0.070 0.037 0.138 
closed shrublands 0.050 0.100 0.080 0.031 0.076 
open shrublands 0.050 0.080 0.070 0.032 0.069 
woody savannas 0.050 0.060 0.080 0.020 0.122 
savannas 0.080 0.100 0.100 0.021 0.109 
grasslands 0.050 0.100 0.070 0.035 0.087 
permanent wetlands 0.000 0.100 0.100 0.000 0.000 
croplands-average 0.050 0.120 0.060 0.046 0.106 
urban and built-up 

kands 
0.030 0.100 0.080 0.000 0.000 

cropland/natural 
vegetation mosaics 

0.065 0.120 0.100 0.034 0.077 

snow and ice 0.000 0.100 0.080 0.000 0.000 
barren 0.000 0.120 0.050 0.000 0.000  
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Fig. 7. Global distribution of the time-averaged SM (sm3/sm3) in June 2017: (a) MTMA-SMH, (b) MTMA-SMV, (c) SMOS-L3 SM, (d) SMOS-IC SM and (e) the difference (MTMA-SMH minus MTMA-SMV) between MTMA- 
SMH and MTMA-SMV. 
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Fig. 8. Time series of SM retrievals in 2010 to 2019 at different sites: (a) REMEDHUS, (b) Yanco, (c) Kyeamba, (d) South Fork, (e) Fort Cobb, (f) Little River, (g) Little 
Washita, (h) Walnut Gulch, (i) Maqu, (j) Naqu and (k) Ali. Precipitation data are also plotted as reference of wetness fluctuation. 
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method are discussed in Section 5.1, and it is found that the adoption of 
the two-step regression method can increase the number of retrievals 
with improved correlation and reduced uncertainties. (2) The use of 
MVIs, which can minimize the soil contribution, may lead to a more 
accurate retrieval of VOD over low to medium vegetated areas (vali
dation sites), thus reduces the uncertainties in decoupling of the vege
tation and soil information. (3) The multi-angular and multi-temporal 
information is used to increase the abundance of information from ob
servations, in support of additionally retrieval of the dynamic ωp

eff and 
Zp

s , which reduces the uncertainty in SM retrieval, rather than using 
empirical/fixed values in the retrieval algorithm. In Section 5.2–5.3, the 
importance of dynamic retrieval of ωp

eff and Zp
s parameters is discussed. 

4.4. Soil roughness retrievals (Zp
s) 

Soil surface roughness is also an important parameter influencing the 
L-band microwave emission. The increase of surface roughness leads to 
the increase of microwave emission, and reduces its sensitivity to SM. In 
this study, the Zp

s ranging from 0.04 to 0.22 cm is also retrieved with SMp 
and vegetation parameters (VODp and ωp

eff), and compared with several 
existing roughness parameter products/auxiliary data: the surface 
roughness parameter h (0 to 0.16 cm) used by the single channel algo
rithm of SMAP products obtained according to the land cover type; the 
surface roughness h (0 to 0.996 cm) used by the DCA algorithm for 
SMAP (Chaubell et al., 2020); the surface roughness h (0 to 1 cm) 
retrieved based on the multi-angular TB of SMOS (Parrens et al., 2016). 
For comparison, roughness effects of Hp is obtained according to the bare 
soil emissivity model related to roughness parameter ((Hp = exp (− h •
cosNpr(θ)), Np

r = − 1) or Eq. (11)), which decreased with the increase in the 
roughness parameter (Zp

s or h). The global monthly average value of Hp 
in June 2017 (Fig. 10) is obtained and compared with the Hp values 
calculated using the roughness parameter of the existing products/ 
auxiliary data. 

In Fig. 10(c), the h values provided by the SMAP single channel al
gorithm (SCA) are mainly empirical values based on land cover types, 
and the differences between different vegetation types are relatively 
small, and therefore the dynamic range of spatial distribution of Hp is 

small. The Hp retrieved by the MTMA method (Fig. 10(a) and 10(b)) 
have similar results with SMAP-DCA (Fig. 10(d)) in areas of north of 
Eurasia, northeastern North American and southern South America with 
relative strong roughness effects, and in central Australia with weak 
roughness effects. Moreover, the Hp retrieved by the MTMA (Fig. 10(a) 
and 10(b)) have similar results with SMOS roughness data (Fig. 10(e)) in 
areas of most Africa with relatively low roughness effects over forests 
and high roughness effects in southern Africa. However, in the Sahara 
Desert of northern Africa, the spatial distribution of the Hp values of 
Fig. 10(d) and 10(e) are opposite to MTMA-HH for H-pol and MTMA-HV 
for V-pol. Based on the C-band TB data of AMSR-E, Pellarin et al. (2009) 
found that the roughness in the Sahara and the Sahel have a spatial 
variability due to the influence of topography (sand dunes), which is 
similar to the results of MTMA-HH and MTMA-HV. The values of Hp in 
Fig. 10(a), 10(b), 10(d) and 10(e) are also relatively low (corresponding 
to strong roughness effects) in the dense forests of the Amazon in the 
South America and the Congo in Africa due to the existence of a litter 
layer in the dense forest, and the “effective surface roughness” formed 
by the superposition of the litter layer on the ground surface results in 
increase in roughness parameter (Saleh et al., 2006; Grant et al., 2007). 

In this study, the mean values of Hp parameter of different land cover 
types for these five roughness data are also statistically calculated. In 
Table 6, the ranges of Hp parameter values of different land cover types 
for MTMA-HH, MTMA-HV, SMAP-DCA-Hp and SMAP-SCA-Hp are 
0.824–0.889, 0.804–0.861, 0.679–0.820, 0.901–0.936 respectively. The 
value differences between different land cover types for these four 
roughness data are relatively small, and the range of Hp values is also 
small. Moreover, for the same vegetation type, the difference of Hp 
values between the MTMA-HH or MTMA-HV and SMAP-DCA-Hp or 
SMAP-SCA-Hp is also relatively small (about 0.1). However, SMOS-Hp is 
obviously different for different land cover types. In SMOS algorithm 
(Parrens et al., 2016), h is retrieved by combining with VOD, so the 
distribution of Hp parameters may be more related to the distribution of 
vegetation. Therefore, Hp parameters of different land cover types vary 
greatly, with lower values in high vegetation types (such as forest) and 
higher values in low vegetation types (such as grasslands, closed 
shrublands and open shrublands). In general, the global spatial 

Fig. 9. The performance metrics with 95% confidence intervals for SM retrievals at validation sites  
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distribution of Hp parameter of these five roughness data is different. 
The advantage of our method is that the roughness parameter is directly 
retrieved together with SM and vegetation parameters. However, it is 
almost not possible to validate the retrieved roughness at satellite pixel/ 
grid scales, as the surface roughness is a measure of roughness compa
rable to wavelength of the SMOS sensor (21 cm for L-band). And the 
roughness retrieval at satellite pixel/grid scale is more like a parameter 
optimization, and the roughness parameter may become a “conceptual” 
parameter that suits corresponding algorithms. The goal of this study is 
to provide a fair comparison of different roughness data, but it is difficult 
to identify which data is most desireable. 

5. Discussions 

5.1. Impact assessment of the two-step regression 

In this study, the SMOS L1C TB data are re-processed using the two- 

step regression method (Zhao et al., 2015b) to reduce the uncertainty 
resulted from the RFI and aliasing issues. To evaluate the influence of the 
two-step regression method on the SM and VOD retrievals, we compared 
the retrievals using TB with or without the two-step regression refine
ment at the validation sites in 2016. We also compared SMOS L3 TB 
product which is generated without using the two-step regression 
method. 

From retrievals of VOD with the same algorithm of MTMA (Fig. 11), 
the abnormal fluctuation of VOD by using SMOS L3 TB is more obvious 
than the VOD retrieved by using the refined TB, although there is a 
consistency between the two. The reason is that the SMOS L3 TB data 
may not show a reasonable TB dependence on incidence angles and 
polarization, that is, V-pol TB generally increases with the incident angle 
while H-pol TB decreases with the incident angle. The MTMA algorithm 
proposed in this study is utilizing the TB dependence on incidence an
gles, the unreasonable variations of SMOS L3 TB with incidence angle 
will lead to erroneous retrievals. Therefore, the two-step regression 

Table 5 
The validation metrics of MTMA-SMH, MTMA-SMV, SMOS-L3 and SMOS-IC using in-situ measurements from 2010 to 2019 (Number1 represents the number of re
trievals used for calculating metrics, Number2 represents the total number of effective retrievals for each product)  

Network/Sites Product R Bias (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) Number1 Number2 

REMEDHUS MTMA-SMH 0.650 − 0.028 0.049 0.041 782 1640 
MTMA-SMV 0.662 − 0.055 0.072 0.046 1104 
SMOS-IC 0.741 − 0.025 0.052 0.045 1221 
SMOS-L3 0.733 ¡0.011 0.055 0.054 1944 

Yanco MTMA-SMH 0.797 − 0.014 0.050 0.048 1130 1614 
MTMA-SMV 0.776 − 0.042 0.066 0.051 1603 
SMOS-IC 0.821 0.000 0.052 0.052 1358 
SMOS-L3 0.815 0.021 0.063 0.059 1917 

Kyeamba MTMA-SMH 0.776 − 0.021 0.061 0.057 897 1572 
MTMA-SMV 0.719 − 0.052 0.082 0.063 1335 
SMOS-IC 0.773 ¡0.011 0.060 0.059 1283 
SMOS-L3 0.756 0.021 0.070 0.067 1842 

South Fork MTMA-SMH 0.660 − 0.070 0.085 0.049 589 1634 
MTMA-SMV 0.600 − 0.099 0.115 0.058 1507 
SMOS-IC 0.640 ¡0.070 0.093 0.062 1069 
SMOS-L3 0.671 − 0.039 0.073 0.062 1707 

Fort Cobb MTMA-SMH 0.829 − 0.048 0.057 0.031 999 1527 
MTMA-SMV 0.814 − 0.074 0.085 0.041 1398 
SMOS-IC 0.853 − 0.065 0.074 0.036 1219 
SMOS-L3 0.851 ¡0.046 0.064 0.045 1835 

Little River MTMA-SMH 0.857 0.042 0.048 0.022 1077 1532 
MTMA-SMV 0.854 ¡0.006 0.029 0.029 1532 
SMOS-IC 0.879 0.049 0.061 0.035 1273 
SMOS-L3 0.825 0.082 0.095 0.048 1850 

Little Washita MTMA-SMH 0.863 − 0.022 0.036 0.028 1072 1545 
MTMA-SMV 0.835 − 0.045 0.060 0.040 1509 
SMOS-IC 0.868 − 0.040 0.053 0.034 1222 
SMOS-L3 0.851 ¡0.021 0.049 0.045 1837 

Walnut Gulch MTMA-SMH 0.748 0.007 0.032 0.032 1063 1432 
MTMA-SMV 0.712 − 0.033 0.054 0.043 1432 
SMOS-IC 0.788 − 0.011 0.035 0.033 1185 
SMOS-L3 0.778 ¡0.002 0.044 0.043 1686 

All sites outside China MTMA-SMH 0.696 − 0.019 0.054 0.051 7609 11,064 
MTMA-SMV 0.704 − 0.050 0.073 0.053 9988 
SMOS-IC 0.675 − 0.019 0.063 0.060 8766 
SMOS-L3 0.658 0.005 0.069 0.069 13,247 

Maqu MTMA-SMH 0.779 − 0.051 0.069 0.047 221 1530 
MTMA-SMV 0.559 − 0.097 0.113 0.058 1530 
SMOS-IC 0.627 − 0.029 0.072 0.066 437 
SMOS-L3 0.620 ¡0.014 0.078 0.077 1340 

Naqu MTMA-SMH 0.795 − 0.031 0.061 0.053 102 1446 
MTMA-SMV 0.703 − 0.111 0.120 0.047 1446 
SMOS-IC 0.684 − 0.043 0.083 0.071 277 
SMOS-L3 0.580 ¡0.014 0.085 0.084 1152 

Ali MTMA-SMH 0.820 − 0.073 0.078 0.027 143 1409 
MTMA-SMV 0.884 − 0.057 0.064 0.030 1409 
SMOS-IC 0.291 0.149 0.255 0.207 236 
SMOS-L3 0.886 ¡0.017 0.063 0.060 604 

All Sites MTMA-SMH 0.775 − 0.017 0.053 0.050 8035 16,881 
MTMA-SMV 0.756 − 0.050 0.073 0.054 15,805 
SMOS-IC 0.750 − 0.018 0.061 0.058 10,923 
SMOS-L3 0.733 0.003 0.066 0.066 18,155  
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Fig. 10. Global distribution of the time-averaged Hp in June 2017: (a) the MTMA-HH obtained using retrievals of ZH
s by our method with H-pol TB, (b) the MTMA-HV obtained using retrievals of ZV

s by our method with V-pol 
TB, (c) the Hp obtained using soil roughness h of SMAP single channel algorithm (SCA) ancillary data, (d) the Hp obtained using soil roughness h of SMAP dual channel algorithm (DCA) ancillary data and (e) the Hp 
obtained using soil roughness h estimated by SMOS data. 
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method used for refining SMOS L1C TB data is an essential step for the 
implementation of the MTMA. 

According to Fig. 12 and Table 7, the SM retrievals using the refined 
TB performs much better compared with that using the original SMOS 
L3 TB data at most of the sites in terms of R or ubRMSE, except at 
REMEDHUS and Walnut Gulch sites where the R of TBRefined-SMV are 
smaller than that of TBSMOSL3-SMV. Moreover, the total amount of SM 
retrievals by the refined TB is significantly more than that retrieved by 
the original SMOS L3 TB. Comparison was not carried out at the three 
validation sites (Ali, Maqu and Naqu sites) in China due to too few days 
(<15 days) with successful SM retrievals using the original SMOS L3 TB, 
possibly resulted by small amount of available original SMOS L3 TB data 
in 2016 due to the influence of RFI. Therefore, we believe that it is 
necessary to reprocess SMOS L1C TB with the two-step regression 
method to reduce the influence of the RFI. 

5.2. Importance of additional retrieval of ωp
eff 

Davenport et al. (2005) and Fernandez-Moran et al. (2017b) 
confirmed that errors in ωp

eff may increase the uncertainties in the SM 
and VOD retrievals. The ωp

eff is dependent on polarization and varies over 
time, which should not be ignored in SM retrieval algorithm. However, 
most algorithms utilize constant (calibrated) values dependent on land 
cover types to reduce the number of unknows. In this study, the ωp

eff, as 
one of the important factors affecting the SM retrievals, is simutaneously 
retrieved together with VODp using the proposed MTMA method. To 
demonstrate the significance of dynamic retrieval of ωp

eff, we selected the 
data from 2015 to 2016 to retrieve SM using either dynamic retrievals of 
ωp

eff or setting ωp
eff as constants, respectively, and compared the accuracy 

of the SM retrievals at validation sites. The constant values of ωp
eff are 

obtained from different satellite products, as listed in Table 4. 
The comparison of metrics between SM retrievals using dynamic ωp

eff 

values and fixed ωp
eff values is shown in Fig. 13. The abscissa represents 

the metrics of SM retrieved by dynamic ωp
eff values, and the ordinate 

represents the metrics of SM retrieved by fixed ωp
eff values obtained from 

SMOS-IC, SMAP-SCA and SMAP-DCA products, respectively. The first 
row in Fig. 13 shows that there is almost no difference between the R of 
H-pol SM retrieved by dynamic ωH

eff values and static ωH
eff values, but the 

ubRMSE of SM retrieved by dynamic ωH
eff values is slightly lower. The 

second row in Fig. 13 shows that the R values of V-pol SM retrieved by 
static ωV

eff values from the SMOS-IC product are slightly higher than that 
of SM retrieved using dynamic ωV

eff values, and there are also cases where 
the R values of SM retrieved using the static ωV

eff values from SMAP-SCA 
and SMAP-DCA products are lower than that using the dynamic ωV

eff 

values. Furthermore, the ubRMSE of V-pol SM retrieved by static ωV
eff 

values from SMOS-IC are moderately lower than that based on dynamic 
ωV

eff values at Fort Cobb, Little River and Walnut Gulch sites, but the 
ubRMSE values of SM retrieved by dynamic ωV

eff values are smaller than 
that based on static ωV

eff at Yanco, South Fork and Maqu sites. Mean
while, the ubRMSE values of V-pol SM retrieved by using dynamic ωV

eff 

values and using the static ωV
eff values provided by SMAP-SCA and SMAP- 

DCA products are comparable. 
In summary, compared with setting the ωp

eff as constants in SM 
retrieval, the performance of SM obtained using dynamic ωp

eff values is 
more satisfactory in particular for the H-pol SM in terms of ubRMSE. 
Considering that the ωp

eff should vary with locations and time, due to the 
high heterogeneity of vegetation and its seasonality, dynamic pixel-wise 
ωp

eff is expected to lead to more robustness in both SM and VOD retrievals 
(Konings et al., 2016). Moreover, our results reveals that the ωp

eff is po
larization dependent at satellite pixel/grid scales, as shown in Fig. 6. 
These results provid an opportunity to further understand the spatio
temporal variation of vegetation scattering at a global scale, which is 
worthy of fruther exploration. 

5.3. Dependence of roughness effects on soil moisture 

In this study, the daily roughness parameter Zp
s was simultaneously 

retrieved together with SM. According to Eq. (11), the parameter Hp 
describing roughness effects was obtained. Since it is almost not possible 
to validate the roughness parameter at satellite pixel/grid scales, we 
analyzed the dependence of roughness effects on soil moisture to prove 
its validity. Previous studies have indicated that the roughness effects 
may vary with soil moisture content due to the smoothing effect of 
precipitation and a ‘dielectric roughness’ layer under the visible soil 
layer (Wigneron et al., 2001; Schneeberger et al., 2004; Escorihuela 
et al., 2007). Peng et al. (2017) found that the Hp was a power expo
nential function of SMp: 

Hp = mp • SMp
np (16)  

where mp and np are fitted coefficients. The data from 2015 to 2016 at 
validation sites are used to explore the dependence of roughness on soil 
moisture at satellite scale. 

By fitting Eq. (16) with the MTMA retrieved SM and roughness, it is 
found there is a dependence of roughness on soil moisture at five sites 
(Yanco, Little River, Maqu, Naqu and Ali sites) with R2 >0.35 for both of 
H-pol and V-pol, while various site-dependent constant roughness 
values are observed at other sites. Therefore, we selected these five sites 
for analysis. The scatter plots of Hp and SMp (under conditions below 
field capacity) using the data from all the five sites are shown in Fig. 14, 
with fitted parameters including mp, np and R2 shown in Table 8. The 

Table 6 
The Hp parameter of different land cover types obtained by different methods    

Static Dynamic  

ID landcover SMAP-DCA SMAP-SCA SMOS MTMA-HH MTMA-HV Standard deviation(H-pol) Standard deviation(V-pol) 

0 water bodies – – – – – – – 
1 evergreen needleleaf forest 0.800 0.902 0.295 0.839 0.824 0.025 0.027 
2 evergreen broadleaf forest 0.733 0.901 0.132 0.824 0.804 0.025 0.026 
3 deciduous needleleaf forest 0.694 0.911 0.278 0.829 0.810 0.018 0.019 
4 deciduous broadleaf forest 0.752 0.917 0.237 0.831 0.812 0.026 0.028 
5 mixed forests 0.819 0.913 0.288 0.836 0.811 0.025 0.028 
6 closed shrublands 0.713 0.930 0.757 0.886 0.849 0.022 0.029 
7 open shrublands 0.679 0.936 0.664 0.889 0.860 0.023 0.028 
8 woody savannas 0.738 0.918 0.295 0.868 0.850 0.022 0.025 
9 savannas 0.688 0.925 0.417 0.843 0.816 0.022 0.025 
10 grasslands 0.702 0.919 0.586 0.846 0.811 0.024 0.025 
11 permanent wetlands – – – – – – – 
12 croplands-average 0.756 0.934 0.359 0.889 0.862 0.026 0.022 
13 urban and built-up kands – – – – – – – 
14 cropland/natural vegetation mosaics 0.756 0.930 0.361 0.863 0.841 0.030 0.025 
15 snow and ice – – – – – – – 
16 barren 0.708 0.905 0.563 0.826 0.812 0.038 0.028  
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Fig. 11. Time series of VOD retrieved by MTMA using refined H-pol TB (TBRefined-VODH), refined V-pol TB (TBRefined-VODV), unrefined H-pol TB (TBSMOSL3-VODH) 
and unrefined V-pol TB (TBSMOSL3-VODV) in 2016 at sites: (a) REMEDHUS, (b) Yanco, (c) Kyeamba, (d) South Fork, (e) Fort Cobb, (f) Little River, (g) Little Washita, 
and (h) Walnut Gulch. 

Y. Bai et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 280 (2022) 113190

18

plot shows that the R2 between Hp and SMp exceeds 0.6 and the Hp in
creases as SM increases, indicating a decrease in roughness effects. It is 
reasonable that the high soil moisture (after precipitation) may smooth 
the soil surface (i.e., low roughness effects), while the low soil moisture 
may cause an additional ‘dielectric roughness’ layer (i.e., high rough
ness effects) due to increased penetration depth. It is shown that the 
dependence of Hp on SM is different for different polarization. Moreover, 
with the increase of SM, the sensitivity of Hp to SMp decreases. Our 

results indicate that the dependence of roughness effects on soil mois
ture still exists at satellite pixel/grid scales and can be explained by an 
exponential function for those sites where the retrieved roughness 
parameter changes over time. 

5.4. Limitations and quality control 

Although the MTMA achieved a promising results in retrieving SM, 

Fig. 12. Time series of SM retrieved by the MTMA using refined H-pol TB (TBRefined-SMH), refined V-pol TB (TBRefined-SMV), unrefined H-pol TB (TBSMOSL3-SMH) and 
unrefined V-pol TB (TBSMOSL3-SMV) in 2016 at sites: (a) REMEDHUS, (b) Yanco, (c) Kyeamba, (d) South Fork, (e) Fort Cobb, (f) Little River, (g) Little Washita, and (h) 
Walnut Gulch. 
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the MTMA algorithm developed in this study has some limitations as 
discussed below. 

(i) The MTMA algorithm might be less applicable to V-pol TB ob
servations due to the less variability of V-pol TB with incidence 
angles, and the polarization dependence of VOD at the satellite 
pixel/grid scale found in this study needs further confirmation. 
Many previous studies have indicated that the VOD is dependent 
on frequency, polarization, and incidence angle (Jackson and 
Schmugge, 1991; Wigneron et al., 2004b; Zhao et al., 2020b; 
Konings et al., 2021; Zhao et al., 2021), although most algorithms 
assume that there is no dependence on polarization to reduce the 
number of unknowns. However, it is important to retrieve VODs 
at different polarizations, which should be useful to separate the 
contributions of vegetation water content, biomass, and vegeta
tion structure, etc., to VODs, since the sensitivities of microwave 
remote sensing to vegetation vary with frequency and polariza
tion (Baur et al., 2019; Konings et al., 2021). Although retrieval of 
VOD at different polarizations is important, it is almost not 
possible to validate the value of VOD, especially at the satellite 
pixel/grid scale. Moreover, the VOD is a conceptual variable from 
the view of radiative transfer model rather than a physical vari
able, and the VOD values could be different from different algo
rithms, such as the difference between our results with that from 
SMOS-IC, and the difference between SMOS-IB AMSR2 and CCI 
(Wang et al., 2021). Despite the uncertainties in the VOD results, 
this study, for the first time, derived and demonstrated the global 
L-band VODs at different polarizations.  

(ii) The MTMA algorithm is more prone to saturation in densely 
vegetated areas (AGB above 200 Mg/ha) compared to other al
gorithms (SMOS L3 and SMOS-IC). Different from iterative al
gorithms based on forward modelling, the MTMA algorithm 
utilizes analytical solutions between TB observations at different 
incidence angles to first retrieve the vegetation properties. Our 

approach is able to separate the soil and vegetation contributions, 
but it is highly relying on the variability of TB with incidence 
angles. For dense vegetated areas, the vegetation effects (VOD) 
are too strong to have significant variation in observed TB, and 
thus lead to less degree of information to derive an effective value 
of VOD. In addition, some studies have also found that VOD 
products (such as SMAP SCA and DCA products) incorporating 
optical remote sensing information in the algorithms showed 
obvious saturation (Li et al., 2022). The main reason might be 
that optical remote sensing data (NDVI) was more sensitive to the 
features of the upper vegetation layer information and was easier 
to be saturated than VOD. This saturation phenomenon of our 
VOD products may limit the interest of using VOD to monitor the 
phenological dynamics of vegetation over forests. 

Previous studies have shown that there was a linear correlation be
tween the L-band VOD and AGB, and the correlation coefficient can 
exceeded 0.85 (Brandt et al., 2018; Li et al., 2020; Li et al., 2021b). 
However, in Fig. 4, the VOD values retrieved by MTMA are saturated 
when the AGB values exceed 200 Mg/ha. To demonstrate the sensitivity 
of our polarized VOD to AGB, we averaged values of VOD and AGB for 
different vegetation types (evergreen needleleaf forest (ENF), evergreen 
broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous 
broadleaf forest (DBF), mixed forest (MF), closed shrublands (CS), open 
shrublands (OS), woody savannas (WS), savannas (S), grasslands (G), 
croplands (C), cropland/natural vegetation mosaic (CNVM)) at the 
global scale in 2017 as shown in Fig. 15. It can be found that the VOD is 
linear correlated with AGB when AGB values are lower than 100 Mg/ha 
except for EBF. However, when AGB values exceed 200 Mg/ha for EBF, 
the values of VOD do not increase anymore, which may indicate that the 
uncertainty of VOD retrievals using MTMA is relatively large for EBF. 
The high AGB values can lead to a transmissivity value close to 0, thus 
significantly weaken the difference between TB from various incidence 
angles. The MTMA algorithm, which is highly relying on the variability 

Table 7 
The quantitative validation results of TBRefined-SMH, TBRefined-SMV, TBSMOSL3-SMH and TBSMOSL3-SMV using in-situ measurements in 2016  

Network/Sites Product R Bias (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) Number of retrievals 

REMEDHUS TBRefined-SMH 0.801 − 0.042 0.058 0.040 209 
TBSMOSL3-SMH 0.713 ¡0.005 0.068 0.067 146 
TBRefined-SMV 0.785 ¡0.052 0.065 0.040 158 
TBSMOSL3-SMV 0.792 − 0.064 0.079 0.045 110 

Yanco TBRefined-SMH 0.916 ¡0.012 0.045 0.043 208 
TBSMOSL3-SMH 0.840 0.032 0.065 0.056 160 
TBRefined-SMV 0.860 − 0.045 0.066 0.048 203 
TBSMOSL3-SMV 0.728 ¡0.033 0.077 0.069 133 

Kyeamba TBRefined-SMH 0.856 ¡0.026 0.059 0.053 204 
TBSMOSL3-SMH 0.830 0.031 0.070 0.062 149 
TBRefined-SMV 0.748 − 0.065 0.090 0.062 181 
TBSMOSL3-SMV 0.613 ¡0.046 0.095 0.083 119 

South Fork TBRefined-SMH 0.526 − 0.105 0.119 0.057 219 
TBSMOSL3-SMH 0.506 ¡0.068 0.097 0.070 141 
TBRefined-SMV 0.471 − 0.122 0.143 0.076 208 
TBSMOSL3-SMV 0.401 ¡0.109 0.147 0.099 105 

Fort Cobb TBRefined-SMH 0.821 − 0.046 0.055 0.029 201 
TBSMOSL3-SMH 0.722 0.009 0.056 0.056 164 
TBRefined-SMV 0.765 − 0.062 0.079 0.048 195 
TBSMOSL3-SMV 0.649 ¡0.034 0.077 0.069 114 

Little River TBRefined-SMH 0.922 0.046 0.050 0.019 195 
TBSMOSL3-SMH 0.790 0.090 0.098 0.041 169 
TBRefined-SMV 0.909 0.008 0.033 0.032 195 
TBSMOSL3-SMV 0.775 0.044 0.072 0.057 122 

Little Washita TBRefined-SMH 0.838 ¡0.031 0.043 0.029 202 
TBSMOSL3-SMH 0.620 0.032 0.070 0.062 169 
TBRefined-SMV 0.779 − 0.033 0.063 0.054 202 
TBSMOSL3-SMV 0.634 ¡0.022 0.067 0.063 118 

Walnut Gulch TBRefined-SMH 0.784 0.012 0.030 0.028 187 
TBSMOSL3-SMH 0.611 0.045 0.069 0.053 135 
TBRefined-SMV 0.639 ¡0.002 0.054 0.054 119 
TBSMOSL3-SMV 0.773 − 0.011 0.072 0.071 91  
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of TB with incidence angles, would have a greater uncertainty in re
trievals due to less degree of information over forested areas. Therefore, 
we filtered out the SM retrievals with the AGB values exceeding 200 Mg/ 
ha as quality control (Fig. 16). Compared with Fig. 7, it can be found that 
the areas with large uncertainty of SM retrievals are mainly distributed 
in the tropical forest areas of Amazon, Congo, Indonesia, and New 
Guinea. 

It is worth noting that the retrieval of VODp and ωp
eff in this study is 

not constrained in cost function as done in SMOS L2/L3 and SMOS-IC 
algorithms, and the VODp retrievals in dense forest area is low and 
saturated. For example, the range of MTMA-ωH

eff in dense forest area is 
0.04–0.05, and the range of MTMA-VODH is 0.5–0.6. However, Cui et al. 
(2015) assumed that the ωp

eff in dense forest area was 0.1, and obtained 
VOD retrievals of > 1, indicating that the vegetation parameter 

Fig. 13. Dynamic-based ωp
eff metrics versus static-based ωp

eff metrics (R and ubRMSE) at 10 validation sites in 2015− 2016.  

Fig. 14. Estimated roughness effect parameter Hp versus SM at five validation sites (Yanco, Little River, Maqu, Naqu and Ali sites): (a) H-pol and (b) V-pol 
in 2015− 2016. 
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retrievals in these areas were still expected to be improved if we consider 
adding constraints to the parameters to be retrieved in the cost function. 
Therefore, although the saturation of VODp in dense forest area is a 
limitation of the MTMA, it is possible to be further improved in future 
research. 

In addition, in this study, only 11 ground validation networks were 
used to evaluate SM products at the global scale, but the number of 
networks and their corresponding vegetation types might not be suffi
cient for a reliable global validation. The fact is that the number of 
available networks with sufficient observations to support a reliable 
validation of the large-scale (tens of kilometers) SM retrievals with L- 
band radiometry is limited. Therefore, more validation sites that covers 
diverse land cover types especially for dense vegetation areas are needed 
towards a more comprehensive validation. 

6. Conclusion 

In this study, we proposed a multi-temporal and multi-angular 
(namely MTMA) approach to systematically retrieve four parameters 
of VODp, ωp

eff, SMp and Zp
s based on the theoretical microwave vegetation 

indices from H-pol or V-pol SMOS data. The proposed algorithm assumes 
that vegetation parameters of VODp and ωp

eff do not change in temporal 
adjacent overpasses over short period (i.e. in a couple of days), while soil 
parameters of SMp and Zp

s remain to be time-varying. Through a moving- 
window retrieval, daily and polarization-dependent results of the four 
parameters are obtained and compared with the in-situ measurements 
and other existing SMOS-L3 and SMOS-IC products. 

Notably, the vegetation parameters are retrieved in this study based 
on H-pol and V-pol SMOS TB, respectively. The spatio-temporal 

Table 8 
Fitted parameters mp, np and R2 for exponential function (Hp = mp • SMp

np ) at H- 
pol and V-pol  

H-pol V-pol 

mH 0.943 mV 0.874 
nH 0.040 nV 0.023 
R2 0.626 R2 0.609  

Fig. 15. Comparison between global annual average VOD and AGB of different 
vegetation types in 2017. 
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distribution of the retrieved VOD by the MTMA is similar to SMOS-L3 
and SMOS-IC products. In the dense vegetation area (Amazon forest in 
South America and Congo forest in Africa), the MTMA-VODp are lower 
than the other two products due to a saturation of signals in angular 
dependence of TB. The SMOS-L3 VOD is relatively noisy compared with 
the other three products, which may be attributed to the error accu
mulation in the algorithm. The SMOS-IC products have the fewest 
number of VOD retrievals, which may be due to the strict quality control 
of the RFI effects, which is modulated in the algorithm using the flag of 
TB_RMSE (Fernandez-Moran et al., 2017a; Wigneron et al., 2021). The 
MTMA-ωH

eff and MTMA-ωV
eff obtained by the proposed MTMA method in 

this study correspond to the characteristics of vegetation types on a 
global scale, the values of MTMA-ωH

eff and MTMA-ωV
eff for low vegetation 

(grass and savannas) are 0–0.046 and 0–0.122, and the values for high 
vegetation (forest) are 0.035–0.043 and 0.104–0.138, respectively, 
indicating a stronger vegetation scattering effects at V-pol. By 
comparing the differences between H-pol and V-pol vegetation param
eters (VODp and ωp

eff), it is suggested that attention should be paid to the 
polarization dependence of vegetation effects in SM retrieval algorithms 
based on the spaceborne passive microwave remote sensing observa
tions, although it is a very challenging task to validate. 

The performance of the MTMA retrieved SM was validated with in- 
situ measurements from 11 dense networks. The MTMA-SMH and 
MTMA-SMV can capture very well the dynamic changes of SM and have a 
good correlation with the in-situ data (overall R > 0.75). The overall 
ubRMSE for MTMA-SMH and MTMA-SMV are 0.050 m3/m3 and 0.054 
m3/m3 respectively and are lower than that of SMOS-L3 and SMOS-IC 
products. However, the SMOS-IC products generally present higher 
correlation coefficients compared to MTMA-SMH in most sites outside 
China; RFI filtering is crucial in China and makes very difficult to 
compare different retrieval algorithms based on different TB products. 
However, The improved results obtained by the MTMA in China strongly 
suggest that the use of TB refined by the two-step regression approach to 
filter the RFI is very performant in regions densely affected by RFI. The 
MTMA-SMH and MTMA-SMV are lower than SMOS-IC product in dense 
vegetation areas (tropical forests in Central Africa and Amazon areas) 
due to a relatively low values of MTMA-VODH and MTMA-VODV. The 
retrieved values of the roughness parameters Zp

s in this study are rela
tively high in dense forest area (Amazon forest in South America and 
Congo forest in Africa) and parts of the Sahara desert in northern Africa, 
which is consistent with the results from Saleh et al. (2006), Grant et al. 
(2007) and Pellarin et al. (2009). In addition, it is found that the 
roughness effects can be dependent on soil moisture even at the satellite 
pixel/grid scale, indicating the importance of simultaneous retrieval of 
SM and roughness. 

The method proposed in this study takes full advantage of the multi- 
angular features of SMOS data to decouple the soil-vegetation in
teractions and makes full use of multi-temporal observations to increase 
the abundance of information of satellite measurements used in the al
gorithm for additional retrieval of vegetation effective scattering albedo 
and soil roughness. The limitation of the algorithm is its large sensitivity 
to TB variability with incidence angles, resulting in increased un
certainties in dense vegetation areas (AGB above 200 Mg/ha) where the 
TB variation with incident angle is small, which should be further 
improved in subsequent research. 
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