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L-Band Microwave Satellite Data and Model
Simulations Over the Dry Chaco to Estimate

Soil Moisture, Soil Temperature,
Vegetation, and Soil Salinity

Frederike Vincent , Michiel Maertens, Michel Bechtold , Esteban Jobbágy , Rolf H. Reichle ,
Veerle Vanacker , Jasper A. Vrugt , Jean-Pierre Wigneron, and Gabriëlle J. M. De Lannoy

Abstract—The Dry Chaco in South America is a semi-arid ecore-
gion prone to dryland salinization. In this region, we investigated
coarse-scale surface soil moisture (SM), soil temperature, soil salin-
ity, and vegetation, using L-band microwave brightness tempera-
ture (TB) observations and retrievals from the soil moisture ocean
salinity (SMOS) and soil moisture active passive satellite missions,
Catchment land surface model (CLSM) simulations, and in situ
measurements within 26 sampled satellite pixels. Across these 26
sampled pixels, the satellite-based SM outperformed CLSM SM
when evaluated against field data, and the forward L-band TB sim-
ulations derived from in situ SM and soil temperature performed
better than those derived from CLSM estimates when evaluated
against SMOS TB observations. The surface salinity for the sam-
pled pixels was on average only 4 mg/g and only locally influenced
the TB simulations, when including salinity in the dielectric mixing
model of the forward radiative transfer model (RTM) simulations.
To explore the potential of retrieving salinity together with other
RTM parameters to optimize TB simulations over the entire Dry
Chaco, the RTM was inverted using 10 years of multiangular
SMOS TB data and constraints of CLSM SM and soil temperature.
However, the latter modeled SM was not sufficiently accurate and
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factors such as open surface water were missing in the background
constraints, so that the salinity retrievals effectively represented a
bulk correction of the dielectric constant, rather than salinity per se.
However, the retrieval of vegetation, scattering albedo, and surface
roughness resulted in realistic values.

Index Terms—L-band microwave, land surface model, salinity,
soil moisture, soil moisture active passive (SMAP), soil moisture
ocean salinity (SMOS), soil temperature, vegetation.

I. INTRODUCTION

SOIL-VEGETATION processes and their interaction with
the atmosphere determine the characteristic features of

terrestrial biomes around the world. Soil moisture and vegetation
are at the center of the coupling between water, energy, and car-
bon cycles, they regulate land surface fluxes and are constrained
by environmental factors such as soil chemical properties, ter-
rain, land use, or human interventions [1], [2]. In dry regions,
the soil salinity plays an important role in land surface processes
because it influences vegetation growth, and alters the water,
energy, and carbon budgets [3], [4]. Therefore, an integrated
large-scale assessment of soil moisture SM, vegetation, and soil
salinity is crucial in drylands or biomes with very dry seasons,
often found in tropical and subtropical regions.

Large-scale estimates of surface soil moisture (SM) and veg-
etation are routinely available from land surface and vegetation
model simulations and from satellite observations or combina-
tions thereof [5]. The L-band microwave soil moisture ocean
salinity (SMOS [6]) and soil moisture active passive (SMAP [7])
missions were launched with the explicit purpose to monitor SM
globally, and also provide estimates of vegetation optical depth
[8]–[10].

In contrast to SM and vegetation, large-scale estimates of
salinity are scarce and often characterized by a low temporal
resolution. Some global estimates are provided by, e.g., the Har-
monized World Soil Database (HWSDv1.21, hereafter HWSD)
[11]. However, those salinity estimates are typically classified
in a few categories and the information is time-invariant, often
relying on soil samples of decades ago. Remote sensing offers
the potential to address these limitations.
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Optical remote sensing satellites have localized areas affected
by excess soil salinity using spectral salinity indices [12], veg-
etation proxies [13], or machine learning techniques using a
stack of optical remote sensing data and other global datasets
[14]. Thermal remote sensing has also been explored to map
salinity [15]. Alternatively, microwave remote sensing might
prove useful for salinity detection. Passive L-band microwave
observations from the SMOS and SMAP missions are routinely
used for sea surface salinity estimation [16], but the potential
for soil surface salinity monitoring has not been fully explored
yet. Given that at L-band, the soil water dielectric constant is
sensitive to salinity [17], it may be possible to improve brightness
temperature (TB) simulations, improve SM retrievals in saline
areas, and perhaps even estimate soil surface salinity by includ-
ing the effect of salinity in the computation of the dielectric
constant for water [18], [19], as part of the microwave radiative
transfer model (RTM).

Chaturvedi et al. [20] suggested that a combination of L- and
C-band microwave remote sensing data might allow to differ-
entiate between soil salinity and SM effects on the microwave
signal. Jackson and O’Neill [21] used the equations of [19] in the
dielectric mixing model of [22] to conclude that salinity below 5
parts per thousand (PPT, mg/g) is most likely undetectable using
L-band and would therefore not affect SM retrievals. In contrast,
for areas with higher salinity levels, up to 128 PPT, McColl et al.
[23] reported significant overestimations of simulated TB when
salinity is not accounted for, leading to errors in SM retrieval.

In short, L-band microwave remote sensing has a proven
capability to routinely estimate large-scale SM and vegetation
optical depth, and it is also affected by salinity, as shown in
laboratory and small-scale studies. However, the TB sensitivity
to salinity at the coarse spatial resolution of spaceborne passive
microwave radiometers has not yet been widely studied. The
key question of this article is therefore what we can learn from
L-band TB observations about land surface variables such as soil
salinity, SM, soil temperature, and vegetation. To this end, the
South-American Dry Chaco, with its naturally saline soils [24]
at risk of future salinization, forms a unique large-scale testbed.

The objectives of this article are to 1) evaluate large-scale
estimates of SM and soil temperature in the Dry Chaco, using
data from an extensive field campaign, land surface model sim-
ulations, and SMOS and SMAP retrievals, 2) simulate L-band
TB with and without accounting for salinity and compare the
simulations to satellite-based observations, and 3) investigate
the possibility of jointly retrieving RTM parameters related to
soil roughness, vegetation, and salinity over the Dry Chaco,
using coarse-scale L-band radiometry and modeled constraints
of SM and soil temperature. The latter constraints help to set
the dominant moisture and temperature contributions of the TB

signal apart, and to focus on the estimation of less dominant
variables, incl. salinity. Furthermore, the retrieved parameters
could be used to optimize the forward RTM to produce improved
TB simulations for a TB data assimilation system that inherently
uses modeled SM and temperature, such as the SMAP Level 4
Surface and Root-Zone SM (L4_SM [5]).

In Section II, the field data are presented, as well as the an-
cillary data sources and models used for L-band TB simulation.

Fig. 1. (A) Location of (green polygon) the Dry Chaco in South America, and
(blue rectangle) the area of the field campaign. (B) Location of (black boxes)
EASEv2 pixels with in situ sampling and locations of (x) deep sampling within
(green contour) the Dry Chaco region. The background shows the historical
excess salinity map from the HWSD and open water areas from the Global
Lakes and Wetland Database. Panel B. also provides a (yellow) zoom of one
sampling pixel with the corresponding sampling sites.

Section III describes the methods, including the adjustments
to the RTM to account for salinity and how the RTM is used
in forward and inverse mode to simulate microwave TB and
retrieve land surface properties, respectively. The results are
shown in Section IV, a discussion is provided in Section V,
and conclusions and recommendations for future article are
summarized in Section VI.

II. DATA AND MODELS

A. Study Area

The South American Gran Chaco hosts a wealth of biodiver-
sity in an area where native dry forests and expanding, mostly
rainfed, agriculture for crops and cattle ranching are competing
in a changing landscape [24], [25]. Despite its large latitudinal
extent and vegetative and climatic variability, the Dry Chaco is a
well-delineated ecoregion in the western part of the larger Gran
Chaco and covers an area of about 787 000 km2 in southern
Bolivia, western Paraguay, and northern Argentina [26], east
of the Andean mountain range [Fig. 1(A)]. The vegetation is
dominated by xerophytic shrubs and trees, making up the Earth’s
largest subtropical dry forest and savannas. East of the Dry
Chaco lies the Humid Chaco, characterized by wetlands and
a lower tree coverage [25].

The Dry Chaco is one of the planet’s largest level plains
with slopes <0.1% and a semi-arid climate. The mean annual
temperature ranges between 18 °C and 26 °C, but maximum
temperatures can easily exceed 40 °C [27]. Rainfall varies be-
tween 400 and 1000 mm/year and is concentrated in the southern
hemisphere summer [26].

Saline soils are common in the region owing to its semi-arid
climate, flat topography, and shallow groundwater table [24].
Large natural salt deposits occur in the presence of paleo-lakes
[e.g., the Salinas de Ambargasta and Salinas Grandes, marked
as open water in Fig. 1(B)], paleo-channels, or floodplains [28].
Large-scale deforestation and forest degradation for agriculture
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pose a threat for soil salinization in this area. The dry forest
conversion began in the early 20th century [29] and reached
record high rates at the turn of the century. Multiple regional
studies reported an increased downward mobilization of salts
toward the water table after deforestation, followed by the rise
of the saline water table, leading to the upward movement of
salts [30], [25], suggesting the onset of changing hydrological
conditions in the Dry Chaco. So far, however, there are no large-
scale data to confirm these suggestions.

During the months of July and August 2019, a field cam-
paign was organized in a part of the Argentinean Dry Chaco
[Fig. 1(B)], discussed in Section II-E. soil moisture, salin-
ity, temperature, and vegetation were sampled near Añatuya,
Charata, Frías, Santiago del Estero, and Tucuman.

B. SMOS and SMAP Data

L-band TB (level 1), surface SM, and vegetation optical depth
(τ ) retrievals (level 2) were collected from the SMOS and
SMAP missions. The SMOS mission was launched in 2009 and
provides data at a 3-day temporal resolution and a nominal (3
dB) spatial resolution of 43 km [6]. We used the multiangular
SMOS SCLF1C.v620 TB at horizontal and vertical polarization
(Hpol and Vpol), reprojected to the Equal-Area Scalable Earth
(EASEv2) 36-km grid, and the SMOS-IC version 2 level 2 SM
and τ product [8], resampled to 36 km. The TB preprocessing
and filtering were done as in [31], i.e., excluding pixels where
TB observations are impacted by open water, radiofrequency
interference, etc. as provided in the product quality flags. The
SMAP satellite was launched in 2015 and collects data at
a similar temporal and spatial resolution as SMOS [7]. The
SMAP level 1 Hpol and Vpol TB data were extracted from
the SPL1CTB.v004 product, and level 2 SM retrievals were
extracted from SPL2SMP.v006, which are both produced on
the EASEv2 36 km grid. The τ retrievals were extracted from
the 9-km SPL2SMP_E.004, using the “option 3” dual-channel
algorithm [9], conservatively filtered using the provided quality
flags and aggregated to 36 km.

The SMOS and SMAP SM and TB data for July–August
2019 were compared to in situ and model SM, and to evaluate
forward RTM simulations, respectively, at pixels visited during
the field campaign. The multiangular SMOS TB for 2010–2019
were used for RTM inversions, whereas the time-average <τ>
retrieval products for 2015–2019 (both SMOS and SMAP)
were used to evaluate the <τ> estimates obtained from the
RTM inversion. The SMOS and SMAP τ retrievals were earlier
evaluated with a range of independent vegetation datasets [32].

C. Land Surface Modeling

The Catchment land surface model (CLSM [33]), part of the
NASA Goddard Earth Observing System model, was forced
with meteorological data from the Modern-Era Retrospective
Analysis for Research and Applications version 2 (MERRA-2
[34]) to simulate land surface processes over the Dry Chaco
on the 36-km EASEv2 grid from 2010 to 2019, after 30 years
of spin-up. The CLSM version is similar to that used for the
SMAP L4_SM product version 4 [5]. The system simulates soil

moisture in the surface (0–5 cm) and root zone (0–100 cm),
surface temperature in a layer of 0–5 cm, and soil temperature
in six layers with the first layer pertaining to 5–15 cm depth.
For surface SM, the simulated and in situ sampled layer depth
is similar (0–5 cm), and both will be referred to as SM. For
temperature, the CLSM surface temperature (Tsurf, 0–5 cm)
and soil temperature in the first layer (Tsoil1, 5–15 cm) will be
compared to in situ temperature data collected in the upper 5
cm (T5). Because the CLSM Tsoil1 is used as temperature input
to the forward RTM in the SMAP L4_SM product, a statistical
relationship between Tsoil1 simulations and in situ T5 obser-
vations (frequently sampled during the day) was established
to bias-correct the model Tsoil1 toward in situ T5, and also to
extrapolate point-based in situ T5 measurements to upscaled
36-km EASEv2 estimates at specific times of the day (Section
IV-A). These bias-corrected CLSM soil temperature estimates
will therefore also be referred to as T5. The SM and Tsoil1 (or
Tsurf) simulations were compared to in situ measurements and
satellite retrievals, and then used for forward TB simulation,
or as a constraint to invert SMOS TB and derive land surface
properties (RTM parameters, incl. salinity and τ ).

It is important to note some shortcomings of the CLSM. First,
explicit deforestation or the vegetation response to salinity is
not included in the CLSM, and a historical climatology is used
to describe the vegetation instead. The CLSM leaf area index
(LAI) values over the Dry Chaco are based on a multiyear
average climatology, obtained from GEOLAND2 [35]. This
poses no problem for long-term deforested areas, but for recently
deforested areas, the vegetation and SM may locally deviate
from historical climatological conditions [36]. Second, it can
be expected that soil salinity alters the water retention curve in a
soil and affects the soil moisture profile and evapotranspiration
response [37]. That would affect the satellite-observed TB signal
but is not captured in the CLSM or any other state-of-the-art land
surface model.

D. L-Band RTM

Given static and dynamic information about the land surface,
a zero-order omega-tau RTM was used to simulate L-band TB

at the top of the vegetation at horizontal or vertical polarization
p (Hpol or Vpol) as follows:

TB,p = T (1− rp)Ap + TC (1− ωp) (1−Ap) (1 + rpAp) .
(1)

Atmospheric contributions were not included because they
were already removed from the L-band satellite data, T [K] is
the effective soil temperature (either T5 or Tsoil1), TC [K] is the
effective canopy temperature (assumed to equal T ), rp [−] is the
rough surface reflectivity, ωp [−] is the scattering albedo, and
Ap [−] is the vegetation attenuation, calculated as follows:

Ap = exp

( −τp
cos (θ)

)
. (2)

The vegetation optical depth τp [−] depends on a vegetation-
structure parameter, bp [−], and the vegetation water content
(VWC), which is the product of LAI [m2/m2] and leaf equivalent
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TABLE I
OVERVIEW OF SAMPLED EASEV2 PIXELS IN JULY AND AUGUST 2019: NAME, NUMBER OF SAMPLE SITES PER PIXEL (#), SAMPLE DATE (DAY/MONTH) IN THE

YEAR 2019 AND DESCRIPTION OF THE LAND COVER

Names are based on the municipality closest to the pixel location: A = Añatuya, C = Charata, F = Frías, S = Santiago Del Estero, and T = Tucuman.

water thickness (LEWT) [kg/m2]

τp = bp VWC, and VWC = LEWT LAI. (3)

The rough surface reflectivity, rp [−], is defined as follows
[38]:

rp = [QRq + (1−Q)Rp] exp (−h) cosNp (θ) (4)

and requires Q, the polarization mixing ratio [−] (assumed
to equal 0 for L-band), θ, the incidence angle [rad], h, an
SM-dependent roughness parameter [−], and Np, the angular
dependence [−]. The roughness h varies in time between hmax

for SM at or below transition SM and hmin for SM at saturation.
Rp is the smooth surface reflectivity [−], which is calculated
using the Fresnel equations:

RH (θ) =

∣∣∣∣∣
cos (θ)−√

ε− sin2 (θ)

cos (θ) +
√
ε− sin2 (θ)

∣∣∣∣∣
2

, and

RV (θ) =

∣∣∣∣∣
ε cos (θ)−√

ε− sin2 (θ)

ε cos (θ) +
√
ε− sin2 (θ)

∣∣∣∣∣
2

(5)

with ε the complex dielectric constant of the soil, ε=ε′+iε′′,
where ε′ is the real part of the dielectric constant, ε′′ is the
imaginary part, and i is the solution of the equation i2 =−1. As
will be discussed below, ε is a function of soil texture, SM, T,
and S.

This article used the same RTM structure as that used in
Version 4 of the SMAP L4_SM product [5]. In short, the RTM
uses dynamic CLSM SM and T (Tsoil1 or T5) as input, along with
seasonally varying climatological LAI, and a set of lookup or
calibrated RTM parameters (see below). The lookup parameters
were based on the dominant vegetation cover, determined by

the MODerate resolution Imaging Spectroradiometer (MODIS)
IGBP landcover map. The RTM simulations were also per-
formed for a small sample of in situ SM and T5 observations
described below.

E. In Situ Data

During the months of July and August 2019, a total of 26
pixels on the EASEv2 36 km grid (Fig. 1) were sampled to
facilitate comparison with satellite and model data. The pixels
were chosen based on satellite imagery, deforestation history,
expected salinity level (historical mapped data, unmapped nat-
ural or upcoming salinity as suggested by literature or satellite
imagery), elevation, and accessibility. A multitude of sites were
sampled within each pixel, each pixel was sampled entirely
within a day, and each pixel was visited only once. In the Dry
Chaco, the months of July and August are typically dry, and
in 2019, there was a clear dry-down after an anomalously wet
austral summer. Table I provides an overview of all sampled
pixels, the number of sample sites within the pixel, and the
dominant vegetation type.

We collected extensive surface soil data in areas with diversi-
fied levels of salinization, and deeper soil samples at locations
where deforestation had taken place either recently or in the past.
Surface (0–5 cm) soil data were gathered on SM, temperature
(T5), electrical conductivity (EC), and dielectric constant (ε)
at multiple sample sites along a transect within each sampled
EASEv2 pixel. The transect was situated to best capture the
variability of the pixel, and consisted of minimally three (F6)
and maximally 27 (A1) sample sites. An example of a transect
is depicted in Fig. 1(B). At 10 locations, marked with crosses
in Fig. 1(B), additional deeper soil measurements were taken.
Those are discussed in Appendix 1 to frame our findings within
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the scientific discussion about the salinization potential of the
Dry Chaco.

For SM, we used two different probes (Stevens HydraGO
and the Delta-T Devices ThetaProbe). The HydraGO was used
with the factory calibration that is also used for the widely used
Soil Climate Analysis Network of the Natural Resource Con-
servation Service [39]. At each sample site, measurements were
taken in two or three different pits (1 m apart) by horizontally
inserting the probes into a cleared surface of an undisturbed
soil at a depth of approximately 2.5 cm. The probes have a
sensing volume that covers 5 cm in the vertical direction, i.e.,
the measurements represent the top 5 cm of soil. A high Pearson
correlation (R=0.87) and a small bias (0.028 m3/m3) were found
between all individual SM measurements from both probes (931
measurements with each sensor). Per site, an average SM was
calculated based on the measurements of the HydraGO and
the ThetaProbe in all pits. Given the strong agreement between
both SM sensors and given that the composition of soils in the
Dry Chaco is not too different from those used in the factory
calibration of the HydraGO sensor, we believe that the averaged
data are reliable to serve as reference in terms of relative accuracy
metrics. Furthermore, 38 texture samples were collected.

To measure in situ dielectric properties and salinity in the field,
several methods were used. The Stevens HydraGO probe was
used to measure porewater EC and the real and imaginary parts
of ε (ε′ and ε′′) at 0.05 GHz (i.e., a much lower frequency than the
L-band frequency of interest to this article). Two other probes,
a Hanna sensor and the YSI proDSS, were used to measure the
EC of a soil–water paste (hereafter referred to as EC) of a mixed
soil sample that was taken from the top 5 cm at each sample
location along the transect. With the soil sample, a soil–water
mixture was prepared on a 1:1 ratio; adding 50 ml of water
to 50 g of the sample. The 1:1 ratio was chosen to minimize
probe sensitivity difficulties because of dilution (which occurs
more at the typical 1:5 ratio) and to allow reproducibility. After
mixing and resting, the EC was measured with both probes. The
measurements by both probes correlated well (R = 0.94) with a
slight underestimation by the Hanna probe (bias=−0.82 dS/m),
due to saturation at 20 dS/m. In the following, only the YSI
proDSS EC measurements were used. Where needed, these in
situ EC measurements in dS/m were converted to salinity (S) in
PPT in the practical salinity scale, following the YSI proDSS’s
internal conversion method, i.e., via regression equations (PSS
78 [40]) that only consider the EC and the temperature of the
soil–water mixture. The equations are based on the salinity of
seawater, and thus not fully representative for the ionic content
of the Dry Chaco soil water, but the conversion error is expected
to be small and consistent across all samples.

In situ surface soil temperature was measured with the Hy-
draGO within the top 5 cm of the soil. Per sample site, T5

measurements in all pits were taken within less than 15 min
and averaged to one value. All measurements were taken during
the daytime, and a special effort was done to sample additional
T5 data close to the SMOS and SMAP satellite overpass times.

Vegetation type was visually assessed at each location along
the transect, and sampling was done in all different vegetation
types that were representative for that pixel, and in zones with

different elevations and expected salinity, i.e., the sample sites
were chosen after close inspection of satellite imagery and
ancillary spatial datasets (see below).

F. Pixel-Scale In Situ Data

To allow for comparison with satellite observations and model
simulations on the 36-km EASEv2 grid, point measurements of
surface SM, S (measured as EC in the field) and ε were upscaled
via a weighted average to obtain in-situ-based “observations”
that are representative of a pixel area. The values of the limited
number (mostly>15) of samples for the one pixel were weighted
based on elevation from the 30 arc-second Multi Error Improved
Terrain [41] digital elevation model. This choice was based on
the notion that both SM and S vary spatially with depth to the
water table and the proximity of streams, which in turn are linked
to elevation.

The upscaling of in situ soil temperature (T5) measurements
leveraged CLSM simulations (Section II-C). In short, the simu-
lated diurnal cycle of CLSM Tsoil1 at the 36-km pixel scale was
compared to T5 site measurements taken at many different times
in the day to establish a mapping function between both. This
allowed to bias-correct the 36-km Tsoil1 simulations to in situ
T5 observations, and to obtain a pixel-scale “in-situ-based” T5

estimate at any time of the day.
The visual inspection of vegetation (Table I) within each sam-

pled pixel was aggregated to a dominant impression of the land-
scape. For each visited EASEv2 pixel, a dominant vegetation
class was selected by 3 observers during the field campaign from
the 17 possibilities of the International Geosphere-Biosphere
Program (IGBP) land cover classification [42].

Fig. 2 summarizes all surface soil data gathered during the
field campaign. In panels a–c, the within- and between-pixel
variability in SM, S (EC in dS/m), and T5 are shown. The
variability also includes temporal variability, which is limited
within a pixel for SM, because each EASEv2 pixel was always
completely sampled within a day. In contrast, the variability in
T5 samples is largely driven by diurnal and daily temperature
fluctuations. The blue dots indicate the upscaled values for SM
and S (EC), whereas the red dots are T5 estimates at 6 am local
time on the sample day (extrapolated to 6 am, discussed below).
Except for T5, the upscaled values for all other variables are close
to the simple pixel median values (center line of boxplot). For
T5, the median value is associated with the sampled subset of the
diurnal temperature variation, whereas the upscaled value is at
a fixed time. The figure indicates that there is a large variability
between pixels. For certain pixels and variables, there is also
a large within-pixel variability. Our article only focuses on the
variability between—and not within—pixels.

G. Ancillary Data for In Situ Pixels

Additional data sources complement the in situ data collec-
tion. For every sampled 36-km EASEv2 pixel, an LAI value
was calculated from 4-day 500-m MODIS (onboard the NASA
Terra and Aqua satellites retrievals (version 006) [43] for July
and August 2019. Fig. 2(d) shows the pixel-average LAI and the
in situ observed vegetation class.
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Fig. 2. Boxplots showing the within-pixel variability of in situ measurements
for the visited EASEv2 pixels, for (a) soil moisture (SM), (b) salinity (EC), and
(c) soil temperature (T5). The blue and red dots indicate the upscaled EASEv2
pixel value with the red dots representing soil temperature extrapolated to 6 am.
Also shown are (d) July–August 2019 average of MODIS-derived LAI (.) and in
situ observed vegetation class, with o = mixed forest, ∗= agriculture, and x =
open shrubland, and (e) HWSD-derived sand (.) and clay (∗) fraction. Sampling
dates differ across pixels and range from July 19 to August 27, 2019 (Table I).

Soil texture information was derived from the HWSD, and soil
hydraulic parameters were derived as in [44]. Fig. 2(e) gives the
HWSD sand and clay fraction per EASEv2 pixel. A comparison
with 38 soil samples (laboratory analysis, not shown) within 20
of the 26 sampled EASEv2 pixels showed high sand and low clay
fractions in both datasets. Given the small set of in situ texture
samples, we relied solely on HWSD estimates in the remainder
of this article.

H. Regional Reference Data

We further consulted the HWSD excess salts map [Fig. 1(B)]
as a reference for salinity over the entire Dry Chaco. This
map indicates the historically observed and expected severity

of growth limitations due to salinity, sodicity or both, and does
not account for possible recent salinization. Fig. 1(B) illustrates
that the occurrence of excess salinity is higher in proximity of
(paleo-)lakes and streams. The static open water areas in the
figure originate from the Global Wetland and Lake Database
[45]. The 25-km dynamic open water estimates retrieved from
the Advanced Microwave Scanning Radiometer 2 (AMSR2)
[46] were also consulted to evaluate the results.

As a reference dataset for vegetation, 1-ha aboveground
biomass (AGB) estimates for the year 2010 [47] were used.
The 1-ha AGB data were obtained from a combination of radar,
optical, and lidar data and were aggregated to the EASEv2 36-km
resolution. Since AGB is the oven-dry weight of the woody parts
(stem, bark, branches, and twigs) of all living trees excluding
stump and roots, it represents a very different quantity than the
L-band τ , which is a microwave-based index that strongly varies
with VWC. However, relative spatial patterns in AGB estimates
can be reliably related to L-band τ patterns [48].

III. METHODOLOGY

A. Accounting for Salinity in the RTM

In the RTM, the soil dielectric constant ε is calculated using
a dielectric mixing model. Soil, water, and air components all
contribute to the dielectric properties of the soil mixture. Salinity
also has an influence on the dielectric properties of a soil,
and reduces TB, but is generally not included in global land
RTMs. In line with the SMAP L4_SM product, we used the
empirical [22] dielectric mixing model to calculateεbased on the
dielectric constants of air (εa), rock (εr), ice (εi), and water (εw)
with a distinction between bound and free water (see Appendix
2 for detailed equations, similar results were found with the
[49] model). The dielectric constant of free water (εw) can be
calculated by the Debye expression:

εw = ε∞ +
εs − ε∞

1 + (iωt)1−α − i
σ

ωε0
(6)

where ε∞ is the dielectric constant at an infinite frequency
(set to ε∞ = 4.9), ω = 2πf with f the frequency [Hz], ε0 is
the permittivity of free space (equal to 8.854 · 10−12), and α is
an empirical parameter describing the distribution of relaxation
times, and is set to zero [19].

In most operational RTMs, εw is calculated for pure water with
the ionic conductivity σ equal to zero. The remaining variables
in (6), i.e., the ionic conductivity σ [mhos/m], the relaxation
time t [s], and the static dielectric constant εs [−], are calculated
based on regressions equations using only T as an explanatory
variable [49].

In this article, we replaced these equations for σ(T ) , t(T ),
and εs(T ) in pure water with σ(S, T ), t(S, T ), and εs(S, T ),
i.e., with the regression equations of [19] for saline water in the
Debye expression [(6)] to calculate εw for the dielectric mixing
model of [22]. These regression equations of [19] build further
on the equations of [18], which are valid for salinity ranging
from 4 to 35 PPT. However, the authors note that the lower limit
is not restrictive, and that only for distilled water a different set of
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Fig. 3. (a) Real (solid lines) and imaginary (dashed lines) dielectric constant of
pure (0 PPT) and saline (32.5 PPT) water based on [18] for frequencies between
0 and 100 GHz and for a temperature of 20°C. Effect of salinity on the (b) real
and (c) imaginary part of the dielectric constant of water at L-band (1.4 GHz)
for a realistic range of soil water temperatures (°C).

equations should be used. For the detailed regression equations,
we refer to [19].

Fig. 3(a) illustrates the ε′w and the εw
′′ of pure (0 PPT)

and saline (32.5 PPT) water at frequencies ranging from 0 to
100 GHz following [19]. Increasing salinity leads to a decrease
in the real part and an increase in the imaginary part of the
dielectric constant of saline water, in line with [17]. Fig. 3(b)
and (c) illustrates the influence of soil water temperature on
the sensitivity of ε′w and ε′′w to salinity at L-band (1.4 GHz).
Fig. 3(c) indicates that ε′′w becomes more sensitive to salinity
at higher soil water temperatures.

Note that adding salinity via εw in the free water solution is a
simplification of reality, as salts can be found as ions in the bound
water fraction or in the form of salt crystals. We assume that the
salinity measured in the field equals the soil water salinity that
influences εw, and consequently the dielectric constant of the
soil. In sensitivity tests (not shown), we found that the saline–
water Double Debye dielectric model [50] created by William
Ellison [51] produced very similar results to [19].

B. Forward TB Simulations

To understand the forward (and inverse) simulations with
the adjusted RTM, a global sensitivity analysis of the modeled
forward TB to various RTM input parameters was performed,
considering first-order interactions between the various RTM
input parameters. Sobol’s sensitivity indices [52] were computed
to quantify how much an individual input parameter contributes
to the variance in TB (either at H- or Vpol), using Monte Carlo
simulation with 105 samples. The framework of [53] was used
to calculate Sobol indices for eight input parameters [SM, T5, S,
porosity (P), wilting point (wp), VWC, hmin, and ω], with the
margins based on the field campaign or literature (Lit2 [56]).
The global sensitivity analysis is followed by a local sensitivity
analysis focusing only on the influence of S on TB.

Next, forward TB simulations were performed using either
upscaled in situ data or CLSM input of SM, T, and vegetation
for the sampled EASEv2 pixels. For both in-situ-based and

model-based TB simulations, the RTM ran twice: once with
and once without salinity as an input variable. Hpol and Vpol

TB simulations at 40˚ incidence angle were evaluated with
SMAP and SMOS TB observations at the time of the satellite
overpass. The difference between both sensors is small (<3 K
difference between SMAP and SMOS TB over land [54], [55])
and therefore SMOS and SMAP TB were used together to ensure
sufficient observations for the evaluation of TB simulations at
the time of field sampling.

The input of upscaled in situ and CLSM SM and T (T5 and
Tsoil1) was as described in Section II-F and C, respectively.
When TB was simulated with in-situ-based input, the LAI was
obtained using MODIS imagery at the sampling time, whereas
the TB simulation with CLSM input used CLSM LAI values
based on the multiyear average seasonally varying GEOLAND2
climatology (Section II-C). For in-situ-based simulations, the
vegetation-related lookup RTM parameters were based on the
vegetation class observed in the field, whereas for the model-
based simulations, lookup RTM parameters were based on the
MODIS IGBP vegetation class used in the CLSM RTM. For
both in-situ- and model-based simulations, the soil-related RTM
parameters were based on the HWSD (Section II-G) and TB

simulations that account for salinity use the in situ salinity
measurements. The lookup table values for the parameters bp,
LEWT, ωp, h, and Nrp per vegetation class were compiled from
literature and are referred to as “Lit2” in [56].

C. Retrieval of Land Surface Properties

To retrieve land surface properties over the entire Dry Chaco,
including RTM parameters related to salinity, vegetation optical
depth τ , microwave roughness h, and scattering albedo ω, the
RTM was used in inverse mode for each pixel individually. To
estimate multiple unknowns, multiple types of independent ob-
servations and constraints are needed. An important complexity
is that the presence of water and salinity both affect the ε and
subsequent TB simulations. Therefore, the estimation of salinity
requires a priori knowledge or strong constraints for the other
(more dominant) variables that influence TB.

The multiangular (seven incidence angles [30o, 35o, …, 60o])
and dual-polarized SMOS TB of the previous decade (July
2010–November 2019) were used as observational constraint,
and CLSM-based SM, LAI, and T input data (either with or
without CLSM Tsoil1 bias correction, i.e., T5 or Tsoil1) were used
as modeled background constraint (i.e., assumed to be known) to
1) find parameters that are consistent with the modeling system
and suitable for a subsequent forward RTM application, and 2)
to exclude the dominant influence of SM and T from the TB

signal to retrieve less dominant factors. A set of parameters (α
[−]) was calibrated (or “retrieved”) to minimize the multiangular
and multipolarization misfit between long-term mean values and
standard deviations of SMOS observed TB (TBo) and forecasted
TB [TBf(α)], following the procedure of [57], [58], i.e., using a
Bayesian optimization with inclusion of priori parameter con-
straint. The TBf (α) were forecasted using the RTM [(1)] with
CLSM-based input data.
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The calibrated parameters included hmin and Δh =hmax −
hmin [(4)] to parameterize an SM-dependent h, the scatter-
ing albedo ω [(1)] (here polarization-independent), bh and
Δb =bv − bh [(3)] to parameterize the LAI-dependent τp (i.e.,
five parameters), either with or without two additional parame-
ters that mimic the presence of salinity: sa and sb. In line with
field experiments [21], the sa and sb parameters describe that
over time, when SM (m3/m3) decreases, S (PPT) increases at a
single pixel:

S = sa + sb SM. (7)

The initial values and ranges were set to sa = 5 [0 35] PPT and
sb = −10 [−88 0] PPT/(m3/m3) based on trial-and-error [59].
The proposed equation does not consider temporal variation of
salt mass in the soil caused, for example, by ongoing evaporation.
A physically more complex alternative salt model formulation
could not be justified, for lack of large-scale salinity observations
to support it (and it will be shown later that the calibrated S
does not actually reflect salinity but a bulk correction to the
dielectric constant). After calibration of sa and sb, (7) can be
used to calculate S per pixel at any time, given its SM value.
This allows for an evaluation of S for specific days of the field
campaign, but our main evaluation will focus on spatial patterns
in long-term 10-year average <S> estimates. In line with S =
f(sa, sb, SM), it should be noted thath = f(hmin, Δh, SM)
depends on time-varying SM, and τp = f(bp, LAI) depends
on time-varying LAI, and we will evaluate the 10-year average
<h> and <τ>, where the latter is also an average of τp at Hpol

and Vpol.
Four calibration cases were considered. In a reference case,

the same five parameters (α) were calibrated as in [57], [58]
without inclusion of salinity or any correction to CLSM input
variables, similar to what is used for the RTM calibration of
the SMAP L4_SM product [5]. The three other cases either
1) include an in-situ-based bias-correction to CLSM Tsoil1 in-
put, or 2) include the calibration of two additional parameters
related to salinity (equivalents), or 3) include both 1) and 2).
The optimization was performed with a Markov Chain Monte
Carlo algorithm, i.e., DiffeRential Evolution Adaptive Metropo-
lis with parallel direction and snooker sampling from past states
(DREAM(ZS) [60]), with the same settings as in [58]. A major
advantage of this method is that it provides the entire posteriori
density distribution of the parameter estimates, i.e., with access
to the maximum a posteriori density (or “best”) and ensemble
mean parameter estimates, and the associated ensemble standard
deviation. The latter quantifies the uncertainty of the retrievals.

The multitemporal retrieval approach with strong background
constraints of modeled T and SM, and the imposed inverse
temporal relationship between SM and S limit the possibilities
for equifinality: if S and SM would be retrieved simultaneously
at individual time steps without strong background constraints,
multiple combinations of SM and S would be found to be
equally good. However, imposing modeled background SM also
holds the risk that the S retrievals compensate for biases in
the background data, as will be discussed below. Keeping the
multitemporal approach and including a long-term T and SM

Fig. 4. In situ (IS) upscaled values of (a) salinity and (b) soil moisture. The
circles represent the centroid of the EASEv2 pixels sampled at various dates
during the field work. In the background, (a) HWSD excess salinity map and
(b) model-based MODIS IGBP vegetation classification and the boarders of the
Dry Chaco are shown (green contour).

bias estimation in the retrieval is feasible and recommended for
future research.

IV. RESULTS

A. Data Analysis: Satellite Pixels With In Situ Sampling

We start with an inspection of the surface S, T (Tsurf, Tsoil1, or
T5), SM, and vegetation in the sampled EASEv2 pixels, observed
in situ or with satellite data, and simulated with CLSM. Given
that the temperature shows a strong diurnal cycle, whereas the
other variables are nearly constant within a day in this region
during the dry season, we analyzed Tsurf, Tsoil1, and T5 at
individual sample times within a day, whereas in situ SM and
salinity samples were first aggregated to an upscaled daily value
prior to comparison with model and satellite data as discussed
in Section II-F.

For S, Figs. 1 and 4(a) show that two pixels with the highest
in situ values (F4 and F5) are indeed located in or near areas
identified as being limited due to salinity and/or sodicity in the
HWSD. However, there is only a limited agreement between the
in situ data and the general pattern of the HWSD, indicating that
the HWSD estimates likely do not reflect surface salinity only
or may not be representative of the current situation. Fig. 4(b)
shows the associated SM at the times and locations of sampling.
Pixels with a high in situ S [Fig. 4(a)] are also characterized by
a high in situ SM [Fig. 4(b)].

For SM, Table II gives an overview of spatiotemporal accuracy
metrics, for various SM products for the 26 sampled EASEv2
pixels, where in situ SM is upscaled and each 36-km EASEv2
pixel is sampled only once. CLSM SM does not correlate
well with in situ data, SMOS, or SMAP retrievals. The in
situ measurements, on the other hand, have a high correlation
(R∼0.7) with SMOS and SMAP SM retrievals. The RMSD
values are similar for model or in situ SM compared to satellite
observations. Fig. 5(a) further illustrates that the bias between
CLSM and SMAP SM is only 0.02 m3/m3 when computed across
the years 2015–2019 and all 26 sampled EASEv2 pixels. For
some individual pixels, however, large biases between in situ
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Fig. 5. Comparison of (a) CLSM SM against 5 years of SMAP SM retrievals for the 26 sampled EASEv2 pixels (August 2015–2019). (b) CLSM soil surface
temperature (Tsurf) against in situ (IS) T5 measurements at all sample sites of the field campaign. (c) CLSM soil temperature (Tsoil1) (July–August 2019). Also
shown is the 1:1 line. The blue dots represent pixels (3 of the 26) with an S> = 4 PPT.

TABLE II
COMPARISON OF DIFFERENT SM DATA PRODUCTS AT 26 IN SITU PIXELS

SAMPLED IN JULY AND AUGUST 2019

The bias is relative to the reference product in the corresponding major row header.
Correlations in boldface are significant at a level of α = 0.05.

SM, retrievals, and model simulations exist, with a noteworthy
deviation (significantly higher bias of 0.09 m3/m3) between
CLSM and SMAP estimates for saline pixels (>4 PPT, indicated
in blue).

Fig. 5(b) shows all individual point in situ T5 observations
at various times in the day within all EASEv2 pixels against
the model equivalents of Tsurf and the deeper Tsoil1 closest in
time and space (closest hour, overlying 36-km pixel). There is
a high correlation (R = 0.84) between in situ observed T5 and
simulated Tsurf, and the model Tsurf is only slightly colder (less
than 2 K) than in situ T5. Compared to the modeled Tsoil1, the
correlation is still high (R = 0.83) and the model Tsoil1 is lower
than in situ T5 (bias = −5.53 K), due to the spatial (horizontal
and vertical) representativeness mismatch. The model Tsoil1 is
associated with a deeper 5–15 cm depth for an entire 36-km
EASEv2 pixel, whereas the in situ T5 is only representative of
the top 5 cm at a point location. The diurnal amplitude of Tsoil1

is thus expected to be smaller than the in situ T5, and T5 will
be warmer during the daytime. Because Tsoil1 is used as input
to the RTM in the SMAP L4_SM product, Tsoil1 is used as the
reference temperature in the following, and a relationship was

established between model Tsoil1 and in situ measured T5 at all
in situ measurement times. A stratification by vegetation class
over the area of the field campaign did not further refine the
relationship between in situ T5 and model Tsoil1, and therefore all
data were used to derive the following linear regression between
in situ T5 [K] and model Tsoil1 [K] (based on daytime samples
with 281.22 K < Tsoil1 < 300.17 K):

T5 = 1.20 Tsoil1 − 52.44. (8)

Equation (8) was thus used to rescale the model Tsoil1 at
SMOS or SMAP satellite overpass times (at∼6 am or 6 pm local
time) to obtain either extrapolated “in-situ-based” T5 estimates
for each visited EASEv2 pixel, or “bias-corrected” model Tsoil1

estimates in forward or inverse RTM simulations, as introduced
in Section II-F.

Finally, the observed vegetation at the sampled pixels is either
dominantly agriculture, open shrubland, or mixed forest, as
summarized in Fig. 2(d). Fig. 4 illustrates that the sampled area
is in the transition zone between agricultural, shrubland, and
broadleaf dry forest. It is thus not surprising that only for 6 out
of the 26 sampled pixels, the assignment of the model-based
vegetation classes agrees with the field-based classification.
Furthermore (not shown), the MODIS observed LAI is typically
higher for the agricultural areas than for the dry forest during
the field campaign.

B. Data Analysis: Dry Chaco Region

Satellite observations of TB for the entire Chaco area give
an integrated view of the land surface. Fig. 6(a) and (b) show
10-year averages of SMOS Hpol and Vpol TB at 40˚ incidence
angle, and the corresponding (cross-masked) 10-year averages
of CLSM simulations of SM [Fig. 6(c)] and Tsoil1 [Fig. 6(d)]. The
model Tsoil1 simulations show a smooth gradient over both the
Dry Chaco and the area east of it (Humid Chaco) with higher
temperatures in the northern Chaco and little differences be-
tween east and west. The 10-year average SM simulation pattern
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Fig. 6. Ten-year average of observed (a) SMOS TB at Hpol, (b) SMOS TB at
Vpol, and simulated (c) CLSM soil moisture, and (d) CLSM soil temperature
(Tsoil1), after cross-masking to qualitative SMOS data (e.g., excluding frozen
times in the Andes). Zoomed regions in (a) and (b) are discussed in the text.

is dominated by texture (areas with higher porosities have higher
SM values) and climatological rainfall patterns. For example,
the area east of the Dry Chaco is wetter both because of higher
precipitation amounts and higher soil porosities. The long-term
mean SMOS TB (both H- and Vpol) observations combine real
SM and temperature, along with vegetation information, result-
ing in a smoother spatial pattern than the modeled SM (which is
patchy due to distinct soil hydraulic parameters associated with
sharp soil class delineations), and a much stronger delineation
between the Dry Chaco (high TB) and the wetter region east of
it (low TB) than what could be expected based on CLSM SM or
Tsoil1 alone. In the northern Chaco, the denser forest vegetation
in combination with the higher temperature contributes to the
higher observed TB values.

Some interesting features in the TB patterns are highlighted
in Fig. 6(a) and (b). The zoom in Fig. 6(a) is situated in the
mid-west part of the Dry Chaco, and shows local low TB and
some missing pixels surrounding the Tucuman and Santiago Del
Estero area of the field campaign. Pixels in the presence of a lake
are filtered in the satellite data (Fig. 1), and land conversion in the
area might contribute to the local decreases in TB. The zoom in
Fig. 6(b) shows linear features spanning from east to north-west
in the northern part of the Dry Chaco, matching the floodplains
of the Bermejo and Pilcomayo River and areas with high excess
salinity in the HWSD map. The same features can be found in the
simulated SM map [Fig. 6(c)], but less distinctly than in the TB

map, nicely illustrating how the TB pattern gives an integrated
view of the land surface.

C. Forward TB Simulations

Fig. 7(a) and (b) gives an overview of the first-order and total
Sobol indices for TB at H- and Vpol for soil- and vegetation-
related RTM parameters, respectively.

This global sensitivity analysis confirms that SM, T5, vegeta-
tion, and roughness parameters have a significant contribution to
the output TB variability, whereas S only has a small influence.
Therefore, we will use strong constraints of SM and T5 (model
background assumed to be known) in the following retrieval
analysis to potentially tease out the marginal impact of the S
signal.

Fig. 7. First-order and total sensitivity for (a) soil-related and (b) vegetation-
related RTM input variables and parameters. Indices are calculated using a Monte
Carlo simulation with 105 samples.

The above analysis was supplemented with a local sensitivity
analysis. Table III gives an overview of the simulated TB sensi-
tivity to S for a range of other RTM input variables. It should be
noted that the tested salinity range of ΔS = 35 PPT is a stretch
for most soil–water mixtures, i.e., values above 30 PPT were
only found in soils near salt lakes within the Dry Chaco. The
change in TB (ΔTB) for a ΔS of 35 PPT is limited to −3.6 K
at Hpol and −2.8 K at Vpol for average field conditions marked
as “initial settings” (open shrubland, loamy soil, T = 288 K,
SM = 0.2 m3/m3, and LAI = 0.3), and using uncalibrated
“Lit2” values [56] for RTM parameters, such as hmin, hmax, ω,
bh, and bv . However, the sensitivity |ΔTB| increases to∼7 K with
increasing T, increasing SM (in correspondence with literature
[61]), and decreasing LAI. Note that if the canopy temperature
Tc is varied independently from T and the sensitivity of TB to
salinity increases with decreasing Tc (not shown). Vegetation
classes with a denser canopy cover, such as forests, lower the
TB sensitivity to soil salinity.

Fig. 8 illustrates the forward simulation via full time series
of input variables and simulated TB for one random pixel of the
field campaign (EASEv2 pixel A1) for 1) 10 years with SMOS
data and 2) the months of the field campaign. While model-based
TB simulations correctly follow the pattern of the satellite TB

observations, the absolute value is underestimated by as much
as 20 K because the model Tsoil1 is not bias corrected here and
the RTM parameters are not locally tuned. In contrast, the TB

simulation using in situ data at the day of field sampling agrees
well with the satellite TB.

Both the model- and in-situ-based TB simulations at the time
and location of the sampled EASEv2 pixels were compared with
the closest SMOS (∼6 am/pm local time) and SMAP (∼6 pm/am
local time) TB on the sample day. Table IV gives a summary of
the (spatiotemporal) accuracy metrics using a total of 31 satellite
TB observations (both SMOS and SMAP, am and pm overpasses
were combined to ensure a sufficiently large sample size) for the
visited EASEv2 pixels. For some of the 26 pixels, no satellite
TB observation was found at the day of field sampling, for other
pixels multiple overpasses were available. The in-situ-based
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TABLE III
HPOL TB (40˚) SENSITIVITY TO SALINITY FOR VARIOUS RTM INPUT VARIABLES, WITH AN INDICATION OF THE INITIAL SETTING AND THE TESTED RANGE OF

EACH VARIABLE

∗∗Changing soil temperature T simultaneously changes canopy temperature Tc and the soil water temperature, which are all assumed equal.
RTM parameters depend on the vegetation class and are taken from literature-based lookup table “Lit2” in [53]. The last column quantifies the difference in TB (ΔTB) for a
difference in S (ΔS) of 35 PPT.

Fig. 8. Time series illustrating the concept of forward simulation with the
RTM for EASEv2 pixel A1, for (a) 10 years and (b) months of July and August
2019, when the field campaign took place. The top three panels show the CLSM
LAI, SM, and Tsoil1. The lowest two panels depict the observed Vpol and Hpol

TB by (red dots) SMOS, (black dots) SMAP, the (∗, indicated by the arrows) in
situ-based TB simulation on the exact day of measurement in the field, and the
(black line) model-based TB simulations.

forward TB simulations correlate better with satellite TB ob-
servations than model-based TB simulations, especially at Vpol.
The low correlation between model-based TB simulations and
TB observations is most likely due to the low correlation between
model and in situ or satellite SM, and because the (soil- and
vegetation-related) lookup RTM parameters are associated with
model-based vegetation classes that differ from those observed

TABLE IV
SPATIOTEMPORAL PERFORMANCE METRICS FOR THE FORWARD TB

SIMULATIONS USING EITHER IN SITU (IS) OR MODEL DATA (M) INPUT

WITHOUT OR WITH (+ S) IS SALINITY INPUT

The TB simulations marked with ∗ use bias-corrected Tsoil1. The reference
TB observations (obs) include all available SMOS and SMAP (together) TB

at 40˚ incidence angle collected for the times and EASEv2 pixels of the field
sampling. Correlations in boldface are significant at a level of α = 0.05.

in situ. Tsoil1 bias correction adds bias to the Vpol and reduces
the bias in the Hpol, but generally brings the model-based TB

simulations closer to the in-situ-based simulations. Across the
31 sample points, Table IV indicates a relatively small average
TB bias compared to literature [57], but the ubRMSD suggests
that large compensating differences are found across the sampled
pixels.

In line with the low sensitivity of TB to S, there is a slight
but consistent increase in TB simulation performance when S is
included. At Hpol, the R value increases from 0.77 to 0.79 and
at Vpol from 0.80 to 0.83. For saline pixels, defined as EASEv2
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Fig. 9. Spatial distribution of four parameters calibrated with DREAM(ZS)

for the Dry Chaco, with (red) an indication of the uncertainty. Distribution of (a)
“best” estimate and (b) ensemble mean value for each parameter, when (gray)
calibrating five parameters without Tsoil1 bias correction, and (blue) calibrating
seven parameters, incl. salinity equivalents, with Tsoil1 bias correction. Also
shown is (red) the spatial average (a) “best” and (b) ensemble mean value ± the
spatial average ensemble standard deviation corresponding to the blue parameter
distribution.

pixels with in situ S> 4 PPT, accounting for S causes an increase
in R from 0.66 to 0.70 at Hpol and from 0.72 to 0.79 at Vpol.
Given the small sample size, no statistically significant model
improvement can be proven, but this finding shows that S can
have a locally important impact on TB.

D. Retrieval of Land Surface Properties

The above TB simulations were limited to some in-situ sam-
pled EASEv2 pixels, and indicated that the spatial pattern of
CLSM input and lookup RTM parameter values were not ideal
to represent the observed TB. In a next step, the long-term
(2010–2019) discrepancy between simulated and observed TB

was leveraged to estimate some RTM properties at each pixel of
the entire Dry Chaco. More specifically, vegetation, soil rough-
ness, and possibly salinity, and their uncertainty, were estimated
via RTM inversion, using CLSM background information of
T5 and SM [which have a dominant effect on TB, Fig. 7(a)].
The resulting estimates can be used as parameters in future
forward RTM applications with consistent CLSM background
information, or they can be interpreted as retrievals which are
constrained by model background information (on SM and T).

Fig. 9 shows the spatial distribution of the “best” and en-
semble mean estimate for four diagnosed parameters retrieved
(i.e., calibrated) with DREAM(ZS) over the 569 EASEv2 pixels
located within the Dry Chaco, for two calibration cases. The ref-
erence calibration optimizes five parameters without inclusion
of S or Tsoil1 bias correction. The second case calibrates seven
parameters, including sa and sb (to diagnose S), and applies a
Tsoil1 bias correction. For the latter, the spatial average best or
ensemble mean value ± the spatial average ensemble standard
deviation is also shown. The ensemble standard deviation is an
indication of the retrieval uncertainty. In any case, the RTM
inversion yields spatially continuous parameter values, unlike
the literature-based values associated with the few different

vegetation classes in the region. Not explicitly shown is that the
difference in distributions for the two calibration experiments is
due to the Tsoil1 bias correction, whereas the calibration of S has
no significant impact on the spatial distribution of the retrieved
parameters.

Overall, the inversion (or RTM calibration) yields realistic
estimates of vegetation (long-term LAI-based vegetation optical
depth <τ> and scattering albedo ω) and roughness (long-term
SM-based <h>) with a low associated uncertainty. Including a
bias-correction of Tsoil1 results in lower <h> and higher <τ>
(via higher b parameters) and ω values.

The <τ> estimates were evaluated against independent veg-
etation products, i.e., 2015–2019 average <τ> retrievals from
SMOS and SMAP, and 2010 AGB estimates. Fig. 10 illustrates
that both (a) without and (b) with Tsoil1 bias correction, a
high spatial correlation is found between long-term best esti-
mates of <τ> and long-term SMOS-IC <τ> (R∼0.95), long-
term SMAP <τ> (R = 0.85–0.90), and 2010 AGB estimates
(R∼0.80), at locations where SMAP retrievals are assumed to be
of high quality [i.e., excluding areas with too dense vegetation,
indicated in Fig. 10(c)]. To assess the usefulness of the AGB
dataset for 2010 to evaluate climatological <τ> retrievals, we
also computed the correspondence between the retrieved <τ>
with the SMOS-IC <τ> for the year 2010, resulting in R =
0.92 and RMSD = 0.07 [−]. Land use changes in the area
typically result in local mosaic patterns that probably have not
significantly changed the coarse-scale τ patterns over the last
decade. Again, the differences between Fig. 10(a) and (b) are
mainly due to the Tsoil1 bias correction, and the results only
marginally differ with or without inclusion of S calibration.

The smaller and lighter markers in Fig. 10(a) and (b) show
that in dense vegetation areas (high <τ> values) the inclusion
of a Tsoil1 bias correction possibly leads to an overestimation
of absolute <τ> values, esp. compared to the SMAP <τ>
(RMSD metrics not reported; too few high τ values left after
applying quality control). This finding, combined with locally
increased misfits between long-term mean TB observations and
TB simulations in case of Tsoil1 bias correction (not shown), leads
to the conclusion that our in-situ-based Tsoil1 bias correction is
not suitable everywhere, and that the use of Tsoil1 as input for
the SMAP L4_SM RTM is justified for this area.

Even though the calibration yields realistic estimates of<τ >,
ω, and<h>with a low associated uncertainty, Fig. 9 shows that
the (10-year average) <S> takes on unrealistically high values
in the Dry Chaco, especially so when the “best” values for sa
and sb are used in the calculation of S. The retrieved space–time
average value for the pixels sampled during the field campaign
is ∼12 PPT when <S> is calculated using the ensemble mean
sa and sb values and ∼28 PPT when the best values for sa and sb
are used, whereas the average surface salinity measured in situ,
which comprised only a small part of the Dry Chaco, was 4 PPT.
Furthermore, the S estimates computed at the sample days do
not at all correlate (R = −0.19) with in situ measurements for
the EASEv2 pixels of the field campaign. Fig. 9 also highlights
a large ensemble uncertainty on the <S> estimates and a large
discrepancy between the “best” estimate and the ensemble mean
estimate, which is indicative of a wide and skewed a posteriori
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Fig. 10. Comparison of long-term mean retrieved <τ> (<τ>model) (a) without and (b) with inclusion of Tsoil1 bias correction against (black) SMOS <τ>,
(red) SMAP <τ>, and (blue) linearly rescaled 2010 AGB (AGBrs). S calibration is included, but does not affect the skill metrics. The “best” <τ> values are
shown; the metrics are the same for the ensemble mean <τ> values. The lighter and smaller markers correspond to (cyan) AGB and (gray) SMOS estimates where
SMAP retrievals are masked out, and these are not included in the skill metrics. (c) Distribution of 36-km AGB values. Markers with black edges correspond to
grid cells where quality SMAP retrievals are found.

Fig. 11. (a) 10-year averaged retrievals of the ensemble mean correction of the
dielectric constant in terms of salinity<S> [PPT], calibrated without Tsoil1 bias
correction. (b) 2015–2017 standard deviation of AMSR2 open water fraction.

distribution of unreliable S estimates, and thus highly uncertain
estimates. Fig. 11(a) gives the ensemble mean retrieved 10-year
average <S> pattern in and near the Dry Chaco and its near
surroundings, calculated using the ensemble mean sa and sb pa-
rameters, calibrated without Tsoil1 bias correction. The retrieved
<S> values are too high to represent natural or human-induced
salinity are often of the same magnitude as their uncertainty,
and likely represent an integrated correction on the dielectric
constant in terms of salinity equivalents, rather than salinity
itself. High values of <S> thus compensate for shortcomings
in the RTM input variables, other than salinity. Some of the
ensemble means <S> pattern can for example be related to the
presence of periodic open water fractions shown in Fig. 11(b).

V. DISCUSSION

An evaluation of satellite-based SM retrievals using in situ
measurements at the large 36-km pixel scale has so far only been

done for a few dedicated calibration and validation (Cal/Val)
sites [62]. For this article, in situ measurements were collected
within 26 different satellite pixels during the dry season in the
Dry Chaco and—despite the small sample size—they confirmed
that SMOS and SMAP SM retrievals agree well (R∼0.7), and
better than CLSM simulations, with ground measurements.
However, when including all SMAP retrievals across the years
2015–2019, the CLSM simulations only showed a small bias of
0.02 m3/m3 across the sampled pixels, and a noteworthy wet bias
in the retrievals for saline pixels (Fig. 5). The latter indicates that
missing salinity may affect the SM retrievals because the salinity
decreases TB by a few K, especially for high T and low LAI, as in
the Dry Chaco. As a rule of thumb, a 2–3 K decrease in TB (40˚)
corresponds to an increase of 0.01 m3/m3 in SM retrievals [63].
The sensitivity analysis (Table III) showed that the influence of
salinity on TB is only a few K, and thus is close to the uncertainty
on individual (single angle) SMOS TB observations (∼4 K),
and only marginally above the TB differences (<3 K) between
SMOS and SMAP sensors. This necessitates the combined use
of multiple TB observations and strong modeled background
information to tease out the influence of salinity on the TB.

The long time series of multiangular and multipolarization
SMOS TB data was used to obtain reliable retrievals of vege-
tation (τ, ω) and microwave roughness (h), but the retrieval of
salinity (S) did not return realistic values and did not significantly
affect the retrieval of other land surface properties. The unrealis-
tic high S values contrast with our own fieldwork and the level of
dryland salinization indicated in literature, that is, the observed
surface salinity is still low at this time, whereas the salinity is
higher mainly in deeper layers (see Appendix 1). Because of
the low sensitivity of the TB simulations to S, the low observed
surface S, and the low spatial resolution of L-band radiometers,
subpixel heterogeneity makes it hard to disentangle S from other
inaccurate sources of input to the TB signal, which explains the
uncertainty in the S retrievals. The S estimates compensate for
errors introduced in the computation of the dielectric constant
ε by inaccurate data other than salinity. For example, southeast
of the Dry Chaco, the calibrated salinity equivalents are almost
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certainly compensating for missed open water, organic material,
and underestimated CLSM SM. Fig. 11(b) confirms that the
area southeast of the Dry Chaco experiences temporal ponding,
which is not included in the CLSM background simulations, and
which was not persistent enough to flag SMOS TB prior to the
inversion. The high S equivalents are effectively increasing ε′′,
resulting in a higher magnitude of ε, similar to how higher water
amounts would affect ε′.

The retrieval approach could be further elaborated by im-
proving the strong model background constraints, or by adding
more observational constraints, e.g., by including information on
water ponding. In this article, long-term TB signature statistics
were optimized, using 1) simulated T and SM and 2) imposed
time series relationships between S and SM. While the first
constraint ensures temporally and spatially consistent fields of
RTM parameters that are readily applicable for forward model-
ing in a land surface data assimilation system [5], it may also
introduce bias in the S (and other) retrievals. The bias in the
large-scale CLSM SM and T could originate from the MERRA-2
forcings or CLSM parameters. Such biases are unavoidable,
unless extensive in situ observations are available for model
optimization. Including a calibration of the long-term SM and
T background bias as part of the inversion may reduce this
problem. We verified (results not shown) that by keeping the
modeled SM dynamics, but including a rescaling factor (bias
correction) for SM (and consistent porosity) in the calibration,
the S values significantly decreased (by on average 5 PPT), and
the inclusion of an S retrieval has a local impact on the magnitude
of the SM rescaling factor. The latter reinforces that SM retrieval
might locally be affected when high S is present. If available, it
can be recommended to include knowledge about S as ancillary
information (constraint) to improve SM retrieval accuracy over
salt-affected areas. The constraint on the relationship between S
and SM could also be improved by a more elaborate physically
based model, which would then allow to better estimate the
temporal variation of S.

Finally, the low spatial resolution of passive microwave re-
mote sensing is great for large-scale ecosystem monitoring, but
not ideal for agricultural applications. Even the largest farms in
Argentina are on average only half the size of the SMOS and
SMAP pixel scale [64]. Finer resolution active microwave data
could solve that problem of spatial resolution, but decomposing
the backscatter signal is not trivial.

VI. CONCLUSION

The Dry Chaco is a biogeographical region with a distinct
land surface characterized by dry forest and expanding agricul-
ture, possibly threatened by a changing water distribution and
salinization. This article highlights limitations and possibilities
of various data sources in capturing coarse-scale surface soil
moisture (SM), soil temperature, soil salinity (S), and vegeta-
tion in the Dry Chaco. More specifically, we examine L-band
microwave brightness temperature (TB) observations and re-
trievals from the SMOS and SMAP satellite missions, CLSM
simulations, and in situ measurements within 26 satellite pixels
covering a part of the Dry Chaco.

First, data from an intensive field campaign in July–August
2019, CLSM simulations, and SMOS and SMAP SM retrievals
are compared. Across the 26 pixels sampled in the field campaign
(each observed once, on different days), the CLSM-based SM
does not correlate well with the in situ measurements, whereas
SMOS and SMAP SM retrievals correlate much better with in
situ data. The CLSM daytime surface soil temperature (Tsurf) is
slightly colder (2 K) than in situ temperature (T5) measurements
(both 0–5 cm), and CLSM’s first layer soil temperature at 5–15
cm (Tsoil1) is colder by ∼5 K compared to the 0–5 cm in situ T5

data, due to differences in spatial (horizontal and vertical) repre-
sentativeness. When comparing satellite-based SM retrievals to
CLSM SM across the years 2015–2019 for the sampled pixels,
a wet bias in the SM retrievals for saline pixels was detected.

Next, the effect of S and other land surface variables on for-
ward L-band TB simulations is quantified. To this end, we imple-
mented the equations of [18] for saline water into the dielectric
mixing model of [21] to estimate the dielectric constant of the
soil–water–salinity mixture. When propagating these dielectric
constant estimates through the L-band RTM, TB shows an over-
all low sensitivity to S (decrease by ∼4 K when S increases from
0 to 35 PPT under average field campaign conditions, and using
literature-based RTM parameters), with increases in sensitivity
when SM increases, vegetation decreases, or soil temperature
increases. Because the 26 in-situ sampled satellite pixels have
on average only an S value of 4 PPT, the forward TB simulations
only change marginally on average when accounting for S in the
RTM, but for some pixels strong local impacts are found. TB

simulations using in-situ-based soil temperature and SM greatly
outperform those using CLSM-based input data, when evaluated
against SMOS and SMAP TB observations. In line with the
SMAP L4_SM product, CLSM Tsoil1 is an input to the RTM.
An optional Tsoil1 bias correction using the T5 data of our field
campaign only marginally improves the forward L-band RTM.

Finally, we use the RTM in inverse mode to estimate time-
average vegetation (τ , ω), microwave roughness (h), and salin-
ity and their uncertainty at each pixel within the Dry Chaco
region, using Markov chain Monte Carlo simulations, 10 years
of multiangular and dual-polarization SMOS TB observations
and constraints of CLSM SM, temperature, and LAI. The RTM
inversion retrieves consistent spatial patterns for hmin, Δh (re-
lated to microwave roughness h), bh, Δb (related to vegetation
opacity τ ), and ω (related to vegetation). The calibrated pattern
of 10-year average <τ> agrees very well with independent
SMOS and SMAP <τ> retrievals (R ≥ 0.9), and with AGB
estimates. The inclusion of an in-situ-based Tsoil1 bias correction
in the retrieval is not recommended for the entire Dry Chaco.
The inclusion of S in the retrieval does not significantly alter
the values of the retrieved vegetation and roughness parameters.
However, the retrieved S values themselves are unrealistically
high with a large associated uncertainty over the Dry Chaco, but
they help to slightly reduce the differences between simulated
TB and SMOS TB observations. The S retrievals should thus not
be seen as S estimates as such, but rather as a bulk correction
of the dielectric constant that also compensates for inadequate
CLSM SM values, neglected open water contributions, or other
model deficiencies.
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Fig. 12. Salinity measurements at 80–100 cm and at approximately 200 cm
depth versus soil surface (0–20 cm depth) salinity measurements. R is the
Pearson correlation coefficient. The line represents the 1:1 line. Data were taken
at the deeper soil sample sites, indicated in Fig. 1(B).

To retrieve soil surface S from the microwave L-band signal,
the S levels should be high enough and the uncertainty on the
“known” RTM input variables should be minimized to maximize
the sensitivity to S. For future research, we suggest improving
the model background information, e.g., by including both local
and seasonal soil temperature and SM bias corrections (incl. the
impact of open water fraction) and more accurate soil texture
information. Future research would also benefit from a study
area where soil surface salinization is in a further stage than in
the Dry Chaco to overcome TB sensitivity issues at low S.

APPENDIX A

At 10 locations [Fig. 1(B)], deeper soil measurements of EC
and pH were collected. Like the surface soil EC measurements,
the deeper EC measurements were performed in a home lab-
oratory setting, and based on a 1:1 soil–water mixture sample.
Eight of the sample locations were chosen based on deforestation
history and were situated at the interface between forest and
agriculture. At those locations, measurements were taken along
three transects: one in the agricultural area, one in the forest,
and one moving from agriculture to forest. Each of the transects
consisted of two to five sample sites. A pit of approximately
40 cm deep was dug at every sample site and soil moisture,
temperature, and dielectric properties were measured with the
HydraGO and ThetaProbe at 5–10 and 20–40 cm depth. With a
soil auger, deeper soil samples at 80–100 and 200 cm depth were
collected for salinity analysis with the Hanna and YSI proDSS
probes. Preparation and analysis of those samples followed the
same steps as discussed for the surface soil samples. Following
the same data collection strategy, a transect of six sample sites
along a river and another one along an elevation gradient was
sampled. Fig. 12 shows that, currently, the surface soil salinity
in the Dry Chaco is still low, whereas deeper soil layers have
significantly higher salinity values, and the correlation between

surface and deeper salinity decreases with depth, i.e., R = 0.70
(184 samples) at 80–100 cm depth and R = 0.42 (34 samples)
at 200 cm depth.

APPENDIX B

The dielectric mixing model of [22] calculates the dielectric
constant of the soil based on the different constituents of the soil
as follows:

1) Air: εa = 1.
2) Rock: εr = 5.5 + 0.2i.
3) Tightly bound water approximated by the dielectric con-

stant of ice: εi = 3.2 + 0.1i.
4) Free water, εw, based on our modified model of [19].
Further, the model differentiates between the dielectric con-

stant of the soil when the SM content is below or above a certain
transition level because the permeability to electricity differs for
tightly bound water from free water. The transition water content
Wt is calculated as

Wt = 0.49wp+ 0.165 (B1)

where wp [m3/m3] is the wilting point of the soil. When the SM
content [m3/m3] is lower than Wt, the dielectric constant of the
soil can be calculated as

εsoil = SMεx + (P − SM) εa + (1− P ) εr (B2)

where P is the soil porosity and εx is the dielectric constant of
the initially absorbed water, calculated as

εx = εi + (εw − εi)
SM

Wt
y (B3)

where y is a fit parameter: y = −0.57wp+ 0.481. When SM
is higher than Wt, the dielectric constant of the soil can be
calculated as

εsoil = Wt εx + (SM −Wt) εw + (P − SM) εa + (1− P ) εr
(B4)

with εx = εi + (εw − εi)y.
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