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Landscape heterogeneity affects population dynamics, which determine species per-
sistence, diversity and interactions. These relationships can be accurately represented 
by advanced spatially-explicit models (SEMs) allowing for high levels of detail and 
precision. However, such approaches are characterised by high computational com-
plexity, high amount of data and memory requirements and spatio-temporal outputs 
may be difficult to analyse. A possibility to deal with this complexity is to aggregate 
outputs over time or space, but then interesting information may be masked and lost, 
such as local spatio-temporal relationships or patterns. An alternative solution is given 
by meta-models and meta-analysis, where simplified mathematical relationships are 
used to structure and summarise the complex transformations from inputs to outputs. 
Here, we propose an original approach to analyse SEM outputs. By developing a meta-
modelling approach based on spatio-temporal point processes (STPPs), we character-
ise spatio-temporal population dynamics and landscape heterogeneity relationships in 
agricultural contexts. A landscape generator and a spatially-explicit population model 
simulate hierarchically the pest–predator dynamics of codling moth and ground bee-
tles in apple orchards over heterogeneous agricultural landscapes. Spatio-temporally 
explicit outputs are simplified to marked point patterns of key events, such as local 
proliferation or introduction events. Then, we construct and estimate regression equa-
tions for multi-type STPPs composed of event occurrence intensity and magnitudes. 
Results provide local insights into spatio-temporal dynamics of pest–predator systems. 
We are able to differentiate the contributions of different driver categories (i.e. spatio-
temporal, spatial, population dynamics). We highlight changes in the effects on occur-
rence intensity and magnitude when considering drivers at global or local scale. This 
approach leads to novel findings in agroecology where, for example, we show that the 
organisation of cultivated patches and semi-natural elements play different roles for 
pest regulation depending on the scale considered. It aids to formulate guidelines for 
biological control strategies at global and local scale.

Keywords: landscape heterogeneity, meta-model, multi-type spatio-temporal point 
process, spatially explicit model, spatio-temporal pattern, system dynamics
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Introduction

Community structure, population dynamics and species 
interactions within and between trophic levels are not lim-
ited within single plot’s borders but depend on the spatial 
context (Delaune et al. 2019) and on ecological processes at 
different spatial scales (Pickett and Siriwardena 2011). The 
key to understanding and predicting community structure 
and population distribution lies in the explication of the 
latent mechanisms and causes underlying observed patterns, 
which may emerge from the collective behaviour at smaller 
scale units or may be imposed by larger-scale constraints and 
the related temporal scale (Levin 1992). Moreover, the influ-
ence of different spatial and temporal scales is closely related 
with species life-history traits, such as their ability to disperse, 
body size, competition, habitat specialisation or trophic posi-
tion (Rusch et al. 2010, O’Rourke et al. 2011). For example, 
foraging range and dispersal ability may determine the land-
scape elements that contribute to population dynamics and 
trophic interactions (Eber 2001, Fahrig 2001, Tscharntke 
and Brandl 2004).

Hence, the complex interplay of processes within the 
landscape and over different scales is one of the key factors 
in influencing population dynamics across ecosystems. To 
account for this complexity, the development of spatially 
explicit computer modelling and simulations are central 
for addressing theoretical questions. Many spatially explicit 
model (SEM) types have been proposed, such as continu-
ous-space reaction–diffusion partial differential equations 
(Roques 2013), patch models (Hanski and Thomas 1994), 
cellular automata neighbourhood models (Hogeweg 1988) 
or individual-based models (IBM) (Grimm and Railsback 
2005). SEM implementation is commonly realised through 
numerical approaches that allow for system dynamics simula-
tion. DeAngelis and Yurek (2017) show the importance and 
the benefits of using SEMs compared to spatially implicit 
models (SIMs) through different examples, including a 
savanna ecosystem. They find that the details and small-scale 
processes captured by SEMs are fundamental drivers of the 
ecosystem and its dynamics.

The development of advanced numerical models has 
greatly improved our ability to accurately describe complex 
dynamics incorporating fine-grain interactions over a large 
extent. However, as model behaviour depends on the spa-
tial resolution of input, the spatio-temporal extent is often 
properly adapted by scaling decisions (Fritsch  et  al. 2020). 
In-model scaling methods give control over simplifications 
when building the model or allow us to incorporate and 
transfer relevant information across different scales. Scaling 
techniques may also be used before or after building the 
model, to define model parameters or analyse model outputs.

In this work, we focus on post-model scaling and pro-
pose a parsimonious approach to deal with the complexity of 
SEM outputs while preserving fine-scale information on the 
ecological dynamics. A solution to deal with this complex-
ity could be the application of non-spatial analysis methods 
via spatial and temporal output aggregation (Gotelli 2000, 

Webb 2000, Fritsch  et  al. 2020). In this case, however, all 
fine-scale information is lost, thus impeding any analysis of 
the drivers acting across different scales. An alternative solu-
tion is represented by meta-models, which offer the possibil-
ity of reducing model output complexity by establishing a 
simplified mathematical relationship between the input and 
output of the system (Simpson et al. 2001, Ratto et al. 2012, 
Saint-Geours 2012, Jia and Taflanidis 2013). Where possible, 
an elegant way to build meta-models is the approximation 
through an analytical model, which is fitted to the large-scale 
output and allows for simplification (Grimm and Railsback 
2005, Johst 2013). Spatial statistic techniques are potential 
candidates of great interest and should be further explored 
(Fritsch et al. 2020). For example, (Jia and Taflanidis 2013) 
present a systematic implementation and optimisation of 
kriging meta-models for hurricane wave and surge predic-
tion maps based on high-dimensional outputs to reduce 
complexity while preserving spatial dimension. In functional 
magnetic resonance imaging analysis, (Kang et al. 2014) syn-
thesise brain mapping information from images and propose 
a spatial point process approach to model local maxima of 
brain activation area, explaining the brain task involved.

Here, we show how spatio-temporally explicit outputs 
of population dynamics models in landscape ecology can 
be analysed through a meta-modelling approach. Such out-
puts are simplified to point patterns composed of individual 
positions, key events or significant hotspots defining local 
dynamics. The resulting patterns can be modelled as spatio-
temporal point processes (STPP). Predictor variables that 
seek to explain the process are related to the structure of 
the spatial domain, and its temporal changes (Diggle 2003, 
Illian et al. 2012, Renshaw 2015, Illian and Burslem 2017). 
Point processes can be defined over continuous space and 
time, such that there is no need to work with fixed spatial 
and temporal units; they can be used for descriptive analyses 
and stochastic modelling of patterns. For example, Law et al. 
(2009) apply STPP tools for characterising observed plant 
patterns; (Gabriel et al. 2017, Opitz et al. 2020, Pimont et al. 
2020) develop models for wildfire occurrences through 
STPPs accounting for the multi-scale structure of data and 
strong non-stationarities.

The main novelty of our work resides in the characterisation 
of spatio-temporal population dynamics through STPPs. As a 
case study application, we focus on the relationships among 
agricultural landscape structure and the dynamics of a pest 
and its natural enemy. A hierarchical framework is developed 
(Fig. 1): 1) a stochastic landscape model, characterised by 
parameters determining the landscape configuration and com-
position, is constructed and simulated; 2) a spatially explicit 
population dynamics model, characterised by parameters 
determining the pest–predator structure and its spatial hetero-
geneity, is constructed and simulated. 3) We represent spatio-
temporally explicit outputs returned by this modelling chain 
as point patterns identifying space-time-indexed key events 
of pest dynamics, that we subsequently model by construct-
ing and estimating statistical regression equations for multi-
type STPPs. This approach allows us to investigate the role of 
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landscape structure in influencing the point process intensity 
summarising the pest–predator dynamics, and we address 
two questions: 1) How can spatially-explicit model outputs 
be parsimoniously represented while conserving key system 
dynamics information? 2) How can this method be applied to 
decipher the interplay between landscape effects and popula-
tion dynamics traits at different spatio-temporal scales?

Simulation models for landscape–pest–
predator dynamics

Pest–predator models within agricultural landscapes

We model agricultural landscapes composed of crops, semi-
natural areas and hedges through a stochastic landscape gen-
erator. Landscape simulations are the spatial domain for a 
spatially explicit population model of natural enemies and 

pests with opportune pesticide treatments on pests. We gen-
erate a wide variety of structurally different landscape compo-
sition and configuration scenarios for the allocation of crop 
over patches and of hedges over linear elements by varying 
representative parameters (i.e. crop and hedge proportion 
and their aggregation); details are provided in the Supporting 
information. Within these generated spatial domains, we 
then simulate the dynamics of the codling moth Cydia 
pomonella pest and of one of its main predators, the family 
of ground beetles (Carabidae), in apple orchards. The pest–
predator model is defined by a spatially explicit and density-
based model of reaction–diffusion type, allowing for dispersal 
both on agricultural patches and on hedge network (Roques 
and Bonnefon 2016).

Codling moths respond strongly to the spatial distribu-
tion of apple orchards over landscapes (Tischendorf 2001, 
Ricci et al. 2009). Franck et al. (2011) have found both low 
genetic differentiation among their populations over large 

Figure 1. Overview of meta-modeling workflow.
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distances, indicating that they can disperse over large dis-
tances in agricultural landscapes without substantial impact of 
hedges, and strong effects of insecticide treatments on genetic 
differentiation resulting from spatial and temporal popula-
tion size variations (Franck et al. 2011). Thus, in the model, 
we assume that the pest can be encountered only in patches 
and that it has positive growth only in patches allocated with 
crop. In addition, patch boundaries do not affect the pest 
population dynamics, i.e. the life cycle of Cydia pomonella is 
mostly based in apple orchards, meaning that it perceives the 
landscape as a heterogeneous environment of crop and semi-
natural patches. Finally, we impose the application of local 
pesticide treatments when the pest density exceeds a fixed 
threshold on average in a crop patch.

The presence of semi-natural areas, such as hedges, pro-
motes the presence of pest natural enemies (Thies and 
Tscharntke 1999, Maalouly et  al. 2013) by offering shelter 
and by providing complementary resources when pests are 
not present in patches. Lefebvre et al. (2017) present a field 
study investigating the routine movement of arthropods 
among apple orchards and adjacent hedgerows. They found 
that there are frequent movements for foraging (to apple 
orchards) and for escaping treatments (to hedges), demon-
strating the important influence of hedgerows on the pres-
ence of numerous predators in apple orchards. Thus, in our 
model, we consider that hedges form the main habitat of the 
predator. The predator can spill over from hedges to patches 
and there feed on pests in patches as an alternative resource. 
However, it is generally attracted to hedges, which are its pre-
ferred habitat, so that migration from patches to hedges is 
relatively high compare to migration from hedges to patches 
(Lefebvre et al. 2017).

Details about the pest–predator dynamics among lin-
ear elements and patches are fully presented in Roques 
and Bonnefon (2016). All the parameters are shown in the 
Supporting information. To fix parameter ranges, we had 
performed a sensitivity analysis in a preliminary step since 
observation data of pests and predators are not available 
(Zamberletti et al. 2021). Variations in predator population 
density are mainly explained by predator migration and by 
hedge proportion. For the pest population density and the 
average number of pesticide treatments, the most important 
parameters to explain model output variability are crop pro-
portion and pest growth rate.

Initially, the predator is present in all hedges at carrying 
capacity. The pest is introduced randomly in space and time. 
The time unit can be considered as the day. Model parameters 
are summarised in Table 1.

Pest–predator spatio-temporal patterns

Simulations provide the spatio-temporal pest and predator den-
sities. We characterise the influence of landscape spatio-tem-
poral structure on the pest–predator dynamics by using point 
patterns. Following our modelling framework, we identify as 
events 1) the spatio-temporal treatment occurrence (i.e. pest 
threshold exceedance or pest peak) and 2) the spatio-temporal 

pest introductions. For example, when pest threshold exceed-
ance occurs in a patch, we apply a treatment in this patch and, 
to define the event episode as a point, we extract the time t of 
threshold exceedance, the pest density maximum in the patch 
with its Euclidean coordinates (x, y), and the average pest den-
sity over the patch. In Fig. 2, two simulations are shown for 
different time steps, where the spatio-temporal occurrences of 
pest introductions and treatments within different landscape 
allocations are highlighted. This example also illustrates the 
conjecture that the spatial hedge structure plays a role for pest 
dynamics. Deeper exploratory quantitative analyses of spatio-
temporal relationships between different types of points are 
proposed in the Supporting information, while we focus on 
statistical model-based analyses in what follows.

Methods: STPP-based analysis of pest–
predator dynamics

Pest densities represented as spatio-temporal point 
processes (STPPs)

Point patterns representing individual or event distributions 
in space and time can be modelled as STPPs (Diggle 2003, 
Illian et al. 2008, Baddeley et al. 2015). Each point can be 
endowed with additional qualitative or quantitative informa-
tion defined as a ‘point mark’. In our application, the pattern 
of events was defined by the coordinates in space and time 
of pest peaks with both qualitative (pest introduction) and 
quantitative (pest maximum density) marks. Thanks to the 
theory of STPPs it is possible to analyse the point distribution 
properties locally in space and time, and to estimate models 
for predictive purposes (e.g. number of events, point-to-point 
correlations and distribution of their numerical or categorical 
marks). We focused on modelling the point process intensity 
function (local point density) (Illian et al. 2013). Our model-
ling goal was to predict the intensity of pest density peaks and 
the associated values of maximum pest density, and explain 
their variability in space, through time and across different 
simulations. We divided the spatial domain in a relatively 
large number of small cells, and we set a time interval (10 
days) to identify an elementary volume (Fig. 3), where we 
assumed as homogeneous point process intensity. The spatio-
temporal discretisation and background on its structure and 
construction is provided in the Supporting information.

Pest density peak meta-modelling

For predicting the intensity of pest density peaks and asso-
ciated values of maximum pest density, we developed 
and estimated regression equations for multi-type STPPs. 
Both global and local landscape features, species life-
history traits and the occurrences of pest introductions, 
pest peaks and treatments were used as covariate informa-
tion. We constructed two separate generalized linear model 
(GLM) formulas as meta-models that incorporated the 
available covariate information. Response variables and 
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covariates were evaluated over each elementary volume 

(Fig. 3). The spatio-temporal STC s t z s t
k
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patterns, landscape structure and population dynamics into 
relation. The β ∈ R23 vector gathered the covariate coefficients 
to be estimated separately for each model, and the values zk 
were covariates summarised in Table 1 and provided for each 
space-time cell. More information on their selection and 
computation is given in the Supporting information.

Meta-model for the occurrence intensity of pest density peaks
To model the occurrence intensity of pest density peaks, we 
considered a GLM with Poisson response:

l bls t s t s, exp ,( ) = + ( ) + ( ) +( )0 STC SC PDC 	  (1)

with global intercept bl0  and coefficients of the other vari-
ables to be estimated. The value λ(s, t) represented the aver-
age number of pest peaks occurring in a unit of space and 
time around the point (s, t), and was assumed to be constant 
within each cell of the mesh during each time interval of 10 
days. Interactions among covariates were not considered to 
keep the model simple and relatively parsimonious at this 
stage, as the number of covariates (and therefore of coeffi-
cients to estimate) was already high.

Meta-model for magnitudes of pest density peaks
To model the maximum pest density value associated with 
each pest peak point, we considered a log-Gaussian GLM:

P s t s t s s tP
max exp STC SC PDCmax, , ,( ) = + ( ) + ( ) + + ( )( )b e0 	  (2)

with global intercept b0
Pmax  and coefficients of the other vari-

ables to be estimated, where Pmax(s, t) was the maximum pest 
density value associated to the point where the treatment 
was applied conditional to the occurrence of such a point. 
The term ε(s, t) ~ N(0, σ2) corresponded to the spatially and 
temporally independent and identically distributed Gaussian 
error terms.

Model evaluation

Model performances were evaluated according to 1) their 
predictive capacity, by computing the root mean squared 
error (RMSE) and the area under the ROC curve (AUC); 
the latter allowed us to evaluate the prediction of the pres-
ence of a pest peak or the exceedance of given threshold in 
the case of pest density value; 2) the accuracy of parameter 
estimation by computing standard error ratio (SE-ratio) and 
estimated coefficient difference (EC-diff). The benchmark 
scenario consisted of 11 500 parameter combinations with 
15 repetitions each, to account for landscape stochasticity. 
Space and time were discretized over 979 cells for 10 time 
steps. To investigate the sensitivity of model performances, 
we defined subsets (Supporting information and Table 2) 

Table 1. Covariates used in the space-time regression model of pest density peak patterns. The temporal unit d stands for day.

Index Covariate Spatial reference Range Unit

Spatio-temporal (STC)
  1 No. of treatments in the patch at t − 1 Patch 0–40 –
  2 No. of treatments in the patch cumulated up to t − 2 Patch 0–97 –
  3 No. of treatments in neighbour patches at t − 1 Patch 0–337 –
  4 No. of treatments in neighbour patches cumulated up to t − 2 Patch 0–861 –
  5 No. of pest density peaks at t − 1 Cell 0–15 –
  6 No. of pest density peaks cumulated up to t − 2 Cell 0–36 –
  7 No. of pest density peaks in neighbour cells at t − 1 Cell 0–45 –
  8 No. of pest density peaks in neighbour cells cumulated up to t − 2 Cell 0–97 –
  9 No. of pest introduction in cell at t − 1 Cell 0–30 –
  10 No. of pest introduction in cell cumulated up to t − 2 Cell 0–30 –
  11 No. of pest introduction in neighbour cells at t − 1 Cell 0–30 –
  12 No. of pest introduction in neighbour cells cumulated up t − 2 Cell 0–39 –
Spatial (SC)
  13 Cell dimension Cell 0–0.069 km2

  14 Binary indicator if the cell is intersects 2 patches Cell 0–1 –
  15 Binary indicator (1/0) if the cell intersects 3 or more patches Cell 0–1 –
  16 Proportion of hedges within the buffer centred in the cell Buffer 0–1 %
  17 Proportion of crops within the buffer centred in the cell Buffer 0–1 %
  18 Landscape crop and hedge aggregation Landscape 0–5.54 –
  19 Landscape crop proportion Landscape 0–1 %
  20 Landscape hedge proportion Landscape 0–1 %
Population dynamics (PDC)
  21 Pest diffusion in crop patch Landscape 0.06–12 km2 d−1

  22 Predator diffusion in crop patch Landscape 0.07–12 km2 d−1

  23 Predator migration from hedge to crop Landscape 0.1–1
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reducing repetitions, parameter combinations, spatial cells 
and time steps. These subsets were used for preforming coef-
ficient re-estimation, while remaining data were used for vali-
dation by computing above-mentioned metrics.

Results

Model performances

Table 2 summarizes the results and, generally, shows robust and 
stable behaviours for both models on peak number and peak 
value. Reducing the number of parameter configurations led 
to a decrease in the AUC for the prediction of the presence of a 
peak in the validation set (but not for the pest density value). As 
indicated by the RMSE, removing half of consecutive time steps 
strongly impacted the prediction of the number of peaks and 
the pest density value. In addition, as indicated by the AUC, 
the prediction of the magnitude of the pest density value was 
also impacted but not prediction of the presence of a pest peak.

A reduction of the parameter combinations did not sub-
stantially impact model performances with respect to param-
eter estimation. However, it was necessary to consider more 
than 5 repetitions to precisely estimate values of model coeffi-
cients for peak numbers (EC-diff). Spatial and temporal cen-
soring of the pest dynamics led also to changes in parameter 
values but to a lesser extent. Similar behaviour was observed 
for the model of the peak value of pest density, which was 
particularly sensitive to spatial and temporal censoring.

Spatio-temporal drivers of pest hotspots

We present in Fig. 4 main results obtained by estimating the 
GLMs in Eq. 1 and 2. Additional results of a covariate cor-
relation analysis and of residual analysis are reported in the 

Supporting information, respectively; they showed that the 
models defined in Eq. 1 and 2 appropriately capture the spa-
tio-temporal variability of the population dynamics model 
outputs. Prior to estimation, covariates have been scaled to 
compare more easily the magnitudes of estimated effects.

The proportion of crop at local (%crop buffer) and global 
(%crop landscape) scales favoured the abundance of suitable 
habitat for pests, which could easily spread and find resources, 
leading to a higher number of pest peaks (Fig. 4a). However, 
the proportion of crop at the landscape scale reduced the 
magnitude of the pest density at these peaks (Fig. 4a). Hedge 
proportion in the buffer (Fig. 4a) showed a negative effect 
of on both variables describing pest activity. Interestingly, 
however, there was a weaker but positive effect of the hedge 
proportion over the whole landscape (Fig. 4b). In addition, 
our model showed that the landscape aggregation had a weak 
positive effect on peak occurrence numbers while it increased 
pest density value (Fig. 4b).

Pest diffusion (Fig. 4a) had the strongest negative effect on 
pest peak values, it may have been due to a dilution effect. 
Predator diffusion (Fig. 4b) had weaker but similar effects. 
Predator migration from hedge to crop (Fig. 4b) resulted in 
a decrease of the number of pest peaks, but it might have 
increased pest peak values.

High numbers of pest peaks along with high peak values were 
favoured by the presence of previous peaks in the same cell or in 
the surrounding ones (Fig. 4a–b, peaks variables). Similarly, an 
elevated number of introductions in neighbouring (i.e. adjacent) 
cells led to high pest concentration due to pest spillover (Fig. 4b, 
introduction variables). The application of pesticide treatments 
locally in the patch or in neighbouring patches at previous time 
steps generally led to a decrease of both the number of peaks and 
the pest density value (Fig. 4b, treatment variables).

Figure 2. Two simulation examples (by row) illustrating the spatio-temporal pest dynamics depending on landscape structure through pest 
introductions, and through pest density peaks after threshold exceedances.
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Discussion

We propose post-model scaling using regression meta-models 
based on marked spatio-temporal point processes (STPPs). 
This approach enabled us to assess and compare the contri-
bution of different spatio-temporal covariates and life-history 
traits to the direction and strength of variation in crucial 

events of population dynamics issued from spatially explicit 
models. Our approach is flexible and easy to implement, 
while numerous and diverse covariates describing local and 
global characteristics can be incorporated. In addition, our 
methods leverage spatio-temporal and multivariate point 
pattern techniques, while the state-of-the-art in point pat-
tern analyses deals mostly with purely spatial patterns or does 

Figure 3. Spatio-temporal discretisation of the regression models for the identification of an elementary volume spatial mesh discretisation 
(grey dotted line), mesh cells (grey), landscape patches (black). Cell centroids of different colour refer to different cell types: cell in patch 
center (red), cell connecting exactly two patches (green), cell connecting more than two patches (blue).

Table 2. Model performance under different scenarios based on smaller subsets. In predictive performance, the subset was used for re-esti-
mating coefficient (tr) and remaining data were used for validation (val). In estimation capability, the subset is contrasted with the 
benchmark.

Predictive performance Estimation capability
RMSE (tr) RMSE (val) AUC (tr) AUC (val) SE-ratio EC-diff

Scenario Subset Occurrence intensity of pest density peaks
Benchmark – 0.368 NA 0.909 NA NA NA
Repetitions 1/15 0.084 NA 0.94 NA 0.345 323.9

5/15 0.195 NA 0.905 NA 0.682 35.735
Parameter combinations 50% 0.372 0.401 0.908 0.717 0.71 3.426

10% 0.379 0.405 0.907 0.693 0.322 11.239
Spatial cells 50% 0.365 0.374 0.907 0.905 0.767 23.467

10% 0.371 0.367 0.91 0.902 0.715 31.243
50% crop 0.377 0.377 0.902 0.902 0.716 22.5

Time steps 50% 0.227 3.286 0.949 0.864 0.298 173.71
10% 0.373 0.376 0.905 0.9 0.667 29.693

Magnitudes of pest density peaks
Benchmark 0.012 NA 0.762 NA NA NA
Repetitions 1 0.013 NA 0.751 NA 0.286 66.933

5 0.012 NA 0.757 NA 0.621 25.754
Parameter configurations 50% 0.012 0.013 0.76 0.766 0.716 8.14

10% 0.013 0.012 0.763 0.758 0.308 27.272
Spatial cells 50% 0.013 0.012 0.767 0.756 0.743 1735.933

10% 0.013 0.012 0.768 0.76 0.019 1735.682
50% crop 0.012 0.012 0.778 0.762 0.401 1737.931

Time steps 50% 0.013 0.155 0.727 0.637 0.275 2069.302
10% 0.012 0.012 0.76 0.761 0.651 1728.561
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Figure 4. Estimated regression coefficients for the models of peak occurrence intensity (x-axis) and the model of the peak value (y-axis). Dot 
colours indicate covariate types: STC (orange), SC (blue), PDC (green). (b) is the magnified version of the rectangle in (a).
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not well represent the temporal dimension (Wiegand et al. 
2017). We applied our methodology to the outputs of a SEM 
describing the dynamics of a crop pest and its predator.

A large body of literature on meta-models (or surro-
gate models, or emulators) in various disciplines focuses 
on Gaussian processes or machine-learning techniques 
(Forrester et al. 2008, Kleijnen 2015). Discrete events data 
localized in continuous time and space are also assessed 
through machine learning (Reinhart 2018, Chen et al. 2020, 
Zhu et al. 2020, Dong et al. 2021). For example, Du et al. 
(2016) and Zhang et al. (2020) model discrete events using 
neural-network-based point process models with the aim of 
presenting highly performing approaches for reproducing 
and predicting spatio-temporal patterns observed in the data. 
Dong et al. (2021) develop a non-stationary spatio-temporal 
point process for COVID epidemic and introduce a neural 
network-based kernel to capture the spatially varying trigger-
ing effect. However, even if theses machine learning-based 
approaches are very fulfilling, they have been designed for 
predictive purposes and may lack of interpretability. Their 
black box nature renders difficult parameter interpretation 
and driver-process relationship identification. By contrast, 
our STPP model allowed for a relatively complex spatio-tem-
poral local analysis of system dynamics. It therefore provided 
insights into the role of different effects and takes process-
specific scales into account by using categorical or numeri-
cal marks. Through statistical inferences it becomes possible 
to identify significant relationships of key events with their 
drivers focusing on biotic interactions and habitat hetero-
geneity (Baddeley  et  al. 2015). More generally, our work 
strikes a pragmatic balance with respect to the inevitable 
trade-off between model simplicity, to obtain clear insights 
into important factors, and model complexity, to achieve 
a more complete and realistic representation of the system 
(Lacy et al. 2013).

The adaptation of our approach of defining a marked 
STPP meta-model may be relevant and insightful in vari-
ous contexts. Examples are occurrence locations and times 
of earthquake epicentres (Lombardo  et  al. 2019), wildfires 
(Opitz et al. 2020), epidemiological outbreaks (White et al. 
2018), biodiversity hotspots and species distribution 
(Soriano-Redondo  et  al. 2019), pollutant concentrations 
(Lindström et al. 2014) or local maxima or minima in meteo-
rological events (Heaton et al. 2011). In most ecological pro-
cess space and time are closely intertwined and not separable 
as in our case, where pest introductions and subsequent peaks 
depend on local temporal dynamics driven by local spatial 
structure. Thus, here, we designed our approach to allow 
for joint analysis of spatial and temporal scales. White et al. 
(2018) address how landscape structure impacts simulated 
disease dynamics in an individual-based susceptible-infected-
recovered model. They quantify disease dynamics by outbreak 
maximum prevalence and duration, coupled with landscape 
heterogeneity defined by patchiness and proportion of avail-
able habitat. Our work had similar thrust by exploring the 
effect of landscape heterogeneity on pest density peaks. 
However, by taking advantage of the STPP modelling, we 

focused on spatio-temporal positions of peaks, and we inves-
tigated which factors locally influence occurrence intensity 
and magnitude of these events.

In a similar context, Le Gal  et  al. (2020) highlight the 
important influence of the interplay between the landscape 
structure and the timing of CBC measures on the delivery of 
pest control services. They show that increased semi-natural 
habitat proportion at the landscape level enhances the visita-
tion rate of pest-colonised crop cells, but it also reduces the 
delay between pest colonisation and predator arrival in the 
crop patches. Here, we have opted for simulating the time 
and position of pest arrival according to a Poisson process 
with intensity proportional to crop area. We found that loca-
tions showing frequent and high density peaks in previous 
time steps are likely to incur new peaks. On the other hand, 
local previous treatments in a patch negatively influenced the 
dynamics since they efficiently reduced the pest density in 
this patch. Introductions of pest acted as an accelerator of 
local pest dynamics, and after a short period we often assisted 
to both high frequency and high magnitudes of peaks in the 
surrounding patches.

Spatial covariates (SC) in our regression meta-models were 
time-invariant landscape characteristics that may have influ-
enced pest peaks. Crop proportion was the main driver for 
pest in our models, and led to a clear positive response of pest 
insects to increasing cover of a suitable crop (Tscharntke et al. 
2007, Avelino et al. 2012, Rand et al. 2014, Zhao et al. 2015, 
Ricci et al. 2019). Crop proportion at local scale or at global 
scale led to different peak patterns. When crop aggregation 
and percentage coverage were high in the whole landscape, 
pest density threshold exceedances occurred homogeneously 
over large areas of contiguous crop, but these peaks were of 
relatively small magnitude because hotspots with high pest 
clusters and concentration did not build up. Instead, in local 
aggregates of crop patches, pests found their preferred habitat 
in a more limited space and tended to concentrate there.

Hedge distribution and proportion can be viewed as a proxy 
for predator presence and reveal when predators may play a role 
in reducing pest density (Bianchi et al. 2006, Tscharntke et al. 
2007). The effects attributed to semi-natural habitat are 
ambiguous with both positive, negative or neutral impacts on 
conservation biological control (Chaplin-Kramer et al. 2011, 
Karp  et  al. 2018). In our models, hedge proportion at the 
landscape scale had a small but positive effect on both the 
number and the magnitude of peaks. This result might have 
appeared counter-intuitive at first glance. Since response vari-
ables were evaluated at cell scale, having a large hedge propor-
tion in the whole landscape, but a low proportion of hedges 
in the buffer clearly results in a concentration of pest where 
hedges were missing. In addition, hedges helped to keep the 
pest below the treatment threshold and therefore favoured its 
propagation through the landscape (Zamberletti et al. 2021); 
therefore, the pest might have reached areas of lower preda-
tion pressure more easily and pulled out. Indeed, when focus-
ing on local buffers around a cell, local hedge structure and 
the resulting predator concentration, played a positive role by 
reducing both number of pest peaks and their magnitude.
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Population dynamics covariates (PDC) in our models 
were related to species traits. We focused on how the struc-
ture of landscape elements influences species spread with 
respect to the studied events considering parameter related 
to species mobility. We found that predator diffusion ability 
over the landscape was fundamental to reduce the presence 
of pest, as predator were able to rapidly move in the whole 
landscape. Interestingly, we did not notice the same effect for 
predator migration speed from hedge to patch. This predator 
trait acted strongly at locations close to hedges, i.e. around 
patch borders, with a strong decrease in the number of peaks, 
while the peak value was not affected but was high mainly in 
the patch core areas.

To conclude, our approach shows potential to reveal prop-
erties in ecological systems that are difficult to identify when 
considering only the complex model output with large data 
volumes as a whole. In the context of biological pest control 
for agricultural landscapes, we have devised an approach for 
disentangling the effects of local and global drivers acting on 
the spatio-temporal pattern of pest outbreaks. Our work can 
help to schedule specific local control strategies by targeting 
the locations that frequently suffer from pest peaks and the 
moments when local control strategies can be expected to be 
most efficient to control pest dynamics.
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