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Abstract

This study focuses on the propagation of harmonic mechanical waves around both circular and non-
circular tunnels. The excavation disturbed zone is explicitly modeled with a multilayered description of
the surroundings of the tunnel. The purpose of this paper is thus to establish closed-form solutions for
stress and displacement fields for circular and non-circular geometries taking into account the mechan-
ical heterogeneity of the area adjacent to the tunnel. Particularly, the multilayered non-circular shape
configuration is a great step not treated previously. The classical approach based on the wave function
expansion method is used to determine the expressions of stresses and displacements around circular
geometries. To handle non-circular tunnel shapes, the complex variable method based on the Muskhe-
lishvili approach and conformal mapping functions is introduced. Results indicate that the excavation
damaged zone strongly modifies the distribution of stress and displacement fields around the tunnel.
Geometrical tunnel shapes also affect stress and displacement polar diagrams.

Keywords: Harmonic regime; Complex variable; Conformal mapping; Non circular tunnels; Semi-
analytical model; Multilayered configurations

1 Introduction

Underground tunnels play an important role in mining, transportation industry and military engineering.
Over the last decades, many techniques have been applied to detect and characterize underground facilities
and their surroundings, including electrical, magnetic and mechanical methods. Seismic approaches are
among the most successful for underground cavity detection. Priad and Piwakowski [1] proposed a high-
resolution seismic reflection technique to localize and characterize French underground cavities at variable
depths. Sloan et al. [2] presented work based on compressional wave diffraction and surface wave backscatter
to detect a purpose-built subterranean tunnel. The tunneling industry has frequently assumed that tunnels
are naturally resistant to earthquakes due to the traditional concept [3] and that underground facilities
are less affected by seismic damage during earthquakes than structures on the ground surface. Large earth-
quakes have proven the opposite with significant seismic damage to underground structures [4]-[5]. Therefore,
concrete linings have become the primary support to ensure the safety of underground structures. Several
studies on tunnel strength have provided significant references for appropriate measurements, optimal design
and safe operation of tunnels [6]-[9]. Also, excavation of underground tunnels affects the mechanical and
hydraulic properties of the rock mass and the tunnel opening ultimately worsens the overall performance of
the underground space. The Excavation Damage Zone (EDZ) is the failure zone due to stress redistribution
induced by excavation and time depending on the behavior of the rock mass during blasting, drilling and
mechanical excavation of the tunnel. Characterization of the disturbed zone is thus a very important task
in the design and construction of deep underground tunnels, and for nuclear waste and natural gas storage
applications, among others. The geometrical shapes of the tunnel and the EDZ can be varied, from quasi-
cylindrical to horseshoe-shaped. Several authors have investigated the change of rock or soil properties due
to the excavation disturbed zone: Kaewjuea and Senjuntichai [10] analyzed the influence of the excavation
disturbed zone on the time-dependent response of a cylindrical borehole in a poroelastic medium; Meglis
et al. [11] used ultrasonic wave velocity measurements to characterize the micro-crack population induced
during the excavation of a tunnel at the Atomic Energy of Canada’s Underground Research Laboratory;
Tang et al. [12] used a coupled mechanical and a diffusion model to study the time-dependent development
of the EDZ in a tunnel under high-humidity conditions; Zhoua et al. [13] proposed multilayered cylindrical
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In this study, the primary goal is to provide semi-analytical solutions to determine stress and displace-
ment fields around a non-circular tunnel with a multilayered description of the EDZ subjected to harmonic
wave excitations. The work was carried out at the Low Noise Inter-Disciplinary Underground Science and
Technology Laboratory (LSBB), an experimental environment located in southern France. The LSBB is char-
acterized by a system of galleries, some of them presenting a concrete lining (Figure 1). The sub-horizontal
galleries are 4 km long and are dug in a karstified limestone massif at a depth of 518 m in the heart of the
unsaturated zone. In addition to the fractures generated during tunnel excavation, minor natural fractures
are also present in the area of interest, J. Beres et al. [14].
In the literature on semi-analytical wave propagation in tunnels presenting a circular geometry, including
potentially a multilayered approach for the lining of the tunnel with imperfect boundary conditions at the
interfaces or for the EDZ, the historical works of Baron and Matthews [15] and Baron and Parnes [16] de-
scribed the diffraction of pressure waves by a cylindrical cavity in an infinite elastic medium using integral
transform method. Pao and Mow [17] studied the dynamic stress concentration factor of a circular tunnel in
an elastic medium impacted by harmonic plane dilatational waves. Scorn [18] investigated the response of
two-layered circular rod with imperfect bonding subjected to transient compressional waves. More recently,
David et al. [19] proposed a Fourier–Bessel series development and a convex approximation of the half-space
free surface to investigate the transverse response of underground cylindrical cavities subjected to incident
shear (SV) waves. Esmaeili et al. [20] presented finite element and hybrid boundary methods to analyze the
dynamic response of a lined circular tunnel subjected to harmonic plane waves. Lu et al. [21] investigated
the dynamic stress concentration factor of the surrounding rock of a circular tunnel impacted by blasting
dilatational cylindrical waves. Wang and Gong [22] studied the dynamic stresses in a multilayered cylinder
subjected to dynamic pressure. On imperfect boundary conditions around the tunnel, Wang and Sudak
[23] proposed a general method to study the scattering of elastic waves by multiple elastic circular cylinders
with an imperfect interface. Yi et al. [24] and Shakeri et al. [25] also presented harmonic and transient
approaches to analyze the response of a concrete tunnel with an imperfect contact embedded in an elastic
rock, respectively.
Some researchers have studied non-circular lined and unlined tunnel geometries but without including a
multilayered description of its surroundings. For example, Liu et al. [26] used the complex variable method
to analyze the dynamic stress concentration factor around circular and elliptical cavities. Kargar et al. [27]
presented an analytical solution for the stress field around a lined non-circular tunnel subjected to uniform
ground load. Gerçek [28] presented an analytical solution for the elastic stress field occurring around tunnels
or galleries with conventional shapes using a conformal mapping technique. Fang and Jin [29] used a visco-
elastic interface model to investigate the dynamic stress field around a semi-circular and horseshoe-shaped
lined tunnel subjected to harmonic compressional and shear waves. Zhao et al. [30] employed the com-
plex variable method to find an analytical solution for rock stress around square tunnels in a homogeneous,
isotropic and elastic rock mass. Hei et al. [31] proposed analytical solutions for elastic wave scattering by
an arbitrary cavity in an in-homogeneous medium.
This study focuses on the propagation of harmonic mechanical waves around both circular and non-circular
tunnels. The excavation disturbed zone is explicitly modeled with a multilayered description of the sur-
roundings of the tunnel. The purpose of this paper is thus to establish closed-form solutions for stress and
displacement fields for both circular and non-circular geometries, taking into account the mechanical hetero-
geneity of the area adjacent to the tunnel. Particularly, the multilayered non-circular shape configuration is
a great step not treated previously. This paper is organized as follows: Section 2 describes accurate stress
and displacement field solutions around a circular geometry. The concrete tunnel lining, the heterogeneous
excavation disturbed zone and the surrounding limestone massif are assumed to be elastic and isotropic with
various mechanical parameters. The mapping function theory with a complex variable approach is then
used to transform a non-circular multilayered tunnel shape into a circular multilayered geometry for which
analytical solutions could be developed. The study focuses on the assembly of the different layers in the
two modelings underlining the differences and the key points to be cautious with. In Section 3, details of
numerical computations and the results of stress and displacement fields around various tunnel shapes with
a single or multilayered description of the EDZ are given. The mechanical input parameters are estimated
using the ranges of density and velocities experimentally measured at the LSBB site. The results are an-
alyzed by polar diagrams and show the influence of the tunnel and EDZ geometrical shapes on the hoop
stress and radial displacement distributions.
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The main steps to obtain the components of stress and displacement fields around a circular tunnel are
described. The assembly process to handle the problem of a multilayered configuration to model the EDZ is
explained. This section ends with a brief description of the complex variable method and the use of mapping
functions to transform any kind of geometries into a circular shape. The assembly technique to deal with
multilayered non-circular geometries is finally presented.

2.1 Positioning of the problem

The two-dimensional cross-section configuration is illustrated in Figure 2: a long tunnel is embedded in
an infinite rock medium with a concrete lining. Due to the digging process, the area around the tunnel
is weakened with the appearance of an EDZ. This zone is constituted by several layers around the lining
assuming geometric regularity. The rock mass, the EDZ and the tunnel are considered as homogeneous,
isotropic and elastic media. NL defines the number of layers including the rock, the EDZ and the lining.
For the circular or real geometry (right and left in the figure, respectively), ηk (resp. Ωk) represents the
rock mass medium when (k = 1), the lining medium when (k = NL) and the damaged area is constituted
of NL − 2 layers (k = 2, ..., NL − 1). Γk (resp. Lk) correspond to the different interfaces and the free
surface (k = NL). An incoming harmonic plane compressional wave with frequency ω and compressional
wavenumber vector α1 comes from the left side and propagates parallel to the x axis and perpendicular to
the cross section of the tunnel.
In each medium under consideration, the displacement vector u is the solution of the Navier’s elastodynamic
equations. The usual gradient and curve decomposition of the displacement vector uk = ∇φk +∇×Ψk is
used, leading to the following Helmholtz equations

∇2φk −
1
c2
pk

φ̈k = 0 and ∇2Ψk −
1
c2
sk

Ψ̈k = 0 (1)

where ∇2 indicates the Laplace operator, cpk =
√

λk+2µk
ρk

, csk =
√

µk
ρk

are the P and SV wave velocities in
the elastic medium. λk, µk are the Lamé constants, ρk is the density and (̈ ) denotes double differentiation
with respect to time.

2.2 Classical approach to solving the problem for circular geometries

The general method used to investigate the dynamic response of a layered circular tunnel is briefly summa-
rized in this section. In the literature, many researchers analyzed the stress and displacement fields created
around a circular cavity with or without lining. For instance, Pao and Mow [17] used the wave function ex-
pansion method to investigate the dynamic response of a circular tunnel in a homogeneous medium. Lee and
Karl [35] gave a general formulation to study the scattering and diffraction of plane waves by underground,
circular cavities at various depths. Wang et al. [36] studied the response of a tunnel in double-layered rocks
subjected to compressional and shear harmonic waves. Zhao and Gary [37] proposed a three-dimensional
analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. More
recently, Shakeri et al. [25] presented harmonic results analyzing the response of a concrete tunnel with an
imperfect contact embedded in an elastic rock.
In this study on harmonic motion, the 2D total displacement potentials, indicated by exponent (T ), in the
rock mass, include incident and reflected waves and are given by

φ
(T )
1 =

∞∑
n=0

[ϕ0εni
nJn(α1r) +AnH

(1)
n (α1r)] cos(nθ) and ψ

(T )
1 =

∞∑
n=0

BnH
(1)
n (β1r) sin(nθ) (2)

where H(1)
n is the Hankel function of the first kind of integer order n, β1 = ω

cs1
is the shear wavenumber in the

incident medium, and An and Bn are unknown coefficients corresponding to the modal expansion and to be
determined based on the boundary conditions. Expression ϕ0

∑∞
n=0 εni

nJn(α1r) cos(nθ) corresponds to the
incident wave expressed in terms of the Bessel-Fourier series, see Appendix A. The other terms correspond
to reflected waves.
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φ
(T )
k =

∞∑
n=0

[CnkH(2)
n (αkr) +DnkH

(1)
n (αkr)] cos(nθ) (3)

ψ
(T )
k =

∞∑
n=0

[MnkH
(2)
n (βkr) +NnkH

(1)
n (βkr)] sin(nθ) (4)

where k varies from 2 to NL and identifies the layer under consideration, H(2)
n is the Hankel function of the

second kind of an integer order n, and Ckn, Mkn, Dkn and Nkn are the unknown expansion coefficients per
mode. The two incoming waves from the boundary are modeled by Hankel functions of the second kind H(2)

n

and the two outgoing waves are written in terms of Hankel functions of the first kind H(1)
n .

Displacement and stress components are linked to scalar and vector potentials φ and Ψ thanks to Helmholtz
decomposition and behavior law, and are thus expressed with Hankel-Fourier series involving the unknown
expansion coefficients.
Boundary and interface conditions respect the following : (i) perfect contact on each interface of the damaged
area and between the EDZ and the mass rock; (ii) a free surface on the inner surface.
Combined with the use of the orthogonality properties of the trigonometric functions, it leads to the following
matrix expression

∀n (mode number) [K]n,{NE ,NE}{X}n,NE = {Y }n,NE (5)

and in a more detailed form

{X} is a vector containing the unknown expansion coefficients per mode to be determined. {Y } is a vector
including the incident wave terms. They both have the dimension NE = 2 + 4(NL − 1) where NL ≥ 2. [K]
is a square NE × NE matrix. The matrix [K] is formed using the non zeros sub-matrices [L], [Uk] with
(k = 2, 3, ...NL − 1) and [Z]. The first block [L] is a 4 × 6 matrix and comes from writing the interface
conditions on Γ1. The last block [Z] is a 2 × 4 matrix and takes into account the free surface conditions
at the boundary ΓNL . [Uk] is a repetitive block with a 4 × 8 dimension matrix coming from the interface
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obtained by summing the mode contributions. NM therefore corresponds to truncation of the sums involved
in the displacement and stress component expressions and must be chosen to achieve good convergence and
results.

2.3 The complex function theory to solve the problem for more general geometries

In order to deal with the non circular shape of the tunnel, the complex variable method, explained by Liu et
al. [26] for a tunnel embedded in an infinite homogeneous medium, is considered. The main characteristic
of this method is to transform the real geometry into a cylindrical geometry to use the results developed for
the cylindrical configuration and transform them to obtain the real displacement and stress fields. To do
so, the real space is described by the complex variable z = x + iy = ρ eiχ and transformed in a cylindrical
geometry, also described by a complex variable η = |η|eiθ with θ ∈ [0, 2π].
A conformal mapping function is used to transform each point of a unit circle into a point of the real interface
and also each point outside the unit circle into a point outside the real interface. In the multilayered medium,
each layer is transformed into a related layer in the real configuration (Figure 2). To simplify the approach,
a unique mapping transform w is considered that transforms the free real surface (complex variable z) into
a circular free surface (complex variable η). Then, all the interfaces are deduced from the same conformal
mapping function.
According to Kargar et al. [27], Zhao and Yang [38] and, Fang and Jin [39], such a function w(η) can be
expressed as

w(η) = G
(
η +

4∑
p=1

cpη
−p
)
with η = |η| eiθ, (6)

where G is the real parameter controlling the scale of the mapping function and coefficients cp define the
shape of geometry in the z-plane. Expressions w(ηk) with the subscript k = {1, 2, . . . Nl}, describe more
specifically the contours Lk. In order to obtain a single valued mapping function w and to avoid any self
intersections at the interfaces, coefficients cp must satisfy the following condition 0 ≤ cp ≤ 1/p. Choosing
cp = 0 provides a circle and choosing limiting values cp = 1/p gives a pore with (p + 1) pointed cusps, [40]
and [41].
The theoretical developments are based on [26] and [40], who considered only a tunnel embedded in an infinite
medium without layering. The main steps of the method are briefly described omitting the intermediate
developments. Introducing the conjugate complex variable z and derivatives related to complex variables z
and z, partial differential equations relative to Helmholtz potentials are expressed in the complex domain as

4∂
2φk(z, z)
∂z∂z

+ α2
kφk(z, z) = 0 (7)

4∂
2ψk(z, z)
∂z∂z

+ β2
kψk(z, z) = 0 (8)

Introducing a holomorphic function as described previously (such as relation 6) z = w(η) and its conjugate
form z = w(η) and linking derivatives of z with respect to η and z with respect to η, ∂z = w′(η)∂η and
∂z = w′(η)∂η, equations (7) and (8) are re-written in terms of variables η and η

∂2φk(η, η)
∂η∂η

=
( iαk

2

)2
w

′
(η)w′(η)φk(η, η) (9)

∂2ψk(η, η)
∂η∂η

=
( iβk

2

)2
w

′
(η)w′(η)ψk(η, η) (10)

Equations (9) and (10) must now be solved in the transformed circular geometry to obtain Helmholtz
potentials.
The total displacement potentials of the rock mass are expressed as

φ
(T )
1 (η, η) = ϕ0e

iα1

(w(η) + w(η)
2

)
+

∞∑
n=−∞

AnH
(1)
n (α1|w(η)|)

[ w(η)
|w(η)|

]n
(11)
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n=−∞

These relations must be compared to those obtained in the classical cylindrical configuration. The main
differences lie in the arguments of the Hankel functions since they now depend on the mapping function
w(η) and in the trigonometric functions replaced here by the ratio w(η)

|w(η)| .

The total displacement potentials in the damaged area and the tunnel are

φ
(T )
k (η, η) =

∞∑
n=−∞

{
CknH

(2)
n (αk|w(η)|) +DknH

(1)
n (αk|w(η)|)

}[ w(η)
|w(η)|

]n
(13)

ψ
(T )
k (η, η) =

∞∑
n=−∞

{
MknH

(2)
n (βk|w(η)|) +NknH

(1)
n (βk|w(η)|)

}[ w(η)
|w(η)|

]n
(14)

As in the classical approach, a free surface on the lower boundary of the tunnel is considered, and the upper
tunnel boundary and all other interfaces are assumed to be perfect.

The following n sets linear system of equations are expressed as

{H}n,NE = {Q}n,NE (15)

Q contains the stress and displacement expressions of the incident wave in the rock mass, and H includes the
stress and displacement relations of reflected and transmitted waves in all interfaces and boundaries. Due to
the argument of the Hankel functions αk|w(η)| and βk|w(η)|, the orthogonality condition cannot be applied
to equation (15). The unknown expansion coefficients can be determined from Fourier series expansion in a
matrix formulation. As described in [26], [40] and [41], a periodic function Υ can be written in terms of the
Fourier series

Υ =
∞∑
m=0

Υme
imθ with Υm = 1

2π

∫ 2π

0
Υe−imθdθ (16)

where Υm is an expansion coefficient.

Applying the mathematical relation (16) to (15), a double Fourier series is obtained for both members of
equation (15). The unknown expansion coefficients per mode become dependent on m and n, and the global
linear system obtained as a function of mode is written

[G]n,m,{ME ,ME}{P}n,m,ME
= {I}n,m,ME

, m = n = 0,±1,±2, .........±NM (17)

where [G] is a (ME × ME) coefficient matrix, {P} and {I} are the column vectors of size ME . They
are composed of the unknown expansion coefficients and the expressions due to the incident wave. As
ME = (2NM + 1)×NE is a function of NM (number of modes), the dimensions of quantities [G], {P} and
{I} depend on the number of modes. The global matrix [G] can be built using the sub-matrices [R], [Vk]
with (k = 2, 3, ....NL − 1) and [W ] as presented in the following matrix system in concordance with Figure
3. The non-zeros block [R] is a 4(2NM + 1) × 6(2NM + 1) matrix and contains the contribution elements
of stress and displacement at the interface w(η1). The non-zeros block [W ] is a 2(2NM + 1) × 4(2NM + 1)
matrix and includes the elements of stress at the boundary w(ηNL). The non-zeros matrix [Vk] with a
4(2NM+1)×8(2NM +1) dimension is a repetitive block and contains the elements of stress and displacement
at the interfaces w(η2) to w(ηNL−1). Each element noted by [×] in [R], [Vk] and [W ] is a (2NM+1)×(2NM+1)
square matrix.
In the classical approach, the matrices and vectors obtained are independent on the number of modes NM .
In the complex variable approach, they are dependent on it and the same assembly algorithms cannot be
used for both approaches. For a large number of modes, the global matrix [G] can be huge.
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3 Numerical results and discussion

3.1 Computational considerations and validation

Two Matlab codes have been developed to obtain the numerical results for the classical and complex ap-
proaches. For circular geometries, the arguments of the Hankel and Bessel functions in both methods are
constant. However, for elliptical and horseshoe-shaped geometries, these arguments become variable and can
lead to numerical oscillating features in the computation of these functions. A specific attention is needed at
this stage. Several iterative solvers (GMRES, CGS, LSQR) have been tested during the numerical process to
solve the global linear system obtained by both approaches and the BICGSTABL solver (Biconjugate Gra-
dients Stabilized I Method) was ultimately chosen for its efficiency and accuracy. From a numerical point of
view, the different numbers of modes used to obtain a good and reliable convergence of the Bessel-Fourier
series for the circular and non-circular geometries are given in Table 3, Appendix B.
Two validation cases of the complex variable method for a multilayered configuration are proposed in this
subsection. Firstly, our results are compared to those obtained by Liu et al. [26], who presented the re-
sults of the dynamic stress concentration factor for an elliptic cavity in a homogeneous infinite elastic plane
subjected to a harmonic incident plane compressional wave. Rock, EDZ and lining are thus assumed here
to be identical. The elastic half-space and the frequency content are directly chosen from the work by Liu
et al. [26]. Figure 4 presents the dynamic stresses along the circumference of the elliptical cavity. Good
agreement is found between the two sets of results. The expansion coefficients of the series obtained by
both approaches are given in Table 4, Appendix B. The relative error is small. Differences may be due to
computational performance and numerical accuracy since solvers and pre-conditioners have greatly evolved
since the 1980s.
The second validation proposed in this work is a crosscheck between the usual and the complex variable
approaches for a multilayered circular configuration. The mechanical parameters (density, P and S wave
velocities) of each layer are given in Table 1 (case 3) and explained in section 3.2. Two incident frequencies
are chosen: 200 Hz (called low frequency excitation) and 2 kHz (called high frequency excitation). The
results are presented in a dimensionless form with the following notations

σ∗θθk = |σθθk
σ0
|, σ∗rrk = |σrrk

σ0
|, u∗rk = |urkζ

ϕ0
| (18)

where ζ = 1 has the dimension of a distance (m). σ0 = µ1β
2
1ϕ0 denotes the stress intensity of the incident

wave in the propagation direction.
Figure 5 shows the polar diagram of the hoop stress obtained by both approaches for the two chosen incident
frequencies at the interface between the limestone and the first EDZ layer. Excellent agreement is obtained
and allows the two approaches to be cross-checked.
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Incident 2800 5400 3300
Case 0 (black) no EDZ
Case 1 (magenta) EDZ - Stiff (case 1) 2550 4400 2695
Case 2 (cyan) EDZ - Soft (case 2) 2300 3450 2110
Case 3 (red) EDZ 1 - Stiff (case 3) 2700 4800 2940

EDZ 2 - Stiff (case 3) 2400 4000 2450
Case 4 (blue) EDZ 1 - Soft (case 4) 2300 3700 2260

EDZ 2 - Soft (case 4) 2300 3200 1960
Concrete tunnel 2500 5031 2689

Table 1: Input data with a stiff layer (case 1), a soft layer (case 2), two stiff layers (case 3) and two soft
layers (case 4) for modeling the EDZ. The mechanical parameters are estimated using the ranges of density
and velocities experimentally measured at the LSBB site by [42] or [43].

Tunnel shape |η1| |η2| |η3| |η4| G c1 c2 c3 c4
Circular 3.4 2.9 2.4 2.0 0 0 0 0 0

Horizontal Elliptical 3.4 2.9 2.4 2.0 0.972 0.25 0 0 0
Horseshoe 1.413 1.20 0.995 0.82 2.4e−iπ2 -0.01 -0.04 -0.002 -0.012

Table 2: Geometric coordinates and mapping coefficients of different tunnel shapes

3.2 Main results and discussion

In this work, the EDZ is modeled by one or two soft or stiff layers. The sets of mechanical values of each layer
are presented in Table 1. The mechanical parameters are estimated using the ranges of density and velocities
experimentally measured at the LSBB site by [42] or [43]. Soft and stiff values are related to the lowest and
highest parts of the experimental intervals, respectively. The numerical results focus on two frequency ranges
chosen as follows : a first low range related to a central frequency of the Ricker wavelet equals 200 Hz; this is
the low frequency case and it corresponds to a wavelength around 20 m, thus 4 times the characteristic tunnel
dimension. A second higher value, with a central frequency equal to 2 kHz, matches a wavelength around
half the characteristic tunnel dimension. This choice can especially be justified because it corresponds to
the wavelength or frequency ranges used in multifrequency inversion processes for parameter identification.
Results proposed in this section concern the polar distribution of stress and displacement fields for:

• Case 0: Configuration for which only the lined tunnel embedded in a homogeneous limestone massif is
considered (black lines).

• Cases 1 and 2: Description for which the EDZ is modeled with a single layer (magenta (stiff case) and
cyan (soft case) lines). For the description, the mechanical parameters are the means chosen in the
two-layer approach.

• Cases 3 and 4: Approach by which a two-layer model for the EDZ is used to describe more precisely
the damaged zone around the tunnel (red (stiff case) and blue (soft case) lines).

The geometric coordinates and the mapping coefficients of the various tunnel shapes are presented in Table
2. Boundaries w(η1) and w(η2) correspond to the interfaces between the limestone massif and EDZ1, and
between EDZ1 and EDZ2, respectively. Interfaces w(η3) and w(η4) describe the outer and inner tunnel
boundaries.

3.2.1 Influence of the EDZ

Horizontal elliptical shape For an elliptical geometry, all results are symmetrical with respect to the
horizontal axis, as expected. At low frequency (200 Hz) and for interface w(η1), the choice between single
or two-layer modeling of the EDZ slightly affects the stress and displacement fields (Figures 6-7 on the left)
since red and magenta curves are superposed as well as blue and cyan curves. The presence of a damaged
area increases hoop stress (Figure 6) and radial displacement (Figure 7) for both stiff and soft cases. The
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6-7 on the right). The choice of a multilayered description of the EDZ changes significantly the stress and
displacement field polar diagrams. The maximum of hoop stress and radial displacement are obtained for
stiff cases. Consequently, the effect of the EDZ is more significant for higher frequencies changing the order
in the magnitudes and the field tendency.
Unlike interface w(η1), interface w(η3) shows, for a low frequency, a decrease of the hoop stress when
considering the existence of the damaged area (Figures 8-9 left). Both interfaces w(η1) and w(η3) present
slightly higher radial displacements when taking into account the EDZ. This is not the case for higher
frequencies. The soft EDZ provides smaller hoop stress values and higher radial displacement values at
low and high frequencies for w(η3). At interfaces w(η1) and w(η3), the hoop stress mean amplitude varies
slightly with the frequency and large peaks are always observed between π/6 and π/2 (Figures 6 and 8).
Concerning the radial displacement mean amplitudes (Figures 7 and 9), a notable increase in the frequency
and the peak generally located at π is observed. Moreover, comparing Figures 6 and 8, when the EDZ is
not taken into account (black curves), the amplitude increases at a low frequency whereas it remains of a
similar order at a higher frequency. The order of magnitude is also greatly influenced by the frequency and
the model chosen for the EDZ, but the impact is not similar for w(η1) and w(η3). Comparing Figures 7 and
9, radial displacement appear similar for one- or two-layer models for the low frequency, whereas they differ
for the higher frequency. Consequently, the effect of the EDZ model is more visible for the higher frequency.

Horseshoe shape For a horseshoe-shaped tunnel, the stress and displacement field polar diagram shapes
show differences in shape and amplitude compared to the ones obtained for the elliptical configuration,
and all diagrams become non-symmetrical with respect to horizontal axis. As in the elliptical case, the
results show that the presence of a damaged zone modifies the stress and displacement fields around the
tunnel. At low and high frequencies, an increase in hoop stress and radial displacement is noted at the
interface w(η1) when taking into account the EDZ (Figures 10-11). The soft EDZ provides the highest hoop
stress and radial displacement values. Inside the massif at w(η3) and at a low frequency, the damaged zone
increases slightly the radial displacement, and decreases the hoop stress component (Figures 12-13 left). At
a high frequency, maximum large peaks situated around π appear for both the radial stress and the radial
displacement components, and overall shapes of the polar diagrams become more disturbed (Figures 12-13
right). It is also important to notice that for both tunnel shapes (elliptical and horseshoe-shaped), the overall
radial displacement fields increase with frequency, unlike the hoop stress field which decreases.

3.2.2 Influence of geometrical shape

This section studies the impact of geometrical shapes on the stress and displacement fields. The three shapes
were chosen so that the geometrical points studied are rigorously the same for θ = 0 and π, and very close
elsewhere along the polar description. The case of two stiff-layer modeling of the EDZ is considered and
the mechanical fields are plotted for w(η3) inside the massif. Figures 14-15 show that the geometrical shape
considerably modifies the distribution of the stress and displacement components. At a low frequency, the
polar diagrams for circular geometry are quite similar to those for the elliptic ones and quite different from
the horseshoe-shaped configuration. At a high frequency, all diagrams show specific trends with a more
dynamic overall response and a notable difference between the horseshoe-shaped and the circular-elliptic
responses. The geometrical shapes are thus particularly important: in these results, the horseshoe-shaped
case increases hoop stress and radial displacement around the galleries.

3.2.3 Frequency influence for different shapes

Figures 16-17 present the radial displacement obtained for the specific point θ = π at interface w(η3) for
different geometries as a function of frequency over the range [200−4500] Hz, including the limestone massif
and the tunnel (case 0), and extensions to cases 3 and 4 where the damaged area is modeled with two stiff
and soft layers. The main observations are as follows:

• For circular and elliptical shapes, the curves present an increasing behavior up to a maximum value
and then decrease to a minimum value for a frequency between 3000 Hz and 3500 Hz (depending on
the geometrical shape and the stiffness of the EDZ). Note that this value is close to the usual Rayleigh
expression f0 = cp4/4H, (H is the thickness of the concrete layer), obtained in a 1D problem, [44]-
[46]. This minimum is slightly shifted for the elliptical geometry. For the horseshoe shape, the same
behavior is not observed.

• Oscillations appear when taking into account the EDZ, these are more perceptible in the soft case.
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shaped geometry.

• All curves present another increasing behavior for frequencies above 3500 Hz, until a maximum value
(not seen for all curves, depending on the chosen frequency range).

• Concerning the first maximum, it is obtained for lower frequency values when considering the EDZ.
Moreover, the soft case presents two bumps (in addition to the oscillating feature) for both circular
and elliptical configurations.

As an extension of this analysis, evolution of the radial displacement was investigated at interface w(η3) and
θ = π as a function of the incident frequency for various thicknesses of the concrete layer in case of circular
and elliptical geometries. It confirms that the position of the minimum in the circular case is obtained for
f0 = cp4/4H. Specifically, the following is obtained: pink curve, H = 0.8 yields f0 = 1572 Hz, cyan curve,
H = 0.7 yields f0 = 1797 Hz, red curve H = 0.6 yields f0 = 2096 Hz, and so on. The oscillations appearing
when taking into account the EDZ are quite similar when comparing curves with different thicknesses.
A specific change occurs for the second increasing part of the curves: they present a greater slope at the
beginning and for the same value of frequency for all cases studied (around 3150 Hz), and then the secondary
oscillations are achieved (Figures 18-20).

4 Conclusion

In this work, the complex variable method was used to determine and analyze the stress and displacement
fields induced by a harmonic plane wave around circular, elliptical and horseshoe-shaped concrete tunnels,
including a multilayered radial description of the excavation damaged zone. The mapping function concept
transforms a real configuration to a circular one. The main difference between the usual approach for circular
geometries and the complex variable approach for more various geometries lies in the argument of the Hankel
and Bessel functions that are no longer constant in the latter case. The work specifically focused on the
multilayered aspect of the EDZ and the associated assembling process. Coupling of both a non-circular
geometry and a multilayered configuration of the ground is a great advance for semi-analytical works. The
results were validated in two different ways: comparison with literature results and comparison between
the usual method in the case of circular geometries. The mechanical input parameters used in this work
were directly estimated using the ranges of density and velocities experimentally measured at the LSBB
site. The presence of the damaged zone changes the stress and displacement fields around the tunnel. The
geometrical tunnel shapes also affect the stresses and displacements polar diagrams. For circular or elliptical
configurations, all results are symmetrical with respect to the horizontal axis as opposed to the horseshoe
shape where they become asymmetrical. Study of the influence of the EDZ in terms of both multilayered
and shaped models has been proposed. Moreover, analysis of the load frequency and the lining thickness
shows resonant behavior for a specific combination. In the near future, this approach will be extended to
porous media to improve the model and include the fluid influence on the behavior. Study of the contact
between the different layers taking into account imperfect contact will also be included in the model to better
describe the potential fractures between two successive layers.
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6.1 Appendix A : expressions for incident waves

Cylindrical tunnel shape case

Following the usual methodology proposed by Pao and Mow [17], Garnet and Pascal [32] and Wirgin [33],
among others, the incident scalar potential is expressed as follows (incident denoted as an exponent “(i)”)

φ(i) = ϕ0 eiα1r cos θ (19)

where ϕ0 is the amplitude of the scalar potential of the incident wave, α1 is the incident compressional
wavenumber and (r,θ) corresponds to the polar coordinates. The frequency dependency is omitted to make
reading easier.

Based on the expansion method [34], the incident wave is expressed in terms of the Bessel-Fourier series as

φ(i) = ϕ0

∞∑
n=0

εni
nJn(α1r) cos(nθ) (20)

where Jn is the Bessel function of the first kind of an integer n and εn is the Jacobi symbol.
εn = 1 for n = 0 and εn = 2 for n > 0.
General tunnel shape case

The time-harmonic incident compressional plane wave that propagates perpendicular to the tunnel cross
section is expressed in the complex domain as

φ(i)(η, η) = ϕ0e
iα1x = ϕ0e

iα1

(z + z

2

)
= ϕ0e

iα1

(w(η) + w(η)
2

)
(21)
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Tunnel shapes Interface Frequencies (Hz) Total Number of modes
NM + 1 / 2NM + 1

Circular (classical and complex approaches) w(η1) 200 5/9
Circular (classical and complex approaches) w(η1) 2000 21/31

Horizontal Elliptical w(η1), w(η3) 200 15
Horizontal Elliptical w(η1), w(η3) 2000 31

Horseshoe w(η1), w(η3) 200 13
Horseshoe w(η1), w(η3) 2000 31

Table 3: Number of modes necessary for the convergence of the Bessel-Fourier series (circular/non-circular
geometries). In the classical approach, since the Bessel Fourier series ranges from 0 to NM , the total number
of modes corresponds to NM + 1. In the complex variable approach, it is equal to 2NM + 1.

Expansion coefficients H. Bouare et al. D. Liu et al. [26] Relative error
A−3 −0.408951 × 10−4 + i0.105877 × 10−5 −0.409825 × 10−4 + i0.101251 × 10−5 0.0024
A−2 0.588472 × 10−3 − i0.6638459 × 10−2 0.588153 × 10−3 − i0.664517 × 10−2 0.0010
A−1 −0.9821807 × 10−2 + i0.390646 × 10−3 −0.981691 × 10−2 + i0.391336 × 10−3 0.0005
A0 −0.111208 × 10−2 + i0.374542 × 10−1 −0.111462 × 10−2 + i0.314570 × 10−1 0.1905
A1 0.982181 × 10−2 − i0.390645 × 10−3 0.981380 × 10−2 − i0.394345 × 10−3 0.0009
A2 0.588472 × 10−3 − i0.663845 × 10−2 0.588029 × 10−3 − i0.664492 × 10−2 0.0010
A3 0.4089506 × 10−4 − i1.058771 × 10−6 0.409887 × 10−4 − i0.990927 × 10−6 0.0028

B−3 −0.547375 × 10−5 − i0.211882 × 10−3 −0.523445 × 10−5 − i0.212331 × 10−3 0.0024
B−2 0.198677 × 10−1 + i0.175602 × 10−2 0.198875 × 10−1 + i0.175506 × 10−2 0.0010
B−1 −0.670366 × 10−3 − i0.171018 × 10−1 −0.671594 × 10−3 − i0.170935 × 10−1 0.0005
B0 4.446479 × 10−14 + i1.3040109 × 10−14 −0.386065 × 10−6 − i0.595808 × 10−6 1.0000
B1 −0.670366 × 10−3 − i0.171018 × 10−1 −0.676553 × 10−3 − i0.170881 × 10−1 0.0009
B2 −0.198677 × 10−1 − i0.001756 × 10−2 −0.198867 × 10−1 − i0.175470 × 10−2 0.0870
B3 −0.547376 × 10−5 − i0.211882 × 10−3 −0.512241 × 10−5 − i0.212365 × 10−3 0.0028

Table 4: Comparison between expansion coefficients with Liu et al. [26] for an elliptical geometry with
αa = 0.20 and a/b = 3/2.

15







 

 

 

𝜸𝑵𝑳  

𝜞𝑵𝑳

𝜞𝟏 

𝜞𝑵𝑳−𝟏

Tunnel lined 

𝐴 

𝐵 

𝐶2 

𝑁2 
𝑀2 

𝐷2 

𝐶𝑘 

𝐷𝑘 

𝑁𝑘𝑛 

𝑀𝑘 

𝐶𝑁𝐿

𝑀𝑁𝐿
𝑁𝑁𝐿

𝐷𝑁𝐿

𝜸𝟏 

Limestone massif 

 4 Similar interface conditions (for example at the 

interface 𝛤𝑘) involve 𝐶𝑘, 𝐷𝑘, 𝑀𝑘, 𝑁𝑘   

and 𝐶𝑘+1, 𝐷𝑘+1, 𝑀𝑘+1, 𝑁𝑘+1  leading to Submatrices 𝑉 

𝜞𝒌 

2  specific free surface conditons 

𝑰𝒏𝒄𝒊𝒅𝒆𝒏𝒕 𝑷 𝒘𝒂𝒗𝒆 

 4 specific interface conditions 

involving𝐴, 𝐵, 𝐶𝑘, 𝐷𝑘, 𝑀𝑘, 𝑁𝑘   and 

leading to Submatrices 𝑅 

The arrows presented with constant 𝐴, 𝐵, 𝐶, 𝐷, 𝑀 and  𝑁 

denote that the relative constant is connected with 

incident/transmitted waves or reflected waves  





































 -
fields around an arbitrary shape tunnel 
 

 A multilayered description of the excavation-damaged zone is considered 

 

 Circular, elliptic and horseshoe shapes can be handled for the excavation damaged 
zone and the tunnel  
 

 Geometrical shapes impact  stress and displacement polar diagrams for harmonic 
regimes 

 
 



Declaration of interests 
  
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 




