
HAL Id: hal-03776179
https://hal.inrae.fr/hal-03776179v1

Submitted on 13 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Portable mid-infrared spectroscopy to predict
parameters related to carbon storage in vineyard soils:

Model calibrations under varying geopedological
conditions

Ralf Wehrle, Guillaume Coulouma, Stefan Pätzold

To cite this version:
Ralf Wehrle, Guillaume Coulouma, Stefan Pätzold. Portable mid-infrared spectroscopy to predict
parameters related to carbon storage in vineyard soils: Model calibrations under varying geopedolog-
ical conditions. Biosystems Engineering, 2022, 222, pp.1-14. �10.1016/j.biosystemseng.2022.07.012�.
�hal-03776179�

https://hal.inrae.fr/hal-03776179v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


ww.sciencedirect.com

b i o s y s t em s e n g i n e e r i n g 2 2 2 ( 2 0 2 2 ) 1e1 4
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/ locate/ issn/15375110
Research Paper
Portable mid-infrared spectroscopy to predict
parameters related to carbon storage in vineyard
soils: Model calibrations under varying
geopedological conditions
Ralf Wehrle a,*, Guillaume Coulouma b, Stefan P€atzold a

a University of Bonn, Institute for Crop Science and Resource Conservation (INRES) e Soil Science and Soil Ecology,

Nussallee 13, 53115 Bonn, Germany
b LISAH, University Montpellier, INRAE, IRD, Montpellier Supagro, 34060 Montpellier, France
a r t i c l e i n f o

Article history:

Received 10 November 2021

Received in revised form

13 July 2022

Accepted 20 July 2022

Published online 14 August 2022

Keywords:

Precision agriculture

Precision viticulture

Machine learning

Support Vector Machines

Proximal soil sensing

Labile carbon
* Corresponding author.
E-mail address: r.wehrle@uni-bonn.de (R

https://doi.org/10.1016/j.biosystemseng.2022
1537-5110/© 2022 The Author(s). Published
license (http://creativecommons.org/license
Portable mid-infrared spectroscopy (pMIRS) combined with machine learning was used to

predict selected parameters for soil organic carbon (SOC) storage. In particular, SOC, soil

inorganic C (SIC), hot-water extractable C (hwC), clay and sand content were predicted for

ten vineyards with varying geopedological settings. As a pre-test, spectra were collected

from sieved and pressed tablets with 30 and 90 kPa respectively and compared to powdery

samples in order to optimise sample preparation. Further, spectra from 30 kPa tablets were

used to calibrate prediction models for a sample set (n ¼ 540) of 10 vineyards with pro-

nounced geopedological variation using Support Vector Machines (SVM). The calibrated

SVM models performed well with R2 ¼ 0.81e0.98 and RPIQ ¼ 5.20e13.0 for all investigated

parameters. Third, two years after the calibration samples, follow-up samples were

collected from four of the vineyards. While the models performed excellent for hwC

(R2 ¼ 0.93), prediction accuracy for SOC was lower. Segmentation of the total dataset into

SIC-free and SIC-containing samples resulted in better predictions of SOC of the first

sampling period. For the prediction of the follow-up sampling dates, model performance

could not be maintained. We conclude that pMIRS-SVM calibrations are suited for the

prediction of parameters related to soil C storage under varying geopedological conditions

and may provide potential for future C monitoring. Extending the database with additional

samples from geopedological scenarios not included in this dataset may strengthen model

robustness and help to evaluate effects of SIC content on model performance.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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1. Introduction

Soil forms the largest terrestrial carbon (C) pool, acting as a

potential long-term sink for C. The storage of soil organic C

(SOC) is influenced by various parameters. Thus, in the

context of climate change, the evaluation of these parameters

is of crucial importance (Minasny et al., 2017). Especially

subsoils can provide higher SOC storage potential, because

factors affecting SOC mineralisation such as aeration and

microbial activity are reduced (Wordell-Dietrich, 2021). Vine-

yards are of special interest as they potentially provide higher

SOC contents in subsoils as a result of enhanced organic

fertilisation and deep tillage before planting (Alc�antara, Don,

Well, & Nieder, 2016). By this measure, organic materials

may be mixed into deeper soil layers were C mineralisation is

slower (Jak�si�c et al., 2021). On the other hand, topsoils of

vineyards are often exposed to frequent tillage and erosion,

which potentially leads to enhanced SOC loss over time

(Costantini et al., 2018; Napoli, Marta, Zanchi, & Orlandini,

2017; Novara et al., 2020).

The SOC storage potential of soils depends on various

chemical and physical soil properties. Besides actual SOC

concentration, soil inorganic C (SIC) is important, because it

regulates soil pH. Soil texture, is of outstanding relevance

because SOC bound to clay minerals may reveal a high

recalcitrance against microbial degradation (Hassink, 1997;

Lal, 2004). Further, the composition of SOC and the proportion

of labile SOC pools are important parameters to whether SOC

can be stored or is predominantly mineralised. Hot-water

extractable C (hwC) is a sensitive indicator for such a labile

C-pool (Ghani, Dexter, & Perrott, 2003; K€orschens, 2010;

K€orschens, Weigel, & Schulz, 1998; Zmora-Nahum,

Markovitch, Tarchitzky, & Chen, 2005). As a consequence,

hwC is a promising indicator for estimating C stability in soils.

Soil heterogeneity at field and landscape scale may lead to

a significant spatial variation the above mentioned spoil pa-

rameters (Vos et al., 2019). Novel sensor technologies allow to

take infield heterogeneity into account and enable rapid esti-

mation of soil parameters in large sample numbers

(Gholizadeh, Boruvka, Saberioon, & Va�s�at, 2013). For this

purpose, diffuse reflectance mid-infrared spectroscopy (MIRS;

4000-400 cm�1) and especially novel portable MIRS devices

(pMIRS) may be beneficial (Viscarra Rossel & Bouma, 2016).

The application of pMIRS has recently been tested for cali-

brations on single fields or in homogeneous geopedological

scenarios with promising results for SOC with R2 ¼ 0.78,

RMSE¼ 1.9 g kg�1 (Hutengs, Seidel, Oertel, Ludwig,& Vohland,

2019), and R2 ¼ 0.86 and RMSE ¼ 6.5 g kg�1 (Ji et al., 2016). Yet,

studies of multiple sites from variable geopedological back-

grounds in one prediction model are still scarce. Therefore,

more research is needed to develop pMIRS towards a feasible

and universally applicable tool for the assessment of param-

eters related to soil C storage.

The quality of MIRS measurements and associated models

is highly dependent on sample surface condition (Janik,

Soriano-Disla, & Forrester, 2020; Janik, Soriano-Disla, For-

rester, & McLaughlin, 2016; Stumpe, Weihermüller, &
Marschner, 2011). As samples usually need to be dried,

sieved, and ground, the sample preparation process remains

time demanding. Manufacturing of compressed tablets from

dried and sieved soil samples could create a sample surface

that is smooth enough for pMIRS measurements. This

approach would also facilitate the workflow by making sam-

ple grinding superfluous. This method was for the first time

tested byMarmette and Adamchuk (2020) on a smaller dataset

with results suggesting suitability for the prediction of SOC

(R2 ¼ 0.77; RMSE ¼ 2.7 g kg�1).

In the MIR region, absorbance spectra are strongly influ-

enced by SIC content and reveal specific peaks at e.g. 700, 880

and 1450 cm�1 or 2600-2500 cm�1 (Nguyen, Janik, & Raupach,

1991, Gomez, Moulin, Barth�es, 2022; Leenen, Welp, Gebbers, &

P€atzold, 2019). As a consequence, SIC content can have strong

impact on MIRS calibrations as its spectral signature is strong

relative to SOC. For this study on vineyard soils, the SIC influ-

ence on SOC prediction is of particular interest, because many

vineyards are planted on calcareous soils, namely in the Med-

iterranean, but also in German vine-growing regions (Backes,

B€ohm, Gr€ober, Jung, & Spies, 2015; Gomez & Coulouma, 2018).

With this background, non-linear machine learning ap-

proaches such as Support Vector Machines (SVM) are

becoming more appropriate to calibrate MIRS prediction

models (Wadoux, Minasny, & McBratney, 2020). Support Vec-

tor Machines are a non-parametric, non-linear statistical

learning method which does not assume a known statistical

distribution of the data (Mountrakis, Im, & Ogole, 2011). In

general, SVM are capable of maintaining a high generalisation

potential for unknown (test) data and are particularly

powerful for large datasets containing complex data (Ludwig,

Murugan, Parama, & Vohland, 2019). Therefore, a non-linear

SVM regression approach may be well suited for the predic-

tion of soil properties especially for a complex dataset, where

multiple sites of different geopedological regions are to be

combined.

Against the background of diverse challenges in rapid

evaluation of parameters related to SOC storage in vineyards

soils, the aims of the study were (i) to develop site-

independent SVM prediction models for SOC, hwC, SIC, clay

and sand content. To achieve site-independent model val-

idity, 10 geopedological variable vineyards including top and

subsoils were investigated. Further aims were (ii) to test the

model performance for monitoring purposes, on follow-up

samples and (iii) to evaluate the alteration of model perfor-

mance by arbitrarily occurring SIC. In order to simplify and

optimise sample preparation during the study, pre-tests were

conducted to evaluate the feasibility of compressing soil tab-

lets prior to recording pMIRS spectra.
2. Materials and methods

2.1. Characterization of the study sites

Ten vineyards with a wide target value range, i.e., from vari-

able geopedological scenarios and with pronounced in-field

soil heterogeneity were investigated in this study. Seven

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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were located in three German wine growing regions (Palati-

nate, Rhine-Hesse, and Mosel): Two vineyards were located at

the Federal Institute for Grapevine Breeding Geilweilerhof,

Siebeldingen (Palatinate). Here, one newly planted vineyard in

2018 (Sieb N) and an approximately 15 years old plantation

(Sieb B) were investigated. Two vineyards were located in

Sprendlingen (Rhine-Hesse): A new plantation, established in

2019 (Spre N) and an older vineyard established in 2013 (Spre

B). In the Mosel region, one vineyard was located in Leiwen

(Leiw) and two in Kanzem (Saar district; Kan JB and Kan St).

Further, three vineyards in southern France were investi-

gated, described inmore detail by Coulouma, Caner, Loonstra,

and Lagacherie (2016). These sites were located in the Lan-

guedoc region, near Alignan-du-Vent (Alig), Narbonne (Narb)

and Colombiers (Colo). A rough location of the investigated
Table 1 e Soil inorganic carbon (SIC), soil organic carbon (SOC),
in dataset 1 of the examined vineyards determined by convent
during the initial sampling campaign.

Site and St

geopedological setting pa

Alig: (Pleistocene fluvial deposits and Miocene marine deposits)

Colo: (Miocene marine deposits)

Sieb B1: (Pleistocene loess loam)

Sieb N1: (Keuper/Bunter Sandstone rock)

Kan JB: (Devonian shale)

Kan St: (Pleistocene fluvial deposits/Devonian shale)

Leiw: (Pleistocene fluvial deposits)

Narb: (Holocene marine sand deposits)

Spre B1: (Oligocene marl)

Spre N1: (Oligocene marl)
vineyards is presented in Fig. S1 within the supplementary

material.

In total, the dataset comprised 540 samples of topsoils

(0e20 cm) and subsoils (20e60 cm). For the vineyards Narb

and Colo, only top soils were investigated. Descriptive statis-

tics of conventionally measured data and geopedological

characteristics of the individual vineyards are given in Table 1.

For overall comprehension, the dataset from Table 1 will be

referred to as “dataset 1”. The overall ground truth data used

for this study varied from <5.00 to 683 g kg�1 SIC, 0.8e36 g kg�1

SOC, 0.02e1.55 g kg�1 hwC, 52.4e708 g kg�1 clay and

28.3e732 g kg�1 sand over all examined vineyards, reflecting

the large variability of soil characteristics under study. The

desired in-field heterogeneity of the individual vineyards was

ensured (see SD values for the single sites, Table 1).
hot-water extractable carbon (hwC), Clay and sand content
ional laboratory analysis (n ¼ 540). All samples were taken

atistical SIC SOC hwC Clay Sand

rameter (g kg�1)

Min <5 3.12 0.06 149 338

Max 371 22.1 1.27 366 603

Mean 116 10.2 0.63 274 475

SD 117 6.17 0.32 50.6 52.1

Min 162 9.64 0.12 67.8 195

Max 308 15.4 0.49 261 343

Mean 209 11.8 0.31 151 282

SD 47.3 1.74 0.10 54.2 47.7

Min <5 4.11 0.08 52.4 224

Max 90.4 15.5 0.72 316 516

Mean 13.6 9.63 0.34 146 293

SD 19.8 2.69 0.13 54.9 52.8

Min <5 0.84 0.02 101 130

Max 182 31.4 1.45 510 387

Mean 28.3 15.4 0.52 3256 272

SD 45.8 8.23 0.32 102 48.8

Min <5 5.06 0.10 63.0 471

Max <5 34.3 1.24 238 657

Mean <5 15.6 0.60 152 549

SD <5 7.68 0.35 27.3 54.5

Min <5 3.41 0.16 103 500

Max <5 28.1 1.50 263 732

Mean <5 14.8 0.83 140 672

SD <5 7.78 0.44 43.6 70.9

Min <5 4.07 0.03 76.6 253

Max <5 36.0 1.50 263 554

Mean <5 17.6 0.75 171 452

SD <5 7.63 0.36 39.0 75.7

Min 204 6.66 0.05 104 328

Max 683 14.9 0.74 199 453

Mean 440 10.3 0.35 166 378

SD 117 2.17 0.18 28.2 41.1

Min 263 2.44 0.24 113 63.4

Max 471 29.3 1.16 597 251

Mean 420 16.2 0.75 467 150

SD 30.0 7.33 0.19 111 42.6

Min 191 5.93 0.06 226 28.3

Max 486 27.9 1.55 708 191

Mean 276 16.3 0.57 507 99.9

SD 52.2 5.14 0.31 91.8 29.2

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Table 3 e Composition of the datasets 1 and 2 (total, with
and without).

Dataset Site n total without
SIC

with
SIC

Dataset 1 (Calibration

& Validation)

Alig 62 42 20

Colo 16 0 16

Sieb B1 80 48 32

Sieb N1 79 46 33

Kan JB 46 46 0

Kan St 18 18 0

Leiw 53 53 0

Narb 20 20 0

Spre B1 103 0 103

Spre N1 63 0 63

Total 540 273 267

Dataset 2 (Monitoring;

follow-up)

Sieb B2 55 29 26

Sieb N2 54 13 41

Spre B2 87 0 87

Spren N2 47 0 47

Total 243 42 201
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Further, for the vineyards Sieb B, Sieb N, Spre B and Spre N,

sampling was repeated two years after the initial sampling as

listed in Table 1. These follow-up samples formed an inde-

pendent test-set to evaluate themodels’ feasibility for a future

pMIRS-based monitoring program for SOC and hwC (in the

following denoted as “dataset 2”). Samples for dataset 2 were

taken in immediate vicinity (<0.5 m) of the sampling point

from dataset 1. The descriptive statistics of the ground truth

data, for the follow-up samples, are given in Table 2. In total,

the dataset 2 comprised 243 topsoil and subsoil samples of

four vineyards located in Palatinate (Sieb B and Sieb N) and

Rhine-Hesse (Spre B and Spre N), Germany.

For an overview, the composition of the different datasets

can be seen in Table 3. Further on, to test if SIC content affects

model performance the datasets were divided into samples

with and without SIC.

2.2. Sample preparation and determination of ground
truth data

Prior to further processing, all soil samples were air-dried,

pestled and sieved to <2 mm. Soil organic carbon was deter-

mined from the difference between total C and SIC. Total Cwas

determined by dry combustion and elemental analysis (ISO

10694, 1995). If present, SIC content was calculated as 0.12 x the

calcium carbonate content, which was determined by the gas-

volumetric Scheibler Method (ISO 10693). Otherwise, if no SIC

was present, total C was rated as SOC for further analyses.

Determination of hwC followed the method of K€orschens et al.

(1998) which is based on a 1-h extraction of 5 g air dried and

sieved (<2 mm) soil with 25 ml distilled water at 100 �C under

reflux. After extraction, cooling and centrifugation at 2600 rpm

for 10min, theCconcentration in the supernatantwasanalysed
Table 2 e Dataset 2, follow-up sampling to test model
feasibility for monitoring purposes: Soil organic carbon
(SOC) and hot-water extractable carbon (hwC) contents at
the study sites in Siebeldingen and Sprendlingen as
determined by conventional laboratory analysis
(n ¼ 243).

Site Statistical SOC hwC
parameter (g kg�1)

Sieb B2

2nd

Min 2.81 0.02

Max 21.4 0.69

Mean 10.4 0.33

SD 4.73 0.16

Sieb N2

2nd

Min 4.76 0.01

Max 18.4 0.96

Mean 11.2 0.50

SD 3.82 0.18

Spre B2

2nd

Min 14.9 0.29

Max 29.2 1.57

Mean 21.3 0.88

SD 3.67 0.28

Spre N2

2nd

Min 6.88 0.07

Max 20.1 1.13

Mean 15.8 0.63

SD 2.82 0.22
with a TOC-analyser (Shimadzu TOC-VCPA; Shimadzu

Deutschland GmbH, Duisburg, Germany). Soil texture analysis

was carried out via the combined sieve and pipettemethod (ISO

11277, 2002). All analyses were carried out in duplicate.

2.3. Sample preparation and acquisition of portable MIR
spectra

As a pre-test, a simplified sample preparation approach that

relies on compressing soil tablets instead of grinding samples

was tested. For this purpose, spectra acquisition via pMIRS of

three sample preparation methods was evaluated. First,

sieved samples were ground in a ball mill and 2 g of each

sample were placed in a Petri dish and smoothed by gentle

pressing (in the following denoted as powdery samples).

Second and third, soil tablets were pressed at two different

pressures in order to avoid the laborious grinding step.

Therefore, sieved soil samples were compressed to tablets

without previously grinding or pestling. For manufacturing

the soil tablets (Fig. 1b) a hand-driven hydraulic press was

used. To test if the pressure level had an effect on spectra

quality and model calibration, tablets with 30 kPa and 90 kPa

pressure were created. Portable MIRS models were calibrated

and compared on both tablet variants as well as on the pow-

dery samples.

For pMIRS measurements, a handheld FTIR Agilent 4300

(Agilent Technologies, Santa Clara, CA, USA) equipped with a

deuterated triglycine sulphate detector and a zinc selenide

beam splitter, a DRIFT interface, and a golden reference cap

was used (Fig. 1a).

The acquisition of pMIRS spectra was carried out as

described by Wehrle, Welp, and P€atzold (2021) where three

repeatedmeasurements of each sample were carried out after

slightly rotating the Petri dish/compressed sample between

themeasurements while each spectrumwas recordedwith 80

repeated scans. Spectra acquisition with pMIRS was carried

out on an instrument stand provided by the manufacturer

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Fig. 1 e Mid-infrared spectrometer (a) portable MIRS Agilent 4300 and (b) powdery (ground) soil sample (right), sieved and

compressed sample tablet (left).

Table 4 e Dataset for the evaluation of sample
preparation and instrument comparison. Soil inorganic
carbon (SIC), soil organic carbon (SOC) and hot-water
extractable carbon (hwC) contents in samples from the
vineyard Spre B1 determined by conventional laboratory
analysis (n ¼ 42).

Property (g kg�1) Min Max Mean SD

SIC 292 533 366 52.2

SOC 13.3 28.4 19.5 3.83

hwC 0.27 1.13 0.59 0.24
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(Fig. 1a). The portable device recorded spectra in the

4000e650 cm�1 range at a spectral resolution of 4 cm�1. For

compensation of instrument drift and variation in the envi-

ronment of the measuring chamber, a background spectrum

was taken every 10 min using a golden reference cap.

2.4. Spectra pre-processing and model calibration

For further analysis, all spectra of each sample were averaged

in order to reduce noise. FrompMIRS spectra, spectral range of

3800e650 cm�1 was selected for further investigations. To

visualise spectral differences of the studied vineyards, a

Principal Component Analysis (PCA) was carried out. For this

purpose, centred values and a correlation matrix were used.

The SVM model calibrations as well as PCA analysis were

performed with the statistic software R (2013) using the

packages “e1701” (Meyer et al., 2020), “prospectr” (Stevens,

Ramirez-Lopez, & Hans, 2020), and “ggplot2” (Wickham

et al., 2020), the latter for visualization. Six pre-processing

techniques for the absorbance spectra were tested to

remove light scattering effects, to correct baseline offset and

to improve model performance: no pre-processing, multipli-

cative scatter correction (MSC), Savitzky Golay Filter (SG),

Standard Normal Variate-Detrend algorithm (SNV), first deri-

vation (1st Der) and first derivation þ SG (1st Der SG). These

pre-processing approaches were evaluated by the associated

cross-validation results and the bestmodel was finally chosen

(for model performance criteria see below). Prior to model

calibration, dataset 1 was divided into independent calibra-

tion (70%) and validation (30%) samples by using the k-means

sampling algorithm with 100 iterations.

For the non-linear SVM approach, the radial basis function

kernelwasused. TheSVMpredictionmodelswere trainedusing

repeated10-foldcrossvalidation forall spectralpre-processes in

order to find the optimal predictionmodel for each investigated

parameter. Cross-validation was optimised by an automated

grid search for the SVMhyperparameters gamma and cost. The

range for both hyperparameters was set to 0.001, 0.01, 0.1, 1, 10

and 100. Then, a test-set validation was performed to test the

model performance on unknown samples.

For the preliminary study on testing the feasibility of

pressing soil tablets for pMIRS measurements, linear PLSR
calibrations using the “Kernel PLS” algorithm combined with

leave-one-out cross validation (LOOCV) were programmed. To

avoid over-fitting of the PLS model, the maximum number of

latent variableswas limited to ten. To determine the quality of

the predictive models, the coefficient of determination (R2),

the root mean squared error (RMSE) and the ratio of perfor-

mance to interquartile (RPIQ) according to (Bellon-Maurel,

Fernandez-Ahumada, Palagos, Roger, & McBratney, 2010),

were used and calculated as follows:

R2 ¼
Pn
i¼1

�
fi � y

�2
Pn
i¼1

�
yi � y

�2 (1)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

�
fi � yi

�2r
(2)

RPIQ ¼ IQ
RMSE

(3)

where fi is the predicted, and yi the respective observed value

and IQ is the interquartile distance that gives the range that

accounts for 50%of thepopulation around themedian. For RPIQ

values, the threshold for an insufficientmodelperformancewas

defined by RPIQ <2.5 according to (Ludwig et al., 2019).

To determine the wavenumber importance for the exam-

ined soil parameters, a recursive feature elimination was used

(R “caret” package; Kuhn, 2022). This method implements

backwards selection of predictors (wavenumbers) based on

importance ranking from the first to the last important

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Fig. 2 e Spectra and standard deviations for portable MIRS with powdery (ground) samples, portable MIRS with 30 kPa soil

tablets and portable MIRS with 90 kPa soil tablets at the site Sprendlingen B1 (n ¼ 42).
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predictor. The recursive feature eliminationwas processed via

10-fold CV.
3. Results and discussion

3.1. Applicability of compressed soil tablets for pMIRS
model calibration

In a pre-test the pMIRS models for the 30 and 90 kPa tablets

were compared to those from powdery samples on a smaller
dataset from the vineyard Spre B1. The ground truth data are

displayed in Table 4 and the spectra as well as standard de-

viations of each measuring approach are displayed in Fig. 2.

For this dataset in-field heterogeneity is evident with large

data ranges for SIC, SOC and hwC (Table 4).

Overall spectral standard deviation (SD) for all pMIRS

methods was small except for the spectral region between 800

and 650 cm�1. The same was previously reported by Wehrle

et al. (2021) for powdery pMIRS spectra of organic soil amend-

ments. Yet larger noise in this spectral region did not negatively

affect the model calibration process in their study. While noise

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Fig. 3 e Principal components (PC1 and PC2 scores) of

multiplicative scatter corrected (MSC) spectra as influenced

by study site (a) and calibration (black; n ¼ 378) and

validation (red; n ¼ 162) samples as selected by k-means

sampling (b). (For interpretation of the references to colour

in this figure legend, the reader is referred to the Web

version of this article.)
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and spectral SD did not differ between pMIRS with powdery

and 30 kPa samples, spectral SD of 90 kPa compressed samples

was larger for the region of 122e650 cm�1. For all sample

preparation approaches, the distinct spectral alteration be-

tween 2400 and 2600 cm�1 caused by SIC is clearly visible.

For this site-specific pre-test on the smaller dataset a PLSR

approach and LOOCV was used for calibration. Here, the

LOOCV calibration for SIC reveals similar results for all sample

preparations; all variants performed well with similar high R2

values (0.94) and RPIQ (5.96e6.44; Table 5). For SOC and hwC,

the models for tablets tended to better LOOCV results than for

powdery calibrations with high R2 and lowest RMSE values.

Stumpe et al. (2011) and Barth�es et al. (2016) showed that

sample surface conditions strongly impact MIR spectral

quality, where grinding significantly improved model cali-

brations via PLSR. When sieved samples were compared to

milled ones using the same pMIRS as in this study, Breure

et al. (2022) found lower model performance (reduced RPIQ

by up to 76%) for the prediction of SOC, clay and pH on sieved

samples. In this study, simply sieved and compressed tablets

(30 kPa pressure), revealed a smooth surface without pestling,

grinding and milling. Obviously, this surface quality was suf-

ficient for reliable pMIRS spectra acquisition at minimised

sample preparation time. The feasibility of this simplified

sample preparation enables perspectives for pMIRS device

application in field campaigns after further optimization (e.g.

concerning soil moisture). To date, soils need to be air-dried,

irrespective of pressing or not, because of strong water ef-

fects on spectral information. Therefore, future field and

calibration studies should take into account the level of soil

moisture e.g. Rodionov et al. (2014) did for vis-NIR.

The applied pressure did not have an effect on LOOCV re-

sults, but as spectral SD was smaller for 30 kPa, this variant

was used for further spectra acquisition and model

calibration.

3.2. Calibrating prediction models for parameters
related to carbon storage in vineyard soils with varying
geopedological background via SVM

In Fig. 3a the PCA of top- and subsoil pMIRS spectra of com-

pressed 30 kPa-tablets and ten vineyards are displayed. The

dataset revealed high spectral variability within and between

the study sites where PC1 and PC2 explained 90% of the

occurring variability. Soil depth did not affect spectral
Table 5 e PLSR-LOOCV results for a pre-test comparing pMIRS
compressed soil tablets for soil carbon parameters at Sprendli

Parameter sample spec pre-processing
preparation

SIC (g kg�1) port. gr SNV

port. 30 kPa No treat

port. 90 kPa 1st Der

SOC (g kg�1) port. gr SNV

port. 30 kPa 1st Der

port. 90 kPa 1st Der

hwC (g kg�1) port. gr 1st Der SG

port. 30 kPa 1st Der

port. 90 kPa SNV
information to a large extent. This may be because of deep

tillage that is common, sometimes down to 1 m working

depth, before planting vines. This leads to mixing of the soil

over the entire working depth, to suppression of soil horizons

and thus to homogenization of spectral information.
with ground powdery samples (gr), 30 kPa and 90 kPa
ngen B1 (n ¼ 42).

RMSECV R2
CV RPIQCV LV

12.1 0.94 6.44 2

13 0.94 6.02 3

13.1 0.94 5.96 2

1.25 0.90 4.95 6

0.92 0.95 6.96 6

0.92 0.95 6.78 4

3.89 0.96 6.61 8

3 0.98 9.32 7

2 0.99 10.4 8
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Table 6 e Calibration (n ¼ 378) and test-set validation (TSV, n ¼ 162) results and model hyperparameters for site-
independent SVMmodels for the prediction of organic carbon storage parameters of top and subsoils using pMIRS and soil
tablets (Dataset 1).

Property Calibration (CV) TSV Hyperparameters*

(g kg�1) RMSE R2 RPIQ RMSE R2 RPIQ s.p. g C SV

SIC 14 0.99 21.5 25.2 0.98 13 1st Der 0.1 100 350

SOC 1.83 0.93 5.04 2.81 0.81 5.2 SNV 0.01 10 243

hwC 1.02 0.91 4.63 1.32 0.8 5.2 1st Der 0.1 10 129

Clay 46.1 0.92 6.07 53.8 0.91 5.76 MSC 0.1 100 369

Sand 26.9 0.98 10.8 43.9 0.92 6.43 No treat 0.1 100 376

*Hyperparameters: s.p.¼ spectral pre-processing; LV¼ Latent variables (PLS); g¼Gamma (SVM), C¼Cost (SVM); SV¼Number of support vectors

(SVM).
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Sites located in the same geopedological region were more

similar to each other (e.g. Spre N and Spre B, Sieb N and Sieb B

as well as Kan JB and Kan St, Fig. 3a). Nevertheless, the PC

scores of the regions were not separately clustered by regions

but overlapped. As a consequence, the k-means sampling al-

gorithm resulted in an evenly distributed calibration and

validation dataset within the PCA space, where top and sub-

soil samples of the individual study sites are represented in

both datasets (Fig. 3b).

For calibrating a universal prediction model of parameters

related to SOC storage, a non-linear SVM approach was used.

Calibrations via PLSR were also tested but results were worse

compared to SVM (data not shown). Therefore, only the SVM

calibration results are presented. Calibration and independent

test-set validation results as well as algorithmic hyper-

parameters and spectral pre-processing for this approach are

displayed in Table 6. Spectral pre-processing is generally used

to reduce noise or eliminate sources of variationwhich disturb

the prediction of target values. Several studies focused on the

identification of the best pre-processing approach but there is

no general agreement about which pre-processing technique

is most effective (Barra, Haefele, Sakrabani, & Kebede, 2021).

This assumption is underlined by this study, because there

was no uniform pre-processing technique which resulted in

best prediction for the tested calibration algorithms and soil

parameters. In general, the SVM method resulted in satisfac-

tory model calibrations combining the ten vineyards and two

sampling depths. Calibration and validation of SIC content

had excellent model robustness and accuracy, where

observed and predicted values were consistent and close to

the 1:1 line (Fig. 4). While predicted and observed values for

hwC were more scattered, the model parameters revealed

satisfactory calibration results with excellent R2
TSV and

RMSETSV and RPIQTSV. (Table 6, Fig. 4). For hwC and a benchtop

instrument, Vohland, Ludwig, Thiele-Bruhn, and Ludwig

(2014) predicted hwC of 60 topsoil samples with a PLSR

approach combined with competitive adaptive reweighted

sampling with good model performance (R2 ¼ 0.85;

RMSE ¼ 89 mg kg�1). Wehrle et al. (2021) for the first time used

pMIRS to successfully predict hwC content of organic

amendments. This study revealed that similar results can be

achieved via pMIRS for topsoil and subsoil samples on a

dataset with high geopedological variability.
The SVM approach also yielded convenient model robust-

ness and accuracy for model validation of SOC (RPIQTSV: 5.20;

R2
TSV: 0.81), which is also visible in the predicted vs. observed

plot (Fig. 4). These results are in line with Deiss, Margenot,

Culman, and Demyan (2020) where tuning of SVM hyper-

parameters resulted in highest model performance for SOC

prediction at two study sites.

For the prediction of SOC, the SVM model considered the

wavebands from 2900 to 2940 cm�1 most important (Fig. 5).

These bands are associated with aliphatic C-H stretching and

aliphatic OH functional groups (Haberhauer, Rafferty, Strebl,

& Gerzabek, 1998; Rumpel, Janik, Skjemstad, & K€ogel-

Knabner, 2001).

For SOC storage, soil clay content is a parameter of

outstanding interest (Hassink, 1997; Wiesmeier et al., 2019).

For the prediction of clay and sand content SVM also per-

formed well on the calibration and validation set with excel-

lent accuracy (R2
TSV: clay ¼ 0.91; sand ¼ 0.92), robustness

(RPIQTSV clay ¼ 5.76; sand ¼ 6.43) and low prediction error

(RMSETSV: clay¼ 53.8 g kg�1; sand¼ 43.9 g kg�1 (Table 6, Fig. 4).

Overall, the SVM approach showed reliable prediction results

of important C storage parameters for the complex dataset

under study.

3.3. Applicability of calibrated models for the monitoring
of SOC and hwC

Following the calibration results (section 3.2), we continued

with the SVM approach to test the feasibility of our pMIRS

models for future monitoring purposes of SOC and hwC. This

part of the study was conducted with independent follow-up

samples that were taken at the vineyards in Sieb and Spre

two years after the initial sampling campaign for the calibra-

tion study (dataset 2, Table 2). For the monitoring samples, a

PCA revealed similar spectral information (Fig. S2, supple-

mentary material) to the calibration dataset underlining the

reproducibility of the MIRS measuring process using com-

pressed soil tablets. These results further underline a good

reliability of the sampling method used.

While model performance for SOC (Table 7) showed mod-

erate R2 (0.75) but good RPIQ (3.03), the predictions for hwC

were excellent with high R2 (0.93) and RPIQ (4.79) and low

RMSE (0.08 g kg�1).
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Fig. 4 e Test-set validation of SVM-pMIRS prediction models for soil inorganic carbon (SIC), soil organic carbon (SOC) and

hot-water extractable carbon (hwC), clay and sand content for top and subsoils of ten vineyards (dataset 1).
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Predicted values for hwC were close to the 1:1 line (Fig. 6),

while those for SOC had lower accuracy. Figure 6 also shows

no noticeable change in the amount of the labile hwC

fraction. The samples for this study originate from
numerous sites with regular (in very most cases annual)

application of organic amendments such as compost or

pomace. Due to these regular amendments, a kind of flow

equilibrium has possibly established, because in vineyards

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Fig. 5 e Wavenumber importance of support vector machines (SVM) regression determined by recursive feature selection of

a) Soil inorganic carbon (SIC), b) soil organic carbon (SOC), c) hot-water extractable carbon (hwC), d) sand and e) clay content.
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the mean residence time of labile/active SOC tends to be

longer than the application frequency (Dignac et al., 2017;

Ramesh et al., 2019).

Despite the constant organic matter input, the prediction

of the follow-up samples for dataset 2 performed well. This

demonstrates, to our knowledge for the first time, the poten-

tial of pMIRS-SVM for C monitoring approaches in future. Yet,

the model transferability to independent sites is to be vali-

dated, but at least for defined reference sites, the approach is

feasible. In a previous project, transferability ofMIR prediction

models for phosphate was not satisfactory with respect to

differences in SOC dynamics at different sites and sampling

dates (P€atzold et al., 2020).
Further, SIC is an important factor for C storage, because it

influences pH value and aggregation dynamics (Paradelo,

Virto, & Chenu, 2015). At the same time, SIC is known to

strongly affect spectral soil characteristics. Therefore, we

investigated the potential SIC influence on our models (see

next section).

3.4. Effects of SIC content on SVM model performance

Because higher SIC content can suppress spectral information

regarding SOC content the formation of sample subsets with

regard to SIC content could possibly enhance SVM model

performance for SOC and hwC. In this section, this influence is

https://doi.org/10.1016/j.biosystemseng.2022.07.012
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Fig. 6 e Predicted and observed values (n ¼ 243)

and 1:1-line of pMIRS SVM models for the monitoring of

SOC and hwC for top and subsoils of four vineyards

(Dataset 2).

Fig. 7 e Principal components (PC1 and PC2 scores) of

multiplicative scatter corrected (MSC) spectra as influenced

by SIC content (dataset 1; n ¼ 540).

Table 7 e Results of pMIRS SVM predictionmodels for the
follow-up sampling dataset 2 (n¼ 243) of top and subsoils
in four vineyards for SOC and hwC.

Property (g kg�1) RMSE R2 RPIQ

SOC 2.98 0.75 3.03

hwC 0.08 0.93 4.79
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tested with both datasets 1 (CV and TSV) and 2 (follow-up

samples), respectively. Figure 7 shows a strong influence of

SIC content on spectral information within the PCA space of

dataset 1.

Therefore, the division of dataset with respect to SIC

content and irrespective of the sampling site was reasonable

for this part of the study. To minimize exaggerated seg-

mentation of data, two groups were formed according to

common field practice (>5 g kg�1 SIC and <5 g kg�1 SIC). As a

result of this dataset segmentation, sample size and target

value range as well as distribution varied between the

different subsets (Table 3). Thus, in this section we preferred

RPIQ instead of RMSE as a model quality parameter, because

RPIQ takes the interquartile distance into consideration and

therefore represents the spread of the population (Bellon-

Maurel et al., 2010). As expected, the SIC content had a

clear effect on model performance (Table 8). Models for SOC

and hwC calibrated on samples with SIC content <5 g kg�1

performed better than those for samples with SIC >5 g kg�1,

especially for the test-set validation of SOC and dataset 1

(Table 8). Further, models for the segmented dataset with

respect to samples with SIC <5 g kg�1 had higher R2
TSV for

SOC than the uniform model for the entire calibration data-

set 1 (R2
TSV ¼ 0.81, see Table 6). Nevertheless, the TSV for the

entire dataset 1 had higher RPIQ for SOC and therefore has

higher model robustness for unknown data. This is

confirmed when predicting the later sampling points of

dataset 2 (Table 9).

Here model performance for the entire undivided follow-

up sampling (dataset 1) was better for both parameters,

when comparing RPIQ values of Tables 7 and 9 Therefore,

dividing the dataset with respect to SIC is neither beneficial

nor necessary with respect to the monitoring of SOC and hwC

via pMIRS-SVM models.

Lower model performance for samples of dataset 2 not

containing SIC are explained by the limited number of ob-

servations. This is in line with Ludwig et al. (2019) who

pointed to the importance of sample numbers in SVM

modelling. In accordance, Gomez and Coulouma (2018)

showed that predicting soil properties that rely on a wide

range of spectral features (such as SOC and hwC in our

study) performs better at regional than at field scale, i.e.

when the model comprises different geopedological set-

tings. Here, the undivided dataset contained most vineyards

and a larger number of samples and thus spectral infor-

mation which made the calibrated models more robust for

the unknown monitoring data.
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Table 8 e Calibration and test-set validation (TSV) results as well as model hyperparameters for SVM models predicting
SOC and hwC of top and subsoils using pMIRS and soil tablets for datasets with SIC <5 (n ¼ 273) and >5 g kg¡1 (n ¼ 267)
(dataset 1).

Parameter Dataset Calibration (CV) TSV Hyperparameters*

R2 RPIQ R2 RPIQ s.p. g C SV

SOC (g kg�1) <5 SIC 0.94 6.51 0.90 4.34 SG 0.001 100 108

>5 SIC 0.82 3.09 0.64 2.34 SG 0.01 100 144

hwC (g kg�1) <5 SIC 0.93 5.07 0.91 3.78 1st Der 0.01 100 71

>5 SIC 0.86 3.95 0.84 3.68 SG 0.001 100 92

*Hyperparameters: s.p. ¼ spectral pre-processing; g ¼ Gamma, C¼ Cost; SV¼ Number of support vectors.

Table 9 e Results of pMIRS SVM models predicting SOC
and hwC in monitoring samples (dataset 2, divided into
with SIC <5 (n ¼ 42) and >5 g kg¡1 (n ¼ 201).

Parameter Dataset follow-up sampling

R2 RPIQ

SOC (g kg�1) <5 g kg�1 0.60 2.20

>5 g kg�1 0.78 2.92

hwC (g kg�1) <5 g kg�1 0.84 3.58

>5 g kg�1 0.86 2.98
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4. Conclusions

Variability of geopedological background of the studied vine-

yards in Western Germany and Southern France and the vari-

ation of parameters for SOC storage within and between the

fields underline the necessity of a rapid and precise determi-

nation method for site-specific evaluation and future moni-

toring purposes. The chosen approach with combination of

portable MIRS instruments, simplified sample preparation, i.e.,

compressed soil tablets, and SVMas calibrationmethod yielded

precise und robust models. The approach is even feasible to

reliably predict the rather dynamic hwC content, thus bearing

potential for timely resolved studies on C dynamics. With the

background of climate change mitigation strategies, this

approach provides a valuable foundation for future on-site SOC

monitoring programs using pMIRS devices. Soil inorganic car-

bon content clearly influenced spectral information and model

calibrations. Models for SIC <5 g kg�1 samples performed better

for the prediction of SOC and hwC than those containing SIC

contents>5 g kg�1. Yet, the bettermodel performance could not

be maintained for the prediction of follow-up data of later

sampling dates. Therefore, a calibration from larger datasets is

more appropriate for a future MIRS monitoring program,

because the SVMapproach can copewith highvariation in large

and complex datasets. Nevertheless, future research should

focus on the role of SIC content on MIR spectral information.

Further, the procedure of compressing soil samples may facili-

tate in-field pMIRS applications, which bears great potential for

application in precision agriculture and viticulture.
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