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Louise Gody2, Fulya Trösser1, George Katsirelos3, Brigitte Mangin2,

Nicolas B. Langlade2 and Simon de Givry 1,*
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Abstract

Motivation: Inferring gene regulatory networks in non-independent genetically related panels is a methodological
challenge. This hampers evolutionary and biological studies using heterozygote individuals such as in wild sun-
flower populations or cultivated hybrids.

Results: First, we simulated 100 datasets of gene expressions and polymorphisms, displaying the same gene ex-
pression distributions, heterozygosities and heritabilities as in our dataset including 173 genes and 353 genotypes
measured in sunflower hybrids. Secondly, we performed a meta-analysis based on six inference methods [least ab-
solute shrinkage and selection operator (Lasso), Random Forests, Bayesian Networks, Markov Random Fields,
Ordinary Least Square and fast inference of networks from directed regulation (Findr)] and selected the minimal
density networks for better accuracy with 64 edges connecting 79 genes and 0.35 area under precision and recall
(AUPR) score on average. We identified that triangles and mutual edges are prone to errors in the inferred networks.
Applied on classical datasets without heterozygotes, our strategy produced a 0.65 AUPR score for one dataset of the
DREAM5 Systems Genetics Challenge. Finally, we applied our method to an experimental dataset from sunflower
hybrids. We successfully inferred a network composed of 105 genes connected by 106 putative regulations with a
major connected component.

Availability and implementation: Our inference methodology dedicated to genomic and transcriptomic data is avail-
able at https://forgemia.inra.fr/sunrise/inference_methods.

Contact: simon.de-givry@inrae.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the main goals of Systems Biology is to decipher the com-
plex behaviour of a living cell in its environment. Gene regulatory
networks (GRN) are simplified representations of gene-level inter-
actions and network inference methods are powerful tools to re-
construct these networks from observational data (Bellot et al.,
2015). Nevertheless, it is often difficult to identify the best-suited
method to apply in a specific experimental context. To this end,
artificial datasets can be helpful to evaluate different network in-
ference methods and then select the most suitable one to a specific
dataset.

1.1 Experimental and biological context
Water deprivation impacts most, if not all cellular and physiological

processes during the life cycle of a plant. Numerous studies describ-
ing coregulated genes in different organs under different drought
scenarios have been reported [reviewed in Shinozaki and

Yamaguchi-Shinozaki (2007) and cited more than 2000 times since
then]. The inherent complexity resulting from the high number of
molecular players as well as the timing and level of their induction

into pathways makes molecular deciphering of drought response an
archetypal systems biology challenge. Domesticated sunflower
(Helianthus annuus) is the major oilseed crop in drought-prone
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environments in the world because it is considered as tolerant to
water deficit (Debaeke et al., 2017; USDA, 2019). (https://www.fas.
usda.gov/data/oilseeds-world-markets-and-trade) The production is
mainly done by hybrid genotypes to use the heterosis effect.
Crossing one female and one male line, the heterosis phenomenon
gives progeny more vigorous than either of the two parents (Seiler
et al., 2017). Previous works have identified genes controlling
drought response in sunflower (Marchand et al., 2014) and these
have been shown to be under selective pressure during the breeding
of modern hybrids. The responses of sunflower hybrids to drought
were shown to be different from those of their parents (Mojayad
and Planchon, 1994); for example, the sunflower hybrid species
Helianthus deserticola revealed transgressive gene expression pro-
files when compared with its parent species H.annuus and
Helianthus petiolaris and this modified response could have been
key to its better adaptation to drier environments (Rieseberg et al.,
2003; Lai et al., 2006).

1.2 Overview of GNR inference methods
A GRN is an abstract but convenient representation of complex bio-
logical processes (Huynh-Thu and Sanguinetti, 2019) and allows
representation of direct or indirect regulations between pairs of
genes through a simple-directed graph with genes as nodes and pair-
wise regulations as oriented edges. (We consider here unlabelled
edges. Possible labels could have been the regulation sign, activa-
tion/repression, its magnitude or a confidence score.) The recon-
struction of this graph from observational gene expression data is
called the network inference. It is a complex problem with combina-
torial [super-exponential number of directed graphs (with 2pðp�1Þ

digraphs for p genes, it is larger than the number of atoms in the ob-
servable universe for p > 16)] and statistical issues (identifiability
and high-dimension). Currently, a number of inference methods,
including correlation, regression, mutual information and Bayesian
network methods, have been defined. The Dialogue for Reverse
Engineering Assessments and Methods (DREAM) challenges
resulted in several comparisons of these methods, by providing arti-
ficial or experimental datasets (Marbach et al., 2012). Recent
reviews on the various network inference methods can be found in
Banf and Rhee (2017)), Huynh-Thu and Sanguinetti (2019)) and
Saint-Antoine and Singh (2020). In genetical genomics context
(Jansen and Nap, 2001), two types of data are available at the same
time: (i) expression profiles and (ii) genetic polymorphisms [usually
single-nucleotide polymorphisms (SNPs)], for each individual of a
population. Then, the combination of these data is exploited by the
network inference methods. The DREAM5 Systems Genetics
Challenge (https://dreamchallenges.org/dream-5-systems-genetics-
challenge) took place in the genetical genomics context by providing
challengers datasets composed of gene expression and SNP measure-
ments. A meta-analysis method combining three Bayesian and re-
gression methods was the most successful (Vignes et al., 2011). This
meta-analysis method was further improved by including bootstrap-
ping and random forest techniques (Allouche et al., 2013). Other re-
cent approaches have relied on likelihood ratio tests (Wang and
Michoel, 2017; Ludl and Michoel, 2021) or a panel of regression
and mutual information methods (Zhang et al., 2019) or explored
random forest methods with the latter reporting state-of-the-art
results on DREAM5 Systems Genetics Challenge (GENIE3)
(Huynh-Thu et al., 2013; Huynh-Thu and Geurts, 2019). However,
such previous studies in the genetical genomics context have been
limited to artificial datasets with a population of independent and
homozygous individuals, except for Wang and Michoel (2017);
Ludl and Michoel (2021) applied on human and yeast data,
respectively.

1.3 Artificial datasets
Different approaches have been tried to design realistic artificial
gene expression data (Angelin-Bonnet et al., 2019). SysGenSIM
(Pinna et al., 2011) simulates gene expression data from genomic
data and artificial networks, SynTReN (Van den Bulcke et al., 2006)
exploits real-network topologies from Escherichia coli or

Saccharomyces cerevisiae to simulate gene expression data. Both
these approaches rely on deterministic mathematical models of the
gene expressions and generate steady-state data using a system of
nonlinear ordinary differential equations. Other more complex
modelling approaches based on stochastic models, such as
GeneNetWeaver (Schaffter et al., 2011), sgnesR (Tripathi et al.,
2017) or sismonr (Angelin-Bonnet et al., 2020) produce steady-state
or time-series data for mRNA and (complexes of) proteins. sismonr
and SysGenSIM are the only simulators to incorporate DNA vari-
ation effects in their model. SysGenSIM can produce large steady-
state data and was the one used in the DREAM5 Systems Genetics
Challenge to produce the artificial datasets.

Identifying the GRN for drought stress response in hybrid sun-
flower, while being of great interest to both evolutionary biology
and plant breeding, constitutes a methodological challenge. In order
to choose an efficient network inference method adapted to our bio-
logical context, we built artificial datasets with biological properties
as close as possible to our experimental dataset. We then applied dif-
ferent network inference methods on the artificial datasets and eval-
uated their efficiency in our context.

2 Datasets on hybrid genotypes

2.1 Measured dataset
RNA expression data of 173 genes were produced on 353 sunflower
hybrids from an incomplete factorial design with 2 � 36 parental
lines (Bonnafous et al., 2018) grown under field conditions as
described in the data paper (Penouilh-Suzette et al., 2020). Several
biological properties are associated with this dataset. First, hybrids
are obtained from homozygous parental lines that are genetically
connected. Besides, hybrids are heterozygous and gene expressions
are subject to heterosis. We selected the measured genes for being
mostly transcription factors (TF) annotated for drought sensitivity
and responding to it and to heterosis on the data described in Gody
et al. (2020) and in the Supplementary Materials (Sections 2 and 3).
Expression measurement protocols are fully described in Penouilh-
Suzette et al. (2020). SNP markers of the 36 homozygous parental
haplotypes were described in Badouin et al. (2017). We deduced the
SNPs of the 353 hybrid genotypes by combining those of their two
parental haplotypes. The data are available at https://doi.org/10.
15454/HESVA0.

2.2 Simulated datasets
To identify the best-suited inference method for our experimental
dataset, we needed to construct artificial datasets with biological
properties close to the measured one. For this, we designed a three-
step strategy: (i) build a reference network, (ii) simulate hybrid
genotypes and (iii) simulate gene expression data and adjust
parameters.

2.2.1 Build the reference network

We decided to construct an artificial network based on biological in-
formation to obtain a realistic shape, particularly in term of graph
density heterogeneity. Among plant models, with enough described
gene regulations, Arabidopsis thaliana is the closest to H.annuus. As
our measured dataset is composed of a subset of H.annuus genes
involved in drought response, we decided to also use a subset of
A.thaliana genes to be the nodes of the artificial network. For that,
we selected the homologs of our H.annuus genes (Badouin et al.,
2017). For 13 pairs of H.annuus genes, the same homolog
A.thaliana gene was found. Such A.thaliana genes were duplicated
in our artificial network to mimic a recent duplication event as char-
acterized for H.annuus genome (Badouin et al., 2017). Information
on gene interactions was sourced from three public databases: (i)
AtPID containing interactions between proteins (Lv et al., 2017), (ii)
AtRegNet containing regulations between TFs and target genes
(Palaniswamy et al., 2006) and (iii) PlantRegMap, including regula-
tions between TFs and other genes (Jin et al., 2017). These databases
are compilations of information found in the literature, resulting
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from experiments or predicted regulations. In these databases, we
decided to select only oriented links corresponding to gene regula-
tions (and not protein–protein interactions), involving two genes of
our list. Overall, 364 regulations (36 in AtPID, 16 in AtRegNet and
312 in PlantRegMap) were collected to compose our reference net-
work. In the AtRegNet database, the impact on the expression of a
target gene is described for some regulations. Among them, 64%
induced activation and 36% repression of the expression of the tar-
get gene. Hence, for our reference network, we decided to randomly
associate a particular type of regulation for each edge with the same
probability of activation and repression of expression as in the
AtRegNet database. Our chosen reference network consisted of 143
genes distributed into a single connected component of 124 genes
and 313 edges with a graph density of 2.1% in addition to 19 un-
connected genes (Fig. 1). This graph contains 99 triangles and 7 mu-
tual edge motifs.

2.2.2 Simulation of hybrid genotypes

To construct artificial datasets with close biological properties, 463
virtual hybrid genotypes were created from the partial genetic design
of 36�36 real parents (Bonnafous et al., 2018). To simplify the
model of gene regulations used in Section 2.2.3, we considered only
one DNA variant per gene based on SNPs present in the genomic
and promoter sequence (500 bp. upstream) regions of the gene
(Badouin et al., 2017). Using K-medoid clustering with Manhattan
distance on the SNP data, for each gene, parental haplotypes were
classified into two groups (with a DNA variant score of 0 or 1). The
genotype for hybrids on each gene is the sum of the parental scores
and can thus be 0, 2 (homozygous) or 1 (heterozygous).

2.2.3 Simulation of gene expressions

To produce simulated measures of expression for the selected genes,
we used the SysGenSIM (Pinna et al., 2011) data simulator, based
on ordinary differential equations and adapted to the genetical gen-
omics context. In this model, gene expressions are based on the gene
network topology and genetic variation (SNP) with only two haplo-
types per gene. DNA variants have either a cis-effect (influences the
rate of transcription of the gene) or a trans-effect (modifies the effi-
ciency of the gene regulation activity). The equation describing the
accumulation of a gene transcript for a given genotype is composed
of two parts: the expression of the transcript and its degradation.
The expression rate is modulated by the effect of its DNA variant
and the expression and DNA variant of the regulators of this gene in
the network. Therefore, regulator DNA variants can impact gene
regulation and are fed as input data to the simulator. SysGenSIM is

designed for homozygous recombinant inbred lines and we slightly
modified the simulator to take into account our heterozygous
hybrids and mimic allelic dominance, which is important for heter-
osis. In the case of a heterozygous gene, the DNA variant effect is
randomly chosen with an 80% probability to be additive and other-
wise (20%) to be dominant for either allele. To generate a simulated
dataset in SysGenSIM close to our measured one, we tuned to 25%
the cis-to-trans ratio of DNA variant effects to obtain the same her-
itability (computed as described in Bonnafous et al., 2018) distribu-
tion among genes in the two datasets (Supplementary Fig. S1).

By randomly choosing the type of activator or repressor regula-
tions, DNA variant effects (cis or trans) and allelic dominance
effects, we successfully produced 100 gene expression datasets. The
data are available at https://doi.org/10.15454/vrgwz2. They showed
different regulation behaviours for the same reference network and
same genotypes (143 genes and 463 hybrid genotypes), that is, they
displayed ‘above the best’ or ‘below the worst’ parent heterotic ex-
pression. This phenomenon, that represents only a small part of
regulatory processes explaining heterosis, was observed in 35 and
41 genes, respectively, suggesting these datasets include larger heter-
otic expression patterns.

3 Network inference methods

We applied six network inference methods on the simulated datasets
to evaluate their accuracy by comparing the inferred networks to the
reference network. Four of them were previously applied to the
DREAM5 Systems Genetics Challenge (Bayesian Network, Lasso,
Random Forest and Findr) (Vignes et al., 2011; Allouche et al.,
2013; Huynh-Thu et al., 2013; Wang and Michoel, 2017)) and two
are new methods, one based on pairwise exponential Markov ran-
dom fields (PE-MRF) and the second one exploits genomic relation-
ship between individuals [ordinary least square (OLS) with kinship
matrix]. A meta-analysis of the results obtained by these methods
was also conducted via the construction of a commensurable score.
We present here the specificity and implementation of each method.
Given p genes, the expression level of a gene i 2 f1; . . . ; pg is noted
Ei and Mi 2 f0;1; 2g represents its haplotypic marker state (in our
case it corresponds to the DNA variant score). The methods are
used to predict the impact of the expression of a gene Ei on the ex-
pression of a gene Ej, i 6¼ j or the impact of the DNA variant Mi on
Ej. Further details are given in Supplementary Materials.

3.1 Methods for network inference
Lasso method is used to solve the penalized linear regression prob-
lem Y ¼ Xhþ e, where Y is the expression of a target gene Ej and
the regressors X are expressions and haplotypic markers of other
genes (Ei and Mi), while assuming Gaussian distributions of regres-
sors X and Gaussian noise (e) (Tibshirani, 1996). We explored an
evenly spaced grid of 100 penalization k values starting from 0 (no
penalizations) to a maximum value that prevents a single regressor
to be included in any of the regressions (Vignes et al., 2011). We
solved the regression problem for each gene expression level Ej with
all Ei (i 2 f1; . . . ;pg; i 6¼ j) and haplotypic marker states Mi as
regressors, using the least angle regression algorithm implemented in
the R glmnet package (Friedman et al., 2010) (https://cran.r-pro
ject.org/web/packages/glmnet).

Random forests (Breiman, 2001) are collections of non-linear re-
gression trees T ¼ ðT1; . . . ;TKÞ, with Y ¼ fTk

ðXÞ, partially grown at
random using two sources of randomness: (i) each tree is grown
using a random bootstrapped-with-replacement sample of the data
(having the same sample size) and (ii) the variable used at each split
node is selected exclusively from a random subset of all variables
(typically of size p/3 for regression). The computation was per-
formed using the randomForest R package (Liaw and Wiener,
2002). For each regression problem (on Ej), the number of trees was
set to K¼1000 with other parameters kept at their default value.

Bayesian networks are directed acyclic graphical (DAG) models
that capture the joint probability distribution over a set of random
variables. All variables (in our case Ei and Mi) are considered as

Fig. 1. Reference network based on gene–gene interactions from AtPID, AtRegNet

and PlantRegMap databases, and composed of 143 genes with 124 genes connected

by 313 edges and organized in one component with a density of 2.1%. In this graph,

the size of nodes depends on their degree. Dark blue nodes and edges are associated

to the same strongly connected component
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discrete, allowing us to capture non-linear dependencies between
variables. For Ei, we used the bootstrapped expression level discret-
ization scheme in at most three values proposed by Vignes et al.
(2011). We applied a score-and-search method to find (near) opti-
mal DAGs. BDeu (Heckerman et al., 1995) scores were precom-
puted using gobnilp. (https://www.cs.york.ac.uk/aig/sw/gobnilp
v1.6.3. with a limit of two parents per variable.) The search method
combines the local search method MINOBS (Lee and van Beek,
2017), followed by the complete search method elsa (Trösser
et al., 2021). [https://gkatsi.github.io/elsa-ijcai21.tar.gz with a CPU
time limit of 2 minutes (resp. 20min. for measured data), including
10 s (respectively, 5 min) for MINOBS.] We explored a grid of 50
values for setting the BDeu parameter k. As in Allouche et al.
(2013), constraints were added to forbid edges from expression lev-
els to markers (without biological meaning) and edges between
markers (useless information).

PE-MRF (Park et al., 2017) are undirected graphical models re-
cently introduced to model dependencies between different types of
data, for example, binary, categorical or continuous data. This
model generalizes the graphical Lasso (Friedman et al., 2008) to het-
erogeneous domains. We applied the PE-MRF approach to the
considered dataset with a Gaussian distribution for the node condi-
tional distribution of variables Ei and a categorical distribution for
variables Mi. We used a penalization with an ‘1=‘2-norm associated
with a k parameter. The values of k were taken in a log-spaced grid
of 100 values from 10�7 to 103. These values were chosen to cover
the two extreme cases where regulations are predicted between all
pairs of genes and where no regulations are predicted at all. Finally,
we extract a directed graph from PE-MRF as follows: a predicted
undirected edge between two expression levels is transformed into
two directed edges and an undirected edge between a marker and an
expression level becomes a directed edge from the marker to the ex-
pression level.

OLS are simple linear regression methods that minimize the sum
of squared errors from the data. Dependencies between hybrids gen-
otypes were taken into account via a relatedness kinship matrix.
Edges between expressions and edges from markers to expressions
were inferred separately: (i) tests to discover Mi ! Ej edges between
a target gene expression Ej and haplotypic markers Mi were com-
puted as proposed by Yu et al. (2006) for Genome-Wide
Association Studies with no fixed effects; the mean and relatedness
kinship matrix were computed as in VanRaden (2008) and (ii) tests
to discover Ei ! Ej edges were computed as Wald statistics.
ASReml-R (Butler et al., 2007) was used to get variance compo-
nents by restricted maximum likelihood (REML) and to compute
Wald statistics.

Findr (Wang and Michoel, 2017) performs multiple likeli-
hood ratio tests for causal inference in the genetical genomic con-
text. We applied it on directed three-variable models involving a
pair of gene expressions (Ei, Ej) and the haplotypic marker Mi of
the first gene. It assumes gene expressions follow a normal distri-
bution and depend additively on their regulators. It returns an
analytical posterior probability PðEi ! EjÞ on every directed
edge Ei ! Ej; i; j 2 f1; . . . ;pg; i 6¼ j, which is extremely fast to
compute. We used the findr R library (pij_gassist function
with no diagonal terms).

3.2 Commensurable scores
To combine the methods in a meta-analysis, we built a commensur-
able score. The same approach was used for each method to com-
pute confidence scores for the predicted directed edges between
genes (similar to Allouche et al., 2013). The confidence score wm

ij

corresponds to the relationship predicted by the method m between
the source expression Ei of gene i and the target expression Ej of
gene j. The confidence score um

ij corresponds to the effect of the allel-
ic state Mi on the expression Ej. We used bootstrapping with B¼50
resampled datasets and considered a grid K of jKj ¼ 100 values for
the regularization parameter k (jKj ¼ 50 for Bayesian networks).
For each bootstrap b and each value of k, we fitted the different
models. The confidence scores were then computed as follows:

wm
ij ¼

1

B

1

jKj
XB

b¼1

X

k2K
am

ij ðb; kÞ

um
ij ¼

1

B

1

jKj
XB

b¼1

X

k2K
bm

ij ðb; kÞ;

where am
ij ðb; kÞ ¼ 1 if a directed edge has been predicted from Ei to

Ej by method m, on bootstrap b, with parameter value k and 0
otherwise. Similarly, bm

ij ðb; kÞ indicates whether an edge has been

predicted between Mi and Ej or not. Due to their high computing
times, bootstraps and K grid were not used for the OLS method
(with kinship matrix inversion). Instead, its 1� p-value was used to

compute a score. For Random Forests, its importance score was dir-
ectly used as the confidence score. For the Findr method, its poster-

ior probabilities were directly used as the confidence score which is
assumed to be identical between gene and marker predictors
(wfindr

ij ¼ ufindr
ij ¼ PðEi ! EjÞ). To give more importance to edges

found by both types of data (expression and allelic states), the two
types of scores were combined. However, we did not directly aver-

age the two confidence scores since the distributions of scores for
the two types of edges are different. Instead, the confidence scores
were sorted into two lists of ordered edges for each model. A score

between 0 and 1 was given to each edge depending on its rank in the
list. (Missing edges have score 0. The top-1 edge has score

minð0:9999; l�1
l Þ, with l the size of the list.) We then obtained a glo-

bal score sm
ij of an edge from gene i to gene j for method m by aver-

aging the two scores computed from the ranks of the two lists.

3.3 Meta-analysis
Meta-analysis carried out by combining different methods is frequently
described as an efficient way to improve results (Gurevitch et al., 2018).

We evaluated the impact of a meta-analysis on theM¼ 6 tested meth-
ods using the commensurable score previously described, using a
Fisher’s inverse Chi-square meta-test (Hedges and Olkin, 1985):

Sij ¼ 1�
YM

m¼1

ð1� sm
ij Þ

With Sij, the meta-analysis score associated with the directed edge

from gene i to gene j, and sm
ij the commensurable score of the edge be-

tween i and j obtained by the inference method m, m included in a list
ofM methods. Sij varies between 0 and 1. Edges with high scores are

those found by most methods to have a high score.

3.4 Selection of the number of directed edges
With our methodology, each possible edge of the complete directed

graph of p genes has a score. Edges with small scores are consequently
not relevant. In order to select a pertinent number of edges, we consid-
ered networks of varying sizes k 2 ½1; pðp� 1Þ�. The network of size k
is built by considering k edges according to the top-k scores Sij. For
each network, we computed the corresponding graph density:

density ¼ k

nbGenes� ðnbGenes� 1Þ

where nbGenes is the number of genes involved by the top-k edges.

The density curve was smoothed using local polynomial fitting with
a kernel weight (Wand and Jones, 1994). We then selected the num-
ber of edges corresponding to the minimal density network, for

which we observe a conservative trade-off between having a sparse
graph and a few isolated genes.

4 Results

4.1 Network inference on simulated datasets
We applied inference methods described in Section 3 to the 100
simulated datasets of Section 2.2 and compared learnt networks to

the reference network.
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4.1.1 Efficiency of inference methods

The efficiency of the methods was evaluated using precision and re-
call (PR) scores. The precision is an indicator of how reliable the
predictions are. The recall measures the rate of true edge recovery
compared with the full set of true edges. It indicates how compre-
hensive the predictions are. The PR curves of the six network infer-
ence methods and their meta-analysis are shown in Figure 2. We
observed that Random Forest dominates the other single methods at
the beginning (with recall < 20%) and then it is overtaken by Findr.
For example, at 75% precision, OLS was the less efficient method as
only 10.5% of edges of the reference network are found. It is fol-
lowed by Findr (12.8%), Bayesian Network (15.3%), Lasso (16%),
PE-MRF (16.3%) and Random Forest (17.9%). Below this 75%
precision level, the slopes of PR curves dropped sharply except for
Findr. If we compare the area under PR curves (AUPR score), Findr
obtained a better score (0.298) than Random Forest (0.258), the
worst being OLS (0.189).

Meta-analysis over the six methods gave better results than each
method alone, as precision of 75% for a recall value of 22.7% is
obtained and an AUPR of 0.349.

4.1.2 Selection of the number of edges

We selected the number of edges by applying the approach described
in Section 3.4 using a Gaussian kernel with a bandwidth equal to 5.
Figure 3 represents the density plots obtained for the 100 datasets. For
each value of the network size, we computed the median of the density
for the 100 simulated datasets and then smoothed the median curve.
The obtained number of edges was 64, corresponding to the smallest
density. In the following, we will consider for each simulated dataset,
the network built from top-64 edges, where on average graphs had
87.5% precision and 17.89% recall for a density of 1.055%.

4.1.3 Description of the meta-analysis network

4.1.3.1 Global network topology. For each of the 100 simulated
datasets, a graph was extracted by keeping the top-64 edges.
Networks were composed of 79 connected genes on average (from
70 to 86), grouped into 19 components on average (from 13 to 27)
per graph. The largest component was composed of 15 genes on
average (from 6 to 26).

4.1.3.2 Specific motifs. We examined particular motifs such as tri-
angles and mutual edges that are more likely to be prone to predic-
tion errors. We observed few predicted triangles, between 0 and 6
per graph (2 on average). Among the 191 predicted triangles over
the 100 graphs, 2 were correctly predicted, 151 contained an extra
edge and 38 had mis-orientated edges. Moreover, the 100 networks
contained on average 2 mutual edges (between 0 and 8). In 3% of
the graphs, one of the mutual edges was correctly predicted other-
wise, an extra edge was inferred by the inference methods.

4.1.3.3 Analysis of errors according to topology. False edges were
often located in mutual edges or triangles (47% of errors, Fig. 4A).
In the other cases, for each false edge, we investigated the length of
the shortest undirected path in the reference network between the
two endpoint genes. In total, 33% of remaining errors corresponded
to false orientations and 64% to genes that were only connected by
a single intermediate gene in the reference network (Fig. 4B).

4.1.3.4 Node degree. We further compared the out-degree distribu-
tion in the reference and inferred networks. Our top-64 edge selec-
tion yields sparse graphs with very few large hubs (Fig. 5). In the
reference network, we identified a large strongly connected compo-
nent (23 dark blue nodes in Fig. 1). This relatively dense subgraph
containing 70 edges was poorly reconstructed by our approach
(with 89.7% precision, but only 11.1% recall on average for the
learnt subgraphs induced by the 23 nodes), as shown by the larger
difference in out-degree levels between the reference and the inferred
networks for those genes (Fig. 5). By selecting genes with a median
out-degree greater than 3, �19% of the top-16 largest hubs in the
reference network could be detected in the learnt networks and they
do not correspond to the strongly connected component.

4.2 Network inference on measured dataset
As for networks inferred on simulated datasets, we used the minimal
graph density to select 106 top edges corresponding to a graph with
minimum density (0.971%) (Supplementary Fig. S2). The inferred

Fig. 2. PR curves of inference methods on the 100 simulated datasets. Lines repre-

sent the median and shaded areas show the 0.25- and 0.75-quantile limits. Dots on

the meta-analysis curve correspond to top-k edges for k 2 ½50; 200� and the red dot

the graph with minimal density
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Fig. 4. Analysis of error categories based on reference network topology. (A)

Distributions of errors according to their location in specific motifs: triangles, mu-

tual edges or other. (B) For other false edges (not included in triangles and mutual

edges motifs), distribution of undirected shortest path lengths in the reference net-

work between the genes wrongly connected
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network was composed of 105 connected genes grouped in nine
components (Fig. 6A). The largest component had 74 genes, only 1
triangle and no mutual edges were predicted. Regarding node con-
nectivity, the out-degree distributions were similar for graphs
inferred from simulated and measured datasets as shown in
Figure 6B.

In this use case, our method identified three hub genes, two regu-
lating five and nine genes and the other one conversely regulated by
six genes, an actionable result for biological interpretation.

5 Discussion

5.1 Simulation of gene expression datasets for hybrid

genotypes
To simulate more realistic gene expression datasets compatible with
the larger genetic variability and heterozygosity observed in wild pop-
ulations and genetic resources, we improved the SysGenSim simulator
at the genetic level. First, since gene expressions are subject to heter-
osis effects (Lai et al., 2006), we implemented a dominance or additive
effect of each allele in the simulator to simulate this phenomenon.
Secondly, the different parameters of the simulator were adjusted to
have the same heritability in the measured and simulated datasets.
Concerning the topology, we note that whole-genome duplications
lead to numerous paralog genes such as observed in the sunflower
genome (Badouin et al., 2017), which will differentiate and display
different expression patterns. To take this into account, we integrated
artificial paralogous genes with the same regulators and regulated
genes. SysGenSim allowed setting different biological parameters
(basal level, regulation strength, etc.) for the two paralogs and can
thereby lead to different expression levels, which is in accordance
with observed real datasets. Moreover, real networks have a modular
structure with some dense component parts and we successfully
included this complexity of biological networks in our reference net-
work (e.g. the presence of a large strongly connected component).
These improvements allowed us to simulate gene expression datasets
with properties very similar to measured ones. In the future, a chal-
lenge would be to introduce higher genetic variability, that is, having
more than two possible haplotypes per gene.

5.2 Comparison of inference methods
Six different inference methods were tested on simulated datasets,
each of them having its own specificity. For example, Findr and PE-
MRF could handle together continuous (as expression levels) and
discrete (as SNPs) data with different distribution assumptions.
Lasso and Random Forest considered both data as continuous
whereas Bayesian networks considered them as discrete. All the
methods used both data together except for OLS that ran them sep-
arately. OLS was the only tested method taking into account the
dependencies between genotypes via a kinship matrix. However,
results from OLS were inferior possibly due to the lack of boot-
straps. As expected, the meta-analysis achieved greater efficiency

than each method taken individually. Concerning computation time
and resources, Findr, Lasso and Random Forest ran in less than
2 min per simulated dataset on a personal computer. OLS took lon-
ger, around 2 h on a server and required commercial software
(ASReml). Bayesian networks and PE-MRF were the most demand-
ing approaches taking hours on a 20-CPU Xeon 3 GHz server. The
meta-analysis could be run on a personal computer within a few
minutes. For cases where computing resources may be limited or the
number of genes too high, it could be interesting to consider only
the fastest methods for the meta-analysis (Lasso, Random Forest
and Findr). For example, on our simulated datasets, the recall for
75% precision was similar: 22.0% with the light meta-analysis,
compared with 22.7% with the complete one (Supplementary Fig.
S3). We compared our approach with results from previous studies
(Allouche et al., 2013; Huynh-Thu et al., 2013; Huynh-Thu and
Geurts, 2019; Vignes et al., 2011) using one artificial dataset pro-
vided by the DREAM5 Systems Genetics Challenge. This is com-
posed of expression measures for 1000 genes, on 999 individuals
with no dependencies among them, a modular scale-free network
with 2048 edges (Network1) and homozygous markers. Due to the
size of the problem, we applied the light meta-analysis version and
found an AUPR score of 0.65 and selected 607 edges with the small-
est density criteria (Supplementary Figs S4 and S5). This is clearly su-
perior to another similar meta-analysis approach based on three
methods [Bayesian network, Lasso and Dantzig selector (Candes
et al., 2007)] that found an AUPR score of 0.482 (Vignes et al., 2011),
to Findr 0.547 [Supplementary Table S1 in Wang and Michoel
(2017)] and GENIE3-SG-sep(product) 0.58 (Huynh-Thu et al., 2013).
On our much smaller but more realistic simulated datasets, we found
an AUPR of 0.349 with our complete meta-analysis strategy.
Therefore, we believe our simulated datasets constitute a challenging
benchmark for the Systems Biology community.

5.3 Characterization of obtained networks
By selecting the minimal density network, inferred networks were
always sparse. Thus, the highly connected parts of the network were
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Fig. 5. Out-degree levels of genes in the reference network (dark and light blue dots)

and networks inferred on the 100 simulated datasets (grey dots). Areas in blue cor-

respond to 23 genes belonging to a large strongly connected component of the refer-

ence network
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B

Fig. 6. (A) Inferred network on the measured sunflower dataset by the meta-analysis

and minimal density selection of 106 edges. Node size depends on its degree and col-

our to the proportion of out-degree. (B) Comparison of out-degree distributions of

genes in the measured network (orange dots) with the 100 networks from simulated

datasets. Dark grey area shows the 0.25- and 0.75-quantile limits and light grey

area shows extreme values
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difficult to identify. Having a sparse graph may be an advantage if
we try to identify peripheral genes that can indirectly modulate a
target phenotype, for example, the resistance of sunflower to
drought in our case, through a chain of regulations towards highly
connected key genes (Liu et al., 2019). In addition, by minimizing
the density of the network, we performed a very stringent procedure
and selected a reduced number of edges but with a higher probabil-
ity of correctness. With this procedure, we noticed that predicted
motifs such as triangles or mutual edges were still prone to errors
and represented half of the false edges. Other errors consisted main-
ly of wrong orientations or were likely due to a missing intermediate
gene. Similar results are expected on measured datasets. When ana-
lysing and validating a newly inferred network, we recommend the
following guidelines: (i) when triangles or mutual edges are pre-
dicted, a specific validation step must be included since one edge is
probably false; (ii) when an edge is in contradiction with literature,
it could be due to an orientation error; (iii) when experimental data
cannot validate a direct interaction between the product of a gene
and the gene it regulates, it could be due to the lack of an intermedi-
ate actor and (iv) interaction between two genes can be experimen-
tally demonstrated even if an edge is not present in the graph since
many edges are not predicted.

5.4 Application on a measured dataset
For our measured dataset, the number of genes was slightly higher
(173 instead of 143) and the number of measured hybrid genotypes
was lower (353 versus 463) than for our simulated datasets.
Following our density minimization procedure, we selected 106
edges (only 64 for simulated datasets). This variation of size can be
explained by different factors: evolutionary differences between sun-
flower and model plants used to develop the reference dataset, re-
duction of genetic diversity and/or modelling hypotheses on allelic
and gene expression effects in the simulation model. Importantly,
the resulting network serves as a working hypothesis for biologists.
For example, one of the major regulatory genes found,
HanXRQChr16g0529981, is homologous to the NMD3 gene in the
plant model A.thaliana and found more abundant in cold (physiolo-
gically related to drought) condition for this plant (Cheong et al.,
2021). The most regulated gene found in our network,
HanXRQChr02g0058891, is a TF involved in seed oil content in
Brassica napus (Rajavel et al., 2021) and shows an interaction with
the abiotic stress genes in A.thaliana (Katiyar and Mudgil, 2019).
These genes could be good new candidates for future studies on abi-
otic stress of H.annuus with prior knowledge of molecular and epi-
static interactors. Beside the scope of this methodological article,
future challenges will consist in increasing the dataset dimensions,
that is, more genes, performing a complete functional study includ-
ing GO analysis, colocalization with drought response controlling
QTL (Gosseau et al., 2019) and testing network robustness in the
context of heterozygosity.

6 Conclusion

To choose an inference method adapted to our biological context,
we created artificial datasets with realistic biological properties. To
build such artificial datasets, our approach was carried out in four
steps: (i) build a reference network based on available biological in-
formation; (ii) create artificial haplotypes based on genomic infor-
mation available for the hybrid genotypes; (iii) choose and adapt a
gene expression simulator and (iv) adjust the simulator parameters
based on a comparison of the heritability score obtained on meas-
ured and simulated datasets. We believe that this approach can be
easily adapted to other biological experiments and genetic data to
build artificial datasets with other biological properties. This ap-
proach allowed us to choose a meta-analysis strategy based on six
inference methods adapted to our datasets that was completed by a
novel strategy to select the minimal density network. The resulting
learnt networks are very sparse, which should favour precision at
the expense of recall and the inherent difficulty to detect large hubs.
Therefore, this methodology is directly applicable to other gene

expression datasets of similar sizes, combined or not with genotypic
information.
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