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Abstract This paper is concerned with estimating the density mode for ran-
dom field by kernel method under some α-mixing condition. The almost sure
uniform convergence of the density estimator is proved. The rate of almost
sure uniform convergence of the density gradient estimator is given under
mild conditions. The unknown density is supposed unimodal and its mode is
estimated by a kernel estimate. The strong consistency of the mode estimate is
investigated and the rate of convergence is given. An optimal bandwidth selec-
tion procedure is proposed and a simulation study is used to obtain empirical
results.

Keywords Random field · Density · Mode · Kernel estimate · Bandwidth ·
Consistency.

1 Introduction

The literature dealing with nonparametric estimation (density and regression
functions) and classification using kernel method with spatially dependent data
is extensive, see for example: [7,6], [22], [4] and [23]. The almost sure uniform
consistency of estimators on a compact in Rd is studied by may authors, see
for example [7,6] for the density estimator and [4] for the regression estimator.
The almost sure uniform consistency of these estimators on the whole Rd is
established in the independent case (see for example [16]) and in the temporally
dependent case (see for example [5]) but to the best of our knowledge, it is
still unexplored in the spatially dependent case. We may face many problems
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in the nonparametric spatial statistics in which we need to extend uniform
consistency of density estimators to whole Rd, especially those related to the
estimate of density modes. The mode estimates of density function remain
unexplored in the spatially dependent case despite the existence of many fields
where the knowledge of density modes is of great interest. For example, in
unsupervised problems where modes are used as measure of typicality of a
set of data. In particular, in modern applications, mode estimation is often
used in clustering, with the modes representing cluster centers. There is an
extensive literature on mode estimation in the independent (or temporally
dependent) case, see the key references: [15], [9], [18], [2,1], [20] and [11]. Most
of the existing works are concerned with the consistency of the estimators
and rates achievable by various approaches. The common approaches consist
of estimating the mode of an unknown unimodal density by maximizing an
estimate of the density on Rd using kernel estimate. Our aim is to extend some
consistency results related to the kernel estimates of both the density and the
mode from the independent (or temporally dependent) case to the spatially
dependent case under some mild conditions. A very important problem in
kernel estimation problem is to choose the smoothing parameter that is called
bandwidth or window. We propose an optimal bandwidth selection procedure.

2 Kernel estimates for the density and the mode by random field

Let {Xi}i∈ZN (with N ≥ 1) be a random field ( spatial process) defined on
a probability space (Ω,A,P) and taking values in Rd ( with d ≥ 1). Assume
that the random field is strictly stationary and that for each i ∈ ZN , Xi

has the same distribution as a variable X. A point i = (i1, ..., iN ) ∈ ZN will

be referred to as a site. For n = (n1, ..., nN ) ∈ (N∗)N , we denote by In the
rectangular region In = {i ∈ ZN : 1 ≤ ik ≤ nk, ∀k = 1, ..., N} on which we
observe the above spatial process. We denote n̂ = n1 × ... × nN = card(In)
and we write n → ∞ if min1≤k≤N nk → ∞ and max1≤i,j≤N |ni/nj | ≤ C for
some generic constant C such that 0 < C < ∞. Suppose X has an unknown
density f . We first consider the problem of estimating the density f based on
a set of observations {Xi, i ∈ In}. We define a kernel estimator fn of f at the
point x = (x1, ..., xd) ∈ Rd by

fn(x) =
1

n̂bdn

∑
i∈In

K

(
x−Xi

bn

)
, (1)

where K : Rd → R, the kernel, is a symmetric bounded density function and
bn, the bandwidth, is a strictly positive number depending on n and such
that bn → 0 as n → ∞. Some asymptotic properties of the estimator (1) are
studied by [22] and [7] under mixing condition defined later on. Assume that f
is unimodal density and denote by m the mode of f . Let m̂n be the estimator
of m using the set of observations {Xi, i ∈ In}. The estimator m̂n is called
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kernel mode estimator (or empirical mode). The empirical mode m̂n estimates
m by maximizing fn(x) on Rd, i.e.,

m̂n ∈ arg max
Rd

fn. (2)

In the independent (or temporally dependent) case, various work such as [15]
and [18], [20] and [11] establish consistency results of the approach under
regularity assumptions. In this paper, we will extend the strong consistency
results to the spatially dependent case. For this aim, we first need to extend
the almost sure uniform consistency of the density estimator established by
[16] in the independent case to the spatially dependent case. To establish the
consistency results, we propose a spatial dependence condition that is widely
used in nonparametric functional estimation.

3 General assumptions

We will assume throughout the paper that the spatial process (Xi)i∈ZN satisfies
the following mixing condition: there exists a function ϕ : R → R+ with
ϕ(t)↘ 0 as t→∞, such that whenever E,E′ ⊂ ZN with finite cardinality,

α
(
B(E),B(E′)

)
:= sup{|P(A ∩ C)− P(A)P(C)|, A ∈ B(E), C ∈ B(E′)}
≤ h(Card(E),Card(E′))ϕ(dist(E,E′)),

where B(E) (resp. B(E′)) denotes the Borel σ-field generated by (Xi)i∈E (resp.
(Xi)i∈E′), Card(E) (resp. Card(E′)) the cardinality of E (E′), dist(E,E′) the
Euclidean distance between E and E′, and h : N2 → R+ is a symmetric positive
function which is nondecreasing in each variable. It will be also assumed for
simplicity that h satisfies

h(m1,m2) ≤ L(m1 +m2)ξ, ∀m1,m2 ∈ N∗, (3)

For some L > 0 and ξ ≥ 0. If h ≡ 1, the random field called strongly mixing.
and ‖.‖ denotes the Euclidean norm. They are satisfied by many spatial mod-
els. Examples can be found in [14], [19] and [10].
We suppose also that ϕ(t) tends to zero at a polynomial rate, i.e,

ϕ(t) = O(t−θ), (4)

for some θ > 0. We suppose the following assumptions hold.

H1. f(x)→ 0 if ‖x‖ → ∞, with ‖.‖ denotes the Euclidean norm.
H2. For each i 6= j, (Xi, Xj) has a density fi,j such that

sup
u,v∈Rd

|fi,j(u, v)− f(u)f(v)| ≤ C, for some C > 0.

H3.
∫
Rd ‖x‖2f(x)dx <∞.

H4. K satisfies a Lipschitz condition, i.e, there exists R > 0 such that for all
x, y ∈ Rd, |K(x)−K(y)| < R‖x− y‖.



On the consistency of mode estimate for spatially dependent data 5

H5. supx∈Rd ‖x‖d+1K(x) <∞.
H6. The density f satisfies a Lipschitz condition.

Note that Assumption H1 holds for example if f is uniformly continuous. It
is useless as soon as the support of f is bounded. Assumption H2, used by [7],
controls the dependency through the distance between fi,j(u, v) and f(u)f(v)
and can be linked with the mixing condition. Assumptions H3-H4 are classical
in nonparametric functional estimation. Assumption H5 is a particular case
of Parzen-Rosenblatt condition that will be defined later. Assumption H6 is
used by [7] to establish the uniform convergence rate of the kernel density
estimator on a compact set in Rd.

4 Main results

4.1 Almost sure uniform convergence of the density estimator

We denote by B(x0, r
′) = {x ∈ Rd : ‖x−x0‖ ≤ r′} the closed ball centered at

x with radius r′ > 0. Let g(n) =
∏N
i=1(log ni)(log log ni)

1+ε for some ε > 0. It
is well known that ∑

n∈N∗N
1/(n̂g(n)) <∞. (5)

The kernel K is called Parzen-Rosenblatt kernel if:

lim
‖x‖→∞

‖x‖dK(x) = 0. (6)

Condition (6) is satisfied by many kernels such as: naive kernel, Gaussian
kernel and Epanechnikov kernel. It is used to obtain the uniform convergence
of Efn toward f on a compact set D of Rd. Note that (6) may be satisfied if
H5 holds. Define

θ∗1 =
d(θ + 4N(d+ 1))

θ − 2N(ξ + 1)
and θ∗2 = − θ

θ − 2N(ξ + 1)
.

Theorem 1 Suppose that H1-H5, (3) and (4) hold with θ > 2N and that f
is bounded. If as n→∞,

bn → 0, n̂bdn/(log n̂) −→∞ (7)

and

n̂b
θ∗1
n (log n̂)

θ∗2 g(n)−2N/(θ−2N(ξ+1)) −→∞, (8)

then, as n→∞,
sup
x∈Rd

|fn(x)− Efn(x)| −→ 0 a.s.
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[16] proves the result of Theorem 1 in the independent case using techniques
of empirical processes which are not developed for spatial processes. Theorem
1 extends the uniform consistency on a compact set established by [7] to whole
Rd. Condition (7) is a spatial version of the i.i.d. one (see [17]) that can be
obtained from (8) as θ →∞.
The proofs of the following theorems are immediate consequences of Bochner’s
Lemma.

Theorem 2 Let D ⊂ Rd be a compact set. Suppose that (6) is satisfied and
that f is continuous. Then as n→∞,

sup
x∈D
|Efn(x)− f(x)| −→ 0.

Theorem 3 Suppose that f is uniformly continuous on Rd. Then, as n→∞,

sup
x∈Rd

|Efn(x)− f(x)| −→ 0.

The proof of the following corollary is immediate from Theorem 1 and Theorem
3.

Corollary 1 Suppose that H1-H5, (6), (8), (3) and (4) hold with θ > 2N
and that f is bounded and uniformly continuous. Then, as n→∞,

sup
x∈Rd

|fn(x)− f(x)| −→ 0 a.s.

The proof of the following corollary is immediate from Theorem 1 and Theorem
2.

Corollary 2 Let D ⊂ Rd be a compact set. Suppose that (6) is satisfied and
that f is continuous. Under assumptions of Theorem 1, we have, as n→∞,

sup
x∈D
|fn(x)− f(x)| −→ 0 a.s.

4.2 Strong consistency of the kernel mode estimator

Our aim in this section is to establish some consistency results related to the
empirical mode m̂n defined in (2). We first prove the almost sure convergence
of m̂n towards the exact mode m. Then, we study the rate of almost sure
convergence for this estimator under smoothness conditions on f . The strong
consistency of m̂n in the independent univariate case is investigated by [18].
[13] extend the result of [18] to the multivariate case. More recently, the strong
consistency of the kernel mode estimator is established by [11] in the ψ-weakly
dependent case. In the following theorem, we investigate the strong consistency
of the empirical mode in the spatially dependent case.
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Theorem 4 Suppose that the assumptions of Theorem 1 are verified and that
the density f is continuous in a neighborhood of the mode m. If for any δ > 0,

sup
x∈B(m,δ)c

f(x) < f(m). (9)

then, as n→∞,
m̂n −→m a.s.

Note that condition (9) is in line with the assumption that the density f is
unimodal. Now, we study the strong convergence rate of mn. We will prove
that the convergence rate is

ψn =
(
n̂bd+2

n / log n̂
)−1/2

. (10)

The rate (10) is the same as [11] and [20] in the univariate case (d = 1). We
assume that f is unimodal and has its mode m in the compact D ⊂ Rd, i.e.,

m ∈ arg max
D

f. (11)

In this case the kernel mode estimator is given by

m̂n ∈ arg max
D

fn. (12)

Condition (11) is used by [11] in the univariate case. We denote ∇f and
∇2f the gradient and Hessian of the density f , respectively. Then, we have
∇f(m) = 0. We assume the following assumptions hold.

H′1. f is differentiable function of order 3 with all partial derivatives bounded.

H′2. ∂f(x)∂xk
is Lipschizian (for each k = 1, ..., d).

H′3. ∇2f(m) is negative definite.

H′4. K is differentiable such that ∂K(x)
∂xk

is Lipschizian (for each k = 1, ..., d).

H′5. ∂K(x)
∂xk

is bounded and integrable (for each k = 1, ..., d).

H′6. lim‖x‖→∞K(x) = 0.
H′7.

∫
Rd ‖x‖2K(x)dx <∞.

Hypotheses H′1-H′6 are classical to establish different asymptotic properties
of the kernel mode estimator. For these types of hypotheses, see for example:
[13], [11] and [8]. For instance, H′3 is supposed to consider only the interior
mode. H′6 is weaker than Parzen-Rosenblatt condition. Assumption H′7 is
used by [5] in the temporally dependent case.
Before we state the rate of convergence for the mode estimator (12), we first
need to investigate the rate of uniform convergence of ∇fn, the gradient of fn,
on a compact set. Define

θ∗3 =
(d+ 2)θ +Nd(d+ 1)

θ −N(d+ 3 + 2ξ)
and θ∗4 =

N(d+ 1)− θ
θ −N(d+ 3 + 2ξ)

.
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Lemma 1 Let D ⊂ Rd be a compact set. Suppose that H′1-H′2, H′4, H′6-
H′7 and (6) are satisfied. If as n→∞,

n̂bd+6
n / log n̂ −→ 0,

then, for each k = 1, ..., d,

sup
x∈D

∣∣∣∣E∂fn(x)

∂xk
− ∂f(x)

∂xk

∣∣∣∣ = O (ψn) ,

with
∂fn(x)

∂xk
=

1

n̂bd+1
n

∑
i∈In

∂

∂xk
K

(
x−Xi

bn

)
.

Theorem 5 Let D ⊂ Rd be a compact set. Suppose that H2, H′1-H′2, H′4-
H′5, (3) and (4) hold with θ > 2N and that f is bounded. If as n→∞,

bn → 0, n̂bd+2
n /(log n̂) −→∞, (13)

and
n̂b

θ∗3
n (log n̂)

θ∗4 g(n)−2N/(θ−N(ξ+2)) −→∞, (14)

then, for each k = 1, ..., d,

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− E

∂fn(x)

∂xk

∣∣∣∣ = O (ψn) a.s.

The proof of the following corollary is an immediate consequence of Lemma 1
and Theorem 5.

Corollary 3 Let D ⊂ Rd be a compact set. Suppose that assumptions of The-
orem 5 is verified. If in addition, H′5-H′7 are verified and as n→∞,

n̂bd+6
n / log n̂ −→ 0,

then, for each k = 1, ..., d,

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− ∂f(x)

∂xk

∣∣∣∣ = O (ψn) a.s.

Note that our estimator of ∇f achieves the same rate as that of Theorem 1
in [11] in the temporal univariate case.

Lemma 2 If f is twice differentiable and H′3 is fulfilled, then, there exists
ε > 0 such that, for each x ∈ B(m, ε),

C1‖x−m‖2 ≤ f(m)− f(x) ≤ C2‖x−m‖2, (15)

for some 0 < C1 ≤ C2.

The convergence rate of the empirical mode m̂n towards the exact mode m
is stated in the following theorem.
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Theorem 6 Suppose that H2, H′1-H′2, H′4, (3) and (4) hold with θ > 2N .
If as n→∞,

bn → 0, n̂bd+2
n /(log n̂) −→∞, n̂bd+6

n / log n̂ −→ 0,

and
n̂bθ̃n (log n̂)

θ̃2 g(n)−2N/(θ−2N(ξ+1)) −→∞, (16)

with θ̃1 = max{θ∗1 , θ∗3} and θ̃2 = min{θ∗2 , θ∗4}, then,

|m̂n −m| = O (ψn) a.s.

Note that if (16) is satisfied, then (8) and (14) are immediate.

4.3 Numerical studies

First, a simulation study is conducted, then an application is image analysis
is given.

4.3.1 Bandwidth selection and simulation study

In practice, the choice of a bandwidth bn is a crucial problem to the kernel den-
sity. An unfavorable choice of bn may lead to catastrophic error rates. Various
techniques for the bandwidth selection have been developed for nonparametric
kernel smoothing method. Among the different selection techniques to select
the parameter bn, one can propose the asymptotic mean integrated squared
error (AMISE) criterion. [3] shows that the kernel density estimator in the
spatial case has exactly the same asymptotic mean integrated squared error
as in the i.i.d. case, i.e.,

AMISE(bn) = E
∫
Rd

(fn(x)− f(x))2dx =
b2n
4
Γ 2
d +

∫
Rd K

2(u)du

n̂bdn
,

where

Γ 2
d =

∫
Rd

 ∑
1≤i,j≤d

∂2f(x)

∂xi∂xj

∫
Rd

uiujK(u)du

2

dx.

Consequently, the asymptotically optimal bandwidth is given by

bnopt =
d
∫
Rd K

2(u)du

Γ 2
d

n̂−1/(d+4).

The solution is found by taking the derivative of the AMISE(b) with respect
to b and setting it equal to zero. By substituting bnopt into the AMISE ex-
pression, the optimal AMISE rate is given by O(n̂−4/(4+d)). Unfortunately,
the optimal bandwidth depends on the unknown quantity Γ 2

d since the partial
derivatives of f of order two are unknown. [21] proposes to try the bandwidth
computed by replacing f in the formula of Γ 2

d by a normal density function
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with mean vector µ and variance-covariance matrix Σ. This normal density is
called a reference density. We estimate µ and Σ from data and get the reference
density. In the following simulation study, we consider the univariate case and
we suppose K is the normal kernel. In this case, one can easily verify that the
asymptotically optimal bandwidth bopt can be estimated by b̂opt = 1.06σ̂n̂−1/5,
with σ̂ is the standard deviation estimated from data. Consider (Xi)i∈ZN is a
real Gaussian random field with EXi = 0 and varXi = 2 for each i ∈ ZN . Sup-
pose the covariance function is given by c(‖i− j‖) = cov(Xi, Xj) = ‖i− j‖−5,
for any i 6= j. Set n = (n, n). For the density estimate, we let n take the three
values 10, 20 and 30 to show how the estimation improves when n increases
(see Figure 1). For the mode estimate, we let n varies from 1 to 30. To show
how the estimated values vary around the exact mode, the sites are ordered
and enumerated according to lexicographic order from the site (1, 1) to site
(30, 30). Recall that the origin here is (1, 1) not (0, 0). Hence, for each site
(s, t) with 1 ≤ s, t ≤ 30, in the one hand, a number k ∈ {1, ..., 900} is assigned
and in the other hand, the estimation of the mode is determined based on
the kernel estimate of the density constructed using the set of observations
{X(i,j), 1 ≤ i ≤ s, 1 ≤ j ≤ t}. Figure 2 shows the variation of m̂n as a function
of k. We observe that the larger the value of k, the closer the estimated value
is to the exact mode.
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Fig. 1 The best estimated curve corresponds to the largest n where the black solid curve
represents the exact density.
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Fig. 2 The larger k, the closer the estimated value is to the exact mode (m = 0).

4.3.2 Numerical application

One of the features that better describes a density estimate is the list of its
modes and the intervals of values around which data concentrate. For example,
the density estimate of intensities of an image made of different zones shall
exhibit different peaks, each one of them ideally corresponding to a different
region in the image. In this case, a proper segmentation of the image can be
obtained by computing the appropriate thresholds that separate the modes
in the density estimate. Most threshold selection algorithms assume that the
intensity density is multi-modal; typically bimodal. However, some types of
images are essentially unimodal since a much larger proportion of just one
class of pixels (e.g. the background) is present in the image, and dominates
the density. In this numerical study, we will see how to segment objects from
a background. We use the coins image from R package imager (see Figure 3).

0

100

200

300

0 100 200 300 400
x

y

0.25

0.50

0.75

value

Fig. 3 Coins image with width n1 = 384 and height n2 = 303.
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This image shows several coins outlined against a darker background. The
number of pixels along the x-axis is called the width (n1 = 384), along the y-
axis its height (n2 = 303). However, the image is composed of n1×n2 = 116352
pixels (sites) and in each pixel the intensity (gray level) is measured. Observe
that the image data has class ”cimg” which is converted into ”data.frame”.
Here are the first six lines of the data table of the coins image.

x y Intensity
1 1 0.1843137
2 1 0.4823529
3 1 0.5215686
4 1 0.5058824
5 1 0.5372549
6 1 0.5176471

This data table contains the intensity value in each pixel with the pixels coordi-
nates. The density function of the intensity is estimated by the kernel estimate
which is maximized to get the estimated mode (m̂n = 0.17). The bandwidth
is determined according to the method defined above (bn = 0.02133). Figure
4 shows the estimated density curve.
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Fig. 4 Estimated density of the intensity (solid line) with the location of the estimated
mode ( point of intersection of the dashed line with the x-axis, x = 0.17).
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Fig. 5 Locations of the estimated mode on the image pixels (pink color).

Figure 5 dispays the pixels where the estimated mode is observed. It is clear
that the majority of mode pixels are located in the background area. Since
the background area is not totally covered by the pixels of the mode, it means
that it is not uniform. This implies that to segment the image into objects
and a background, we will need to determine a threshold based on the density
curve. As shown on Figure 4, the estimated density has two significant beaks
that correspond to background and objects of interest, a peak around the
mode x = 0.17, and a second, smaller peak near to x = 0.65. We choose as
a threshold x = 0.55, this is the value that minimize fn(x) on the interval
[0.17, 0.65] (see Figure 6).
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Fig. 6 Threshold of the intensity values based on local maximas of the density estimation.
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According to this choice of threshold, we have Figure 7 that displays the
segmentation of image into two zones, a background zone in pink color and
objects zone in black color.

0
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200

300

0 100 200 300 400
x

y

Fig. 7 Image segmentation in two zones: a background zone (pink color) and objects zone
(black color).

From Figure 7, we can conclude that the objects (coins) can well be detected
in the thresholded image. The slight overlap between the background and the
coins is due to the fact that the background is not uniform.

5 Discussion on the choice of d and N

With regard to the kernel density estimator, it works well for low-dimensional
problems, but are not effective for high dimensional problems. As noted by
many authors, kernel methods suffers from the curse of dimensionality caused
by the sparsity of data in high dimensional spaces. Or in other words, there will
be only very few neighboring data points to any value x in a higher dimensional
space, unless the sample size is extremely large. It has been shown that the best
possible AMISE rate is O(n̂−4/(4+d)) which slightly increases as d increases.
We believe that estimation of the density by kernel method is feasible in as
many as six dimensions. Concerning the mode estimate, for a high dimensional
sample space, in practice, the argmax is usually computed over a finite grid,
but the grid size exponentially increases with the dimension d, which leads to
time-consuming computations. However, for graphical exploratory purposes,
it suffices to deal with d ≤ 3. With regard to N , if we let for example n1 =
n2 = ... = nN , then n̂ = nN and the AMISE rate is O(n−4N/(4+d)). This
means that the AMISE rate decreases exponentially to 0 as N increases. In
practice, it is reasonable to take N ≤ 3 for the spatial case and N ≤ 4 for the
spatio-temporal case.
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6 Proofs

Before we start the proofs, we introduce the known spatial block decomposition
of [7] which we will use several times. Let {Zi, i ∈ In} be any set of random
variables observed on the region In. Without loss of generality, we assume that
nk = 2qkp for k = 1, ..., N where qk and p are positive integers. According to
the block decomposition of [7], the random variables Zi can be regrouped into
2Nq1 × ...× qN cubic blocks of side p. Denote

U(1,n, j) =

(2jk+1)p∑
ik=2jkp+1
k=1,...,N

Zi

U(2,n, j) =

(2jk+1)p∑
ik=2jkp+1
k=1,...,N−1

2(jN+1)p∑
iN=(2jN+1)p+1

Zi

U(3,n, j) =

(2jk+1)p∑
ik=2jkp+1
k=1,...,N−2

2(jN−1+1)p∑
iN−1=(2jN−1+1)p+1

(2jN+1)p∑
iN=2jNp+1

Zi

...

etc

...

U(2N − 1,n, j) =

2(jk+1)p∑
ik=(2jk+1)p+1
k=1,...,N−1

(2jN+1)p∑
iN=2jNp+1

Zi

U(2N ,n, j) =

2(jk+1)p∑
ik=(2jk+1)p+1

k=1,...,N

Zi.

For each integer i = 1, ..., 2N , we define

T (n, i) =

qk−1∑
jk=1

k=1,...,N

U(i,n, j).

Thus, ∑
i∈In

Zi =

2N∑
i=1

T (n, i). (17)

Furthermore, for each i = 1, ..., 2N ,, T (n, i) is a sum of r = q1× ...× qN of the
U(i,n, j)’s. If for example we let i = 1, then T (n, 1) is a sum of r = q1× ...×qN
of the U(1,n, j)’s. The random term U(1,n, j) is measurable with the σ-field
generated by Zi with i belonging to the set of sites

Sj = {i : 2jkp+ 1 ≤ ik ≤ (2jk + 1)p, k = 1, ..., N}. (18)
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For different values of j = (j1, ..., jN ), the sets of sites (18) are separated by a
distance of at least p, i.e,

dist(Sj,Sj′) ≥ p for any j 6= j′. (19)

Proof of Theorem 1 Let c1 = supx∈Rd K(x) and c2 = 2E‖X‖. We denote
an = 8c1c2/(εb

d
n) for some arbitrary number ε > 0. Then,

sup
x∈Rd

|fn(x)−Efn(x)‖ ≤ sup
‖x‖≤an

|fn(x)−Efn(x)|+ sup
‖x‖>an

|fn(x)−Efn(x)|. (20)

Consequently, we prove the theorem if we show that each term on the right-
hand side of (20) tending almost surely to zero as n→∞. We first show that,
as n→∞,

sup
‖x‖≤an

|fn(x)− Efn(x)| −→ 0 a.s. (21)

To do so, we denote hn = εbd+1
n /3R where R > 0 is the constant defined in

H4, sn = 2anh
−1
n and νn = bsdnc where b.c denotes the integer part. Since

B(0, an) is compact, it can be covered by νn balls centered at yj , j = 1, ..., νn
with radius hn. Taking into account the new conditions on bn,one can easily
prove (21) by using the same argument as in (Theorem 3.3, [12]). It remains
to show that as n→∞,

sup
‖x‖>an

|fn(x)− Efn(x)| −→ 0 a.s. (22)

To do that, for any ε > 0, we can write

P

(
sup
‖x‖>an

|fn(x)− Efn(x)| ≥ ε

)

≤ P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
+ P

(
sup
‖x‖>an

E|fn(x)| ≥ ε/2

)
. (23)

We will find an upper bound for each term on the right-hand side of (23). Let
us first deal with the first term. Clearly,

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
≤ P

{
sup
‖x‖>an

1

n̂bdn

∣∣∣∣ ∑
‖x−Xi‖>an/2

K
(x−Xi

bn

)∣∣∣∣ ≥ ε/4}

+ P
{

sup
‖x‖>an

1

n̂bdn

∣∣∣∣ ∑
‖x−Xi‖≤an/2

K
(x−Xi

bn

)∣∣∣∣ ≥ ε/4}.
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However, by H5, for each x ∈ Rd,

1

n̂bdn

∣∣∣∣ ∑
‖x−Xi‖>an/2

K
(x−Xi

bn

)∣∣∣∣
≤ 1

n̂bdn

∑
‖x−Xi‖>an/2

{
‖x−Xi‖

bn

}d+1∣∣∣∣K(x−Xi

bn

)∣∣∣∣{ bn
‖x−Xi‖

}d+1

≤ C

n̂bdn

∑
‖x−Xi‖>an/2

{
bn

‖x−Xi‖

}d+1

≤ C

ad+1
n

,

with C > 0 is generic constant. Since an → ∞, then for n̂ large enough, we
have

P
{

sup
‖x‖>an

1

n̂bdn

∣∣∣∣ ∑
‖x−Xi‖>an/2

K
(x−Xi

bn

)∣∣∣∣ ≥ ε/4} = 0

Hence, for n̂ large enough,

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
≤ P

{
sup
‖x‖>an

1

n̂bdn

∣∣∣∣ ∑
‖x−Xi‖≤an/2

K
(x−Xi

bn

)∣∣∣∣ ≥ ε/4}.
Since for ‖x‖ > an and ‖x−Xi‖ ≤ an/2, ‖Xi‖ ≥ an/2, then,

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
≤ P

{
c1

n̂bdn

∑
i∈In

I{‖Xi‖>an/2} ≥ ε/4
}
,

where IA denotes the indicator function of the set A. Markov’s inequality yields

P
(
‖Xi‖ ≥ an/2

)
≤ 2a−1n E‖Xi‖ ≤ Cbdn → 0 as n→∞.

Therefore, for n̂ large enough, we can write

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
≤ P

(∣∣∣∣∣∑
i∈In

∆i

∣∣∣∣∣ ≥ ε/8
)
, (24)

with, for each i ∈ In,

∆i = c1(n̂bdn)−1
(
I{‖Xi‖≥an/2} − P (‖Xi‖ ≥ an/2)

)
.

Now, we apply the above block decomposition of [7] to the random variables
∆i. For this aim, we let Zi = ∆i in the block decomposition. Then,

|Zi| ≤ C(n̂bdn)−1 and EZi = 0.

Thus, by (17), ∑
i∈In

Zi =

2N∑
i=1

T (n, i).
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Then,

P

(∣∣∣∣∣∑
i∈In

Zi

∣∣∣∣∣ ≥ ε/8
)
≤

2N∑
i=1

P
(
|T (n, i)| ≥ ε/2N+3

)
. (25)

Therefore, it suffices to find an upper bound for

P
(
|T (n, 1)| ≥ ε/2N+3

)
.

To elaborate, enumerate the r.v.’s U(1,n, j) and the corresponding sets of
sites Sj in an arbitrary manner (see (18)) and refer to them respectively as
V1, V2, ..., Vr and S1,S2, ...,Sr. Approximate V1, V2, ..., Vr by the r.v.’s V ∗1 , V

∗
2 , ..., V

∗
r

using Lemma 4.5 of [7]. Therefore, for each k = 1, ..., r,

|Vk| ≤ CpN (n̂bdn)−1 := Mn (26)

and by (19),

r∑
i=1

E|Vi − V ∗i | ≤ 2rMnh((r − 1)pN , pN )ϕ(p). (27)

We have the following inequality

P
(∣∣T (n, 1)

∣∣ ≥ ε/2N+3
)

≤ P

(
r∑
i=1

|Vi − V ∗i | ≥ ε/2N+4

)
+ P

(∣∣∣∣∣
r∑
i=1

V ∗i

∣∣∣∣∣ ≥ ε/× 2N+4

)
(28)

Markov’s inequality yields

P
( r∑
i=1

|Vi − V ∗i | ≥ ε/(3× 2N+1)
)
≤ Cn̂ξb−dn ϕ(p), (29)

and Bernstein’s inequality yields

P

(∣∣∣∣∣
r∑
i=1

V ∗i

∣∣∣∣∣ ≥ ε/2N+4)

)
≤ 2 exp

{
− ε′2

4rvar V1 + 2M′nε
′

}
(30)

where ε′ = ε/(3× 2N+4). Let δ = b
−d/N
n , then,

varV1 ≤ pNvar Z1 +
∑

i,j: ‖i−j‖≥δ

|cov(Zi,Zj)|+
∑

i,j: 0<‖i−j‖<δ

|cov(Zi,Zj)|. (31)

We will find an upper bound for each term on the right-hand side of (31). By
Markov’s inequality,

varZ1 ≤ c21(n̂bdn)−2P
(
‖X1‖ ≥ an/2

)
≤ 2c21a

−1
n (n̂bdn)−2E‖X1‖

≤ C(n̂2bdn)−1. (32)
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In the other hand, by Markov’s inequality and H3, we have for any i 6= j,

|cov(Zi, Zj)|

= c21(n̂bdn)−2
∣∣∣P(‖Xi‖ > an/2, ‖Xj‖ > an/2

)
− P

(
‖Xi‖ > an/2

)
P
(
‖Xj‖ > an/2

)∣∣∣
≤ 2c21(n̂bdn)−2P

(
‖Xi‖ > an/2

)
≤ 6c21a

−2
n (n̂bdn)−2E‖X1‖2 ≤ Cn̂−2.

Therefore∑
i,j: ‖i−j‖≥δ

|cov(Zi, Zj)| ≤ Cn̂−2
∑

ik:‖i‖≥δ
k=1,...,N

ϕ(‖i‖)

≤ CpN n̂−2
∑
i≥δ

iN−1ϕ(i) ≤ CpN n̂−2
∫ +∞

δ

uN−θ−1du

≤ CpN n̂−2δθ−N ≤ CpN (n̂2bdn)−1, (33)

since δ = b
−d/N
n . Moreover, we can easily show that∑

i,j: 0<‖i−j‖<δ

|cov(Zi, Zj)| ≤ CpN (n̂2bdn)−1. (34)

Combining (31)-(34), we have

varV1 ≤ CpN(n̂2bd
n)−1 (35)

Hence, by (26), (30) and (35), we obtain the following inequality

P

(∣∣∣∣∣
r∑
i=1

V ∗i

∣∣∣∣∣ ≥ ε/2N+4)

)
≤ 2 exp

(
−Cn̂bdn

)
. (36)

Combining (24)-(25), (28)-(29) and (36), we get

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
≤ 2N+1 exp

(
−Cn̂bdn

)
+ Cn̂ξb−dn ϕ(p). (37)

Choosing p =
(
n̂bdn/(log n̂)

)1/2N
, (7)-(8) yield

∑
n∈N∗N

P

(
sup
‖x‖>an

|fn(x)| ≥ ε/2

)
<∞. (38)

It remains to show that the second term on the right-hand side of the inequality
(23) vanishes as n→∞, i.e.,

P

(
sup
‖x‖>an

E|fn(x)| ≥ ε/2

)
−→ 0. (39)
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For each x ∈ Rd,

E|fn(x)| ≤
∫
Rd

K(u)f(x− bnu)du

=

∫
B(0,b−1

n )

K(u)f(x− bnu)du+

∫
B(0,b−1

n )c
K(u)f(x− bnu)du. (40)

Thus, if ‖x‖ > an and u ∈ B(0, b−1n ), then ‖x− bnu‖ ≥ an − 1. Consequently,
by H1,

sup
‖x‖>an

∫
B(0,b−1

n )

K(u)f(x− bnu)d ≤ sup
‖x‖>an−1

f(x)

∫
B(0,b−1

n )

K(u)du

≤ C sup
‖x‖>an−1

f(x) −→ 0 as n→∞. (41)

In the other hand, we have, by H5,

sup
‖x‖>an

∫
B(0,b−1

n )c
K(u)f(x− bnu)du

≤ sup
u

(‖u‖d+1K(u)) sup
Rd

f

∫
B(0,b−1

n )

du

‖u‖d+1

≤ C
∫
B(0,b−1

n )

du

‖u‖d+1
−→ 0 as n→∞. (42)

Combining (40)-(42), we have

E|fn(x)| −→ 0 as n→∞. (43)

By (23), (38) and (43) together with Borel-Cantelli lemma, we get (22). Finally,
by (20)-(22), the proof is completed. �

Proof of Theorem 4 Since

Efn(x) =

∫
Rd

K(u)f(x− bnu)du,

we have for any δ > 0,

sup
x∈B(m,δ)c

Efn(x) ≤ sup
x∈B(m,δ)c

∫
‖u‖≤1

K(u)f(x− bnu)du+

sup
x∈B(m,δ)c

∫
‖u‖>1

K(u)f(x− bnu)du

≤ sup
x∈B(m,δ)c

∫
‖u‖≤1

K(u)f(x− bnu)du+ f(m)

∫
‖u‖>1

K(u)du. (44)
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Hence, if ‖u‖ ≤ 1 and x ∈ B(m, δ)c, since bn → 0, then for n̂ large enough,
‖x− bnu−m‖ > δ − bn‖u‖ > δ/2. Consequently, by (9),

sup
x∈B(m,δ)c

∫
‖u‖≤1

K(u)f(x− bnu)du ≤ sup
x∈B(m,δ/2)c

f(x)

∫
‖u‖≤1

K(u)du

< f(m)

∫
‖u‖≤1

K(u)du.

Then, (44) yields

lim sup
n

sup
x∈B(m,δ)c

Efn(x) < f(m)

∫
Rd

K(u)du = f(m). (45)

Since, by Theorem 1,

sup
x∈Rd

|fn(x)− Efn(x)| −→ 0 a.s.

by (45), we can write

lim sup
n

sup
B(m,δ)c

fn < f(m) a.s. (46)

Since f is continuous in a neighborhood of m, by Corollary 2, there exists
δ0 > 0 such that

sup
x∈B(m,δ0)

|fn(x)− f(x)| −→ 0 a.s. (47)

By (46)-(47), we have for any δ ≤ δ0,

lim sup
n

sup
B(m,δ)c

fn < lim sup
n

sup
B(m,δ)

fn a.s.

Finally, if we let δ tend to 0, the proof is completed. �

Proof of Theorem 5 We will show that

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− E

∂fn(x)

∂xk

∣∣∣∣ = O (ψn) , (48)

with ψn is defined in (10). Choose ln = bd+2
n ψn . Since D is compact, it can

be covered by
ν′n = b(bd+2

n ψn)−dc (49)

balls centered at yj , j = 1, ..., ν′n with radius ln. Define

Qn,1 = max
1≤t≤ν′n

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− ∂fn(yt)

∂xk

∣∣∣∣ ,
Qn,2 = max

1≤t≤ν′n
sup
x∈D

∣∣∣∣E∂fn(x)

∂xk
− E

∂fn(yt)

∂xk

∣∣∣∣ ,
Qn,3 = max

1≤t≤ν′n

∣∣∣∣∂fn(yt)

∂xk
− E

∂fn(yt)

∂xk

∣∣∣∣ .
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Hence, we can write

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− E

∂fn(x)

∂xk

∣∣∣∣ ≤ Qn,1 +Qn,2 +Qn,3. (50)

Since by H′4 , ∂K(x)
∂xk

is Lipschzian, we get∣∣∣∣∂fn(x)

∂xk
− ∂fn(yt)

∂xk

∣∣∣∣ ≤ Cb−(d+1)
n ‖x− yt‖ ≤ Cb−(d+1)

n ln ≤ Cψn

for some generic constant C > 0. Then,

Qn,1 = O(ψn) and Qn,2 = O(ψn) a.s. (51)

To accomplish the proof of (48), it remains to show that Qn,3 = O(ψn) almost
surely, i.e.,

max
1≤t≤ν′n

|Sn(yt)| = O(ψn) a.s. for each y ∈ {y1, ..., yν′n}, (52)

with

Sn(y) =
∂fn(y)

∂xk
− E

∂fn(y)

∂xk

= (n̂bd+1
n )−1

∑
i∈In

{
∂

∂xk
K

(
y −Xi

bn

)
− E

∂

∂xk
K

(
y −Xi

bn

)}
:=
∑
i∈In

∆′i(y),

where

∆′i(y) = (n̂bd+1
n )−1

{
∂

∂xk
K

(
y −Xi

bn

)
− E

∂

∂xk
K

(
y −Xi

bn

)}
.

Therefore, E∆′i(y) = 0 and |∆′i(y)| ≤ C(n̂bd+1
n )−1 by H′5. Now, we apply the

above block decomposition of [7] to the random variables ∆′i(y). For this aim,
we set Zi(y) = ∆′i(y) in the block decomposition. Thus, by (17),

Sn(y) =

2N∑
i=1

T (n, i, y).

Here we let U(i,n, j) and T (n, i) in the block decomposition be functions of
y since we will take the maximum of T (n, i, y) with respect to y belonging to
y1, ..., yν′n . Consequently, to prove (48), it suffices to show for example

max
1≤t≤ν′n

|T (n, 1, yt)| = O(ψn) a.s. (53)

To do that, for a fixed t chosen, enumerate the r.v.’s U(1,n, j, yt) and the cor-
responding sets of sites Sj (see (18)) in an arbitrary manner and refer to them
respectively as W1,W2, ...,Wr and S1,S2, ...,Sr. Approximate W1,W2, ...,Wr
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by the r.v.’s W ∗1 ,W
∗
2 , ...,W

∗
r using Lemma 4.5 of [7]. Clearly, since U(1,n, j, yt)

is a sum of pN random variables Zi(yt), for each k = 1, ..., r,

|Wk| ≤ CpN (n̂bdn)−1. (54)

Let εn = ηψn where η > 0 is a constant to be chosen later. We have

P
(∣∣T (n, i, yt))

∣∣ ≥ εn)
≤ P

(
r∑
i=1

|Wi −W ∗i | ≥ εn/2

)
+ P

(∣∣∣∣∣
r∑
i=1

W ∗i

∣∣∣∣∣ ≥ εn/2
)

(55)

We will find an upper bound for each term on the right-hand side of (55). For
the first term, we get by Markov’s inequality together with (19), Lemma 4.5
of [7] and (54)

P
( r∑
i=1

|Wi −W ∗i | ≥ εn/2)
)
≤ Cε−1n n̂ξb−(d+1)

n ϕ(p). (56)

For the second term, set λn = (n̂bd+2 log n̂)1/2. One can easily verify that
for n̂ large enough, |λnW1| < 1/2 by (54). Furthermore, λnεn = η. Applying
Markov’s inequality, we have by the strict stationarity

P

(∣∣∣∣∣
r∑
i=1

W ∗i

∣∣∣∣∣ ≥ εn/2)

)
≤ 2 exp

(
−λn(εn/2) + rλ2nvarW1

)
(57)

Let us find an upper bound to varW1. To do that, set δ = b
−d/N
n . We can write

varW1 ≤ pNvar ∆′1(y) (58)

+
∑

i,j: ‖i−j‖≥δ

|cov(∆′i(y), ∆′j(y))|+
∑

i,j: 0<‖i−j‖<δ

|cov(∆′i(y), ∆′j(y))|.

(59)

Since f is bounded by assumption, we have by H′5

var∆′1(y) = (n̂bd+1
n )−2var

{
∂

∂xk
K
(y −X1

bn

)}
≤ (n̂bd+1

n )−2E
{

∂

∂xk
K
(y −X1

bn

)}2

≤ (n̂2bd+2
n )−1 sup

Rd

f

∫
Rd

{
∂

∂xk
K(u)

}2

du ≤ C

n̂2bd+2
n

. (60)

We also have, for any i 6= j, by H2 and H′5∣∣cov
(
∆′i(y), ∆′j(y)

)∣∣
≤ (n̂bd+1

n )−2
∫
Rd

∂

∂xk
K
(y − u

bn

) ∂

∂xk
K
(y − v

bn

)∣∣fi,j(u, v)− f(u)f(v)
∣∣dudv

≤ C(n̂bd+1
n )−2

{∫
Rd

∂

∂xk
K
(y − u

bn

)
du

}2

≤ C

n̂2b2n
.
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Then, for δ = 1/b
−d/N
n ,∑

i,j: ‖i−j‖≥δ

|cov(∆′i(y), ∆′j(y))| ≤ C(n̂bn)−2
∑

ik:‖i‖≥δ
k=1,...,N

ϕ(‖i‖)

≤ CpN (n̂bn)−2
∑
i≥δ

iN−1ϕ(i) ≤ CpN (n̂bn)−2
∫ +∞

δ

vN−θ−1dv

≤ CpN (n̂bn)−2δθ−N ≤ CpN (n̂2bd+2
n )−1, (61)

and ∑
i,j: 0<‖i−j‖<δ

|cov(∆′i(y), ∆′j(y))| ≤ C(n̂bn)−2
∑

i,j: 0<‖i−j‖<δ

1

≤ C(n̂bn)−2(2δp)N ≤ CpN (n̂2bd+2
n )−1. (62)

Combining (57)-(62), we obtain

P

(∣∣∣∣∣
r∑
i=1

W ∗i

∣∣∣∣∣ ≥ εn/2)

)
≤ 2 exp

{
(−η + C) log n̂

}
. (63)

Finally, by (55)-(57) and (63), we get

P
(∣∣ max

1≤t≤ν′
T (n, 1, yt))

∣∣ ≥ εn)
≤ 2ν′n exp {(−η/2 + C) log n̂}+ Cν′nn̂ξb−(d+1)

n ϕ(p)ε−1n . (64)

If we choose p = ψ
−1/N
n and η large enough, then by (64) and (4,10), we get∑
n∈N∗N

P
(∣∣∣∣ max

1≤t≤ν′
T (n, 1, yt))

∣∣∣∣ ≥ εn) <∞. (65)

Finally, (53) is immediate by (65) together with Borel-Cantelli Lemma and
the proof is completed. �

Proof of Theorem 6 The proof is inspired from [20] in which independent
univariate case. Let 0 < M < ∞ and ε > 0 be a positive constant for which
(15) in Lemma 2 is satisfied. Then,

P (‖m̂n −m‖ ≥Mψn) ≤ P (‖m̂n −m‖ ≥ ε)
+ P (‖m̂n −m‖ ≥Mψn, ‖m̂n −m‖ < ε) . (66)

For the first on the right-hand side of (66), Theorem 4 yields∑
n∈N∗N

P (‖m̂n −m‖ ≥ ε) <∞. (67)

Let us now turn to the other term. Set

Dn = {x ∈ D : Mψn ≤ ‖x−m‖ < ε} .
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By definition of mode estimator, we have

P (‖m̂n −m‖ ≥Mψn, ‖m̂n −m‖ < ε) = P(m̂n ∈ Dn)

≤ P
(

sup
x∈Dn

fn(x) ≥ fn(m)

)
≤ P

(
sup
Dn

fn(x)− Efn(x)− (fn(m)− Efn(m))

‖x−m‖
≥ inf

Dn

Efn(m)− Efn(x)

‖x−m‖

)
:= Rn.

We will show that for a fixed k chosen (where k = 1, ..., d) with |xk−mk| > 0,

Rn ≤ P
(

sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− E

∂fn(x)

∂xk

∣∣∣∣ ≥ Cψn

)
, (68)

for some generic constant C > 0. However, we have

sup
Dn

fn(x)− Efn(x)− (fn(m)− Efn(m))

‖x−m‖
≤ sup

Dn

fn(x)− Efn(x)− (fn(m)− Efn(m))

|xk −mk|
,

since ‖x −m‖ =
√∑d

j=1(xj −mj)2 ≥ |xk − mk| with m = (m1, ...,md).

Theorems 1-2 and Corollary 2 yield

sup
Dn

|fn(x)− Efn(x)| = sup
Dn

|fn(x)− f(x)|+ o(1).

Thus,

sup
Dn

fn(x)− Efn(x)− (fn(m)− Efn(m))

‖x−m‖

≤ sup
Dn

fn(x)− f(x)− (fn(m)− f(m))

|xk −mk|
+ o(1)

≤ sup
x∈D

∣∣∣∣∂fn(x)

∂xk
− ∂f(x)

∂xk

∣∣∣∣+ o(1). (69)

Let us now turn to the term Efn(m)− Efn(x)/‖x−m‖ which can be split-
ted into three parts. Using Taylors expansion of order 2 together with the
symmetry of K, we get

Efn(x) =

∫
Rd

K(u)f(x− bnu)du = f(x) +
b2n
2

∑
1≤i,j≤d

∂2

∂xi∂xj
f(x) + o(b2n).

Thus,

Efn(m)− Efn(x)

‖x−m‖

=
f(m)− f(x)

‖x−m‖
+O(b2n)

∑
1≤i,j≤d

(
∂2

∂xi∂xj
f(m)− ∂2

∂xi∂xj
f(x)

)
‖x−m‖

+ o(b2n)
1

‖x−m‖
:= T1 + T2 + T3. (70)
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By Lemma 2, we have

T1 =
f(m)− f(x)

‖x−m‖
≥ C‖x−m‖ ≥ Cψn. (71)

Since x ∈ Dn, then by H′1, we can easily prove

|T2| = O(b2n)

∑
1≤i,j≤d

∣∣∣∣ ∂2

∂xi∂xj
f(m)− ∂2

∂xi∂xj
f(x)

∣∣∣∣
‖x−m‖

≤ Cb2n
‖x−m‖

= o(ψn).

(72)
Clearly,

T3 = o(b2n)
1

‖x−m‖
= o(ψn). (73)

Combining (70)-(73), we have for n̂ large enough

inf
Dn

Efn(m)− Efn(x)

‖x−m‖
≥ Cψn. (74)

Then, (69) and (74) yield (68). By Theorem 5, we get∑
n∈N∗N

Rn <∞. (75)

Finally, according to (66)-(68), (75) and Borel-Cantelli Lemma, the proof is
completed. �

Proof of Lemma 1 By strict stationarity, we can write, for each k = 1, ..., d,

E
∂fn(x)

∂xk
=

1

bd+1
n

∫
Rd

∂

∂xk
K

(
x− u
bn

)
f(u)du

=
1

bn

∫
Rd

∂

∂xk
K (v) f(x− bnv)dv.

Using integration by parts together with H′6, we get by Taylor expansion and
the symmetry of K,

E
∂fn(x)

∂xk
=

∫
Rd

K (v)
∂

∂xk
f(x− bnv)dv

=

∫
Rd

K (v)

∂f(x)

∂xk
+ bn

∑
1≤l≤d

vl
∂2f(x)

∂xl∂xk
+
b2n
2

∑
1≤l,s≤d

vsvl
∂3f(x− ζbnv)

∂xs∂xl∂xk
+ o(b2n)

 dv

=
∂f(x)

∂xk
+
b2n
2

∑
1≤l,s≤d

∫
Rd vsvlK (v) ∂3f(x− ζbnv)dv

∂xs∂xl∂xk
+ o(b2n),

for some 0 < ζ < 1. Finally, since by H′1, the density f has all partial
derivatives bounded, then by H′7, we have for each k = 1, ..., d,

sup
x∈D

∣∣∣∣E∂fn(x)

∂xk
− ∂f(x)

∂xk

∣∣∣∣ = O
(
b2n
)
,

and the proof is concluded because b2n = O(ψn) by assumption on bn.
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Proof of Lemma 2 (see [8], Lemma 5) Since f is twice differentiable,
then ∇f is uniformly continuous on B(m, ε0) for some ε0 > 0. Furthermore,
for any v ∈ Rd with ‖v‖ = 1, we have limt→0 v

T∇f(x + tv)/t = vT∇2f(x)v
with

−λ1 ≤ vT∇2f(x)v ≤ −λ2,

where vT denotes the transpose of v, and −λ1, −λ2 < 0 are eigenvalues of the
Hessian∇2f(x). Recall that all eigenvalues of∇2f(x) are negative according to
H′3. Consequently, there exists ε > 0 small enough such that for any ‖v‖ = 1
and t < ε,

−2C2 ≤ vT∇f(x+ tv)/t ≤ −2C1, (76)

for some 0 < C1 ≤ C2. Now, for each x ∈ B(m, ε), let v = (x−m)/‖x−m‖.
Hence, by Taylor expansion, we can write for ε small enough,

f(x)− f(m) =

∫ ‖x−m‖
0

vT∇f(x+ tv)dt.

Finally, by (76), we get

−C2‖x−m‖2 ≤ f(x)− f(m) ≤ −C1‖x−m‖2

and the proof is completed. �
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