A Younso 
email: ahmad.younso@inrae.fr
  
Keywords: Random field, Density, Mode, Kernel estimate, Bandwidth, Consistency

This paper is concerned with estimating the density mode for random field by kernel method under some α-mixing condition. The almost sure uniform convergence of the density estimator is proved. The rate of almost sure uniform convergence of the density gradient estimator is given under mild conditions. The unknown density is supposed unimodal and its mode is estimated by a kernel estimate. The strong consistency of the mode estimate is investigated and the rate of convergence is given. An optimal bandwidth selection procedure is proposed and a simulation study is used to obtain empirical results.

Introduction

The literature dealing with nonparametric estimation (density and regression functions) and classification using kernel method with spatially dependent data is extensive, see for example: [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF][START_REF] Carbon | Kernel regression estimation for random fields[END_REF], [START_REF] Tran | Kernel density estimation on random fields[END_REF], [START_REF] Biau | Nonparametric spatial prediction[END_REF] and [START_REF] Younso | On the consistency of a new kernel rule for spatially dependent data[END_REF]. The almost sure uniform consistency of estimators on a compact in R d is studied by may authors, see for example [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF][START_REF] Carbon | Kernel regression estimation for random fields[END_REF] for the density estimator and [START_REF] Biau | Nonparametric spatial prediction[END_REF] for the regression estimator. The almost sure uniform consistency of these estimators on the whole R d is established in the independent case (see for example [START_REF] Pollard | Convergence of Stochastic Processes[END_REF]) and in the temporally dependent case (see for example [START_REF] Bosq | Nonparametric statistics for stochastic processes[END_REF]) but to the best of our knowledge, it is still unexplored in the spatially dependent case. We may face many problems in the nonparametric spatial statistics in which we need to extend uniform consistency of density estimators to whole R d , especially those related to the estimate of density modes. The mode estimates of density function remain unexplored in the spatially dependent case despite the existence of many fields where the knowledge of density modes is of great interest. For example, in unsupervised problems where modes are used as measure of typicality of a set of data. In particular, in modern applications, mode estimation is often used in clustering, with the modes representing cluster centers. There is an extensive literature on mode estimation in the independent (or temporally dependent) case, see the key references: [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF], [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF], [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF][START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF], [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF] and [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF]. Most of the existing works are concerned with the consistency of the estimators and rates achievable by various approaches. The common approaches consist of estimating the mode of an unknown unimodal density by maximizing an estimate of the density on R d using kernel estimate. Our aim is to extend some consistency results related to the kernel estimates of both the density and the mode from the independent (or temporally dependent) case to the spatially dependent case under some mild conditions. A very important problem in kernel estimation problem is to choose the smoothing parameter that is called bandwidth or window. We propose an optimal bandwidth selection procedure.

2 Kernel estimates for the density and the mode by random field Let {X i } i∈Z N (with N ≥ 1) be a random field ( spatial process) defined on a probability space (Ω, A, P) and taking values in R d ( with d ≥ 1). Assume that the random field is strictly stationary and that for each i ∈ Z N , X i has the same distribution as a variable X. A point i = (i 1 , ..., i N ) ∈ Z N will be referred to as a site. For n = (n 1 , ..., n N ) ∈ (N * ) N , we denote by I n the rectangular region I n = {i ∈ Z N : 1 ≤ i k ≤ n k , ∀k = 1, ..., N } on which we observe the above spatial process. We denote n = n 1 × ... × n N = card(I n ) and we write n → ∞ if min 1≤k≤N n k → ∞ and max 1≤i,j≤N |n i /n j | ≤ C for some generic constant C such that 0 < C < ∞. Suppose X has an unknown density f . We first consider the problem of estimating the density f based on a set of observations {X i , i ∈ I n }. We define a kernel estimator f n of f at the point x = (x 1 , ..., x d ) ∈ R d by

f n (x) = 1 nb d n i∈In K x -X i b n , (1) 
where K : R d → R, the kernel, is a symmetric bounded density function and b n , the bandwidth, is a strictly positive number depending on n and such that b n → 0 as n → ∞. Some asymptotic properties of the estimator (1) are studied by [START_REF] Tran | Kernel density estimation on random fields[END_REF] and [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] under mixing condition defined later on. Assume that f is unimodal density and denote by m the mode of f . Let mn be the estimator of m using the set of observations {X i , i ∈ I n }. The estimator mn is called kernel mode estimator (or empirical mode). The empirical mode mn estimates m by maximizing f n (x) on R d , i.e., mn ∈ arg max

R d f n . (2) 
In the independent (or temporally dependent) case, various work such as [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF], [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF] and [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] establish consistency results of the approach under regularity assumptions. In this paper, we will extend the strong consistency results to the spatially dependent case. For this aim, we first need to extend the almost sure uniform consistency of the density estimator established by [START_REF] Pollard | Convergence of Stochastic Processes[END_REF] in the independent case to the spatially dependent case. To establish the consistency results, we propose a spatial dependence condition that is widely used in nonparametric functional estimation.

General assumptions

We will assume throughout the paper that the spatial process (X i ) i∈Z N satisfies the following mixing condition: there exists a function ϕ : R → R + with ϕ(t) 0 as t → ∞, such that whenever E, E ⊂ Z N with finite cardinality,

α B(E), B(E ) := sup{|P(A ∩ C) -P(A)P(C)|, A ∈ B(E), C ∈ B(E )} ≤ h(Card(E), Card(E ))ϕ(dist(E, E )),
where

B(E) (resp. B(E )) denotes the Borel σ-field generated by (X i ) i∈E (resp. (X i ) i∈E ), Card(E) (resp. Card(E )) the cardinality of E (E ), dist(E, E ) the
Euclidean distance between E and E , and h : N 2 → R + is a symmetric positive function which is nondecreasing in each variable. It will be also assumed for simplicity that h satisfies

h(m 1 , m 2 ) ≤ L(m 1 + m 2 ) ξ , ∀m 1 , m 2 ∈ N * , (3) 
For some L > 0 and ξ ≥ 0. If h ≡ 1, the random field called strongly mixing. and . denotes the Euclidean norm. They are satisfied by many spatial models. Examples can be found in [START_REF] Nedearhouser | Convergence of blocks spins defined by a random fields[END_REF], [START_REF] Rosenblatt | Stationary sequences and random fields[END_REF] and [START_REF] Guyon | Estimation dun champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas markovien[END_REF].

We suppose also that ϕ(t) tends to zero at a polynomial rate, i.e,

ϕ(t) = O(t -θ ), (4) 
for some θ > 0. We suppose the following assumptions hold.

H1. f (x) → 0 if x → ∞, with . denotes the Euclidean norm. H2. For each i = j, (X i , X j ) has a density f i,j such that sup u,v∈R d |f i,j (u, v) -f (u)f (v)| ≤ C, for some C > 0. H3. R d x 2 f (x)dx < ∞. H4. K satisfies a Lipschitz condition, i.e, there exists R > 0 such that for all x, y ∈ R d , |K(x) -K(y)| < R x -y . H5. sup x∈R d x d+1 K(x) < ∞.
H6. The density f satisfies a Lipschitz condition.

Note that Assumption H1 holds for example if f is uniformly continuous. It is useless as soon as the support of f is bounded. Assumption H2, used by [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF], controls the dependency through the distance between f i,j (u, v) and f (u)f (v) and can be linked with the mixing condition. Assumptions H3-H4 are classical in nonparametric functional estimation. Assumption H5 is a particular case of Parzen-Rosenblatt condition that will be defined later. Assumption H6 is used by [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] to establish the uniform convergence rate of the kernel density estimator on a compact set in R d .

4 Main results

Almost sure uniform convergence of the density estimator

We denote by B(x 0 , r

) = {x ∈ R d : x -x 0 ≤ r } the closed ball centered at x with radius r > 0. Let g(n) = N i=1 (log n i )(log log n i ) 1+ for some > 0. It is well known that n∈N * N 1/(ng(n)) < ∞. (5) 
The kernel K is called Parzen-Rosenblatt kernel if:

lim x →∞ x d K(x) = 0. (6) 
Condition ( 6) is satisfied by many kernels such as: naive kernel, Gaussian kernel and Epanechnikov kernel. It is used to obtain the uniform convergence of Ef n toward f on a compact set D of R d . Note that (6) may be satisfied if H5 holds. Define

θ * 1 = d(θ + 4N (d + 1)) θ -2N (ξ + 1) and θ * 2 = - θ θ -2N (ξ + 1)
.

Theorem 1 Suppose that H1-H5, (3) and (4) hold with θ > 2N and that f is bounded. If as n → ∞,

b n → 0, nb d n /(log n) -→ ∞ (7) 
and

nb θ * 1 n (log n) θ * 2 g(n) -2N/(θ-2N (ξ+1)) -→ ∞, (8) 
then, as n → ∞,

sup x∈R d |f n (x) -Ef n (x)| -→ 0 a.s.
[16] proves the result of Theorem 1 in the independent case using techniques of empirical processes which are not developed for spatial processes. Theorem 1 extends the uniform consistency on a compact set established by [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] to whole R d . Condition [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] is a spatial version of the i.i.d. one (see [START_REF] Rao | Nonparametric Functional Estimation[END_REF]) that can be obtained from [START_REF] Dasgupta | Optimal rates for k-nn density and mode estimation[END_REF] as θ → ∞.

The proofs of the following theorems are immediate consequences of Bochner's Lemma.

Theorem 2 Let D ⊂ R d be a compact set. Suppose that ( 6) is satisfied and that f is continuous. Then as n → ∞,

sup x∈D |Ef n (x) -f (x)| -→ 0.
Theorem 3 Suppose that f is uniformly continuous on R d . Then, as n → ∞,

sup x∈R d |Ef n (x) -f (x)| -→ 0.
The proof of the following corollary is immediate from Theorem 1 and Theorem 3.

Corollary 1 Suppose that H1-H5, (6), ( 8), ( 3) and ( 4) hold with θ > 2N and that f is bounded and uniformly continuous. Then, as n → ∞,

sup x∈R d |f n (x) -f (x)| -→ 0 a.s.
The proof of the following corollary is immediate from Theorem 1 and Theorem 2.

Corollary 2 Let D ⊂ R d be a compact set. Suppose that ( 6) is satisfied and that f is continuous. Under assumptions of Theorem 1, we have, as n → ∞,

sup x∈D |f n (x) -f (x)| -→ 0 a.s.

Strong consistency of the kernel mode estimator

Our aim in this section is to establish some consistency results related to the empirical mode mn defined in [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF]. We first prove the almost sure convergence of mn towards the exact mode m. Then, we study the rate of almost sure convergence for this estimator under smoothness conditions on f . The strong consistency of mn in the independent univariate case is investigated by [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]. [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF] extend the result of [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF] to the multivariate case. More recently, the strong consistency of the kernel mode estimator is established by [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] in the ψ-weakly dependent case. In the following theorem, we investigate the strong consistency of the empirical mode in the spatially dependent case.

Theorem 4 Suppose that the assumptions of Theorem 1 are verified and that the density f is continuous in a neighborhood of the mode m. If for any δ > 0,

sup x∈B(m,δ) c f (x) < f (m). (9) 
then, as n → ∞, mn -→ m a.s.

Note that condition (9) is in line with the assumption that the density f is unimodal. Now, we study the strong convergence rate of m n . We will prove that the convergence rate is

ψ n = nb d+2 n / log n -1/2 . ( 10 
)
The rate ( 10) is the same as [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] and [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF] in the univariate case (d = 1). We assume that f is unimodal and has its mode m in the compact

D ⊂ R d , i.e., m ∈ arg max D f. (11) 
In this case the kernel mode estimator is given by mn ∈ arg max

D f n . (12) 
Condition ( 11) is used by [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] in the univariate case. We denote ∇f and ∇ 2 f the gradient and Hessian of the density f , respectively. Then, we have ∇f (m) = 0. We assume the following assumptions hold.

H 1. f is differentiable function of order 3 with all partial derivatives bounded.

H 2. ∂f (x) ∂x k is Lipschizian (for each k = 1, ..., d). H 3. ∇ 2 f (m) is negative definite. H 4. K is differentiable such that ∂K(x) ∂x k is Lipschizian (for each k = 1, ..., d). H 5. ∂K(x)
∂x k is bounded and integrable (for each k = 1, ..., d).

H 6. lim x →∞ K(x) = 0. H 7. R d x 2 K(x)dx < ∞.
Hypotheses H 1-H 6 are classical to establish different asymptotic properties of the kernel mode estimator. For these types of hypotheses, see for example: [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF], [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] and [START_REF] Dasgupta | Optimal rates for k-nn density and mode estimation[END_REF]. For instance, H 3 is supposed to consider only the interior mode. H 6 is weaker than Parzen-Rosenblatt condition. Assumption H 7 is used by [START_REF] Bosq | Nonparametric statistics for stochastic processes[END_REF] in the temporally dependent case. Before we state the rate of convergence for the mode estimator [START_REF] Garel | Frequency polygons for weakly dependent processes[END_REF], we first need to investigate the rate of uniform convergence of ∇f n , the gradient of f n , on a compact set. Define

θ * 3 = (d + 2)θ + N d(d + 1) θ -N (d + 3 + 2ξ) and θ * 4 = N (d + 1) -θ θ -N (d + 3 + 2ξ) . Lemma 1 Let D ⊂ R d be a compact set. Suppose that H 1-H 2, H 4, H 6- H 7 and (6) are satisfied. If as n → ∞, nb d+6 n / log n -→ 0, then, for each k = 1, ..., d, sup x∈D E ∂f n (x) ∂x k - ∂f (x) ∂x k = O (ψ n ) , with ∂f n (x) ∂x k = 1 nb d+1 n i∈In ∂ ∂x k K x -X i b n . Theorem 5 Let D ⊂ R d be a compact set. Suppose that H2, H 1-H 2, H 4- H 5, (3) 
and ( 4) hold with θ > 2N and that

f is bounded. If as n → ∞, b n → 0, nb d+2 n /(log n) -→ ∞, (13) 
and nb

θ * 3 n (log n) θ * 4 g(n) -2N/(θ-N (ξ+2)) -→ ∞, (14) 
then, for each k = 1, ..., d,

sup x∈D ∂f n (x) ∂x k -E ∂f n (x) ∂x k = O (ψ n ) a.s.
The proof of the following corollary is an immediate consequence of Lemma 1 and Theorem 5.

Corollary 3 Let D ⊂ R d be a compact set. Suppose that assumptions of Theorem 5 is verified. If in addition, H 5-H 7 are verified and as n → ∞,

nb d+6 n / log n -→ 0, then, for each k = 1, ..., d, sup x∈D ∂f n (x) ∂x k - ∂f (x) ∂x k = O (ψ n ) a.s.
Note that our estimator of ∇f achieves the same rate as that of Theorem 1 in [START_REF] Hwang | Kernel estimators of mode under ψ-weak dependence[END_REF] in the temporal univariate case.

Lemma 2 If f is twice differentiable and H 3 is fulfilled, then, there exists > 0 such that, for each x ∈ B(m, ),

C 1 x -m 2 ≤ f (m) -f (x) ≤ C 2 x -m 2 , ( 15 
)
for some 0 < C 1 ≤ C 2 .
The convergence rate of the empirical mode mn towards the exact mode m is stated in the following theorem.

Theorem 6 Suppose that H2, H 1-H 2, H 4, (3) and ( 4)

hold with θ > 2N . If as n → ∞, b n → 0, nb d+2 n /(log n) -→ ∞, nb d+6 n / log n -→ 0, and nb θ n (log n) θ2 g(n) -2N/(θ-2N (ξ+1)) -→ ∞, (16) 
with θ1 = max{θ * 1 , θ * 3 } and θ2 = min{θ * 2 , θ * 4 }, then, | mn -m| = O (ψ n ) a.s.
Note that if ( 16) is satisfied, then ( 8) and ( 14) are immediate.

Numerical studies

First, a simulation study is conducted, then an application is image analysis is given.

Bandwidth selection and simulation study

In practice, the choice of a bandwidth b n is a crucial problem to the kernel density. An unfavorable choice of b n may lead to catastrophic error rates. Various techniques for the bandwidth selection have been developed for nonparametric kernel smoothing method. Among the different selection techniques to select the parameter b n , one can propose the asymptotic mean integrated squared error (AM ISE) criterion. [START_REF] Biau | Optimal asymptotic quadratic errors of density estimators on random fields[END_REF] shows that the kernel density estimator in the spatial case has exactly the same asymptotic mean integrated squared error as in the i.i.d. case, i.e.,

AM ISE(b

n ) = E R d (f n (x) -f (x)) 2 dx = b 2 n 4 Γ 2 d + R d K 2 (u)du nb d n ,
where

Γ 2 d = R d   1≤i,j≤d ∂ 2 f (x) ∂x i ∂x j R d u i u j K(u)du   2 dx.
Consequently, the asymptotically optimal bandwidth is given by

b nopt = d R d K 2 (u)du Γ 2 d n-1/(d+4) .
The solution is found by taking the derivative of the AM ISE(b) with respect to b and setting it equal to zero. By substituting b nopt into the AM ISE expression, the optimal AM ISE rate is given by O(n -4/(4+d) ). Unfortunately, the optimal bandwidth depends on the unknown quantity Γ 2 d since the partial derivatives of f of order two are unknown. [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF] proposes to try the bandwidth computed by replacing f in the formula of Γ 2 d by a normal density function with mean vector µ and variance-covariance matrix Σ. This normal density is called a reference density. We estimate µ and Σ from data and get the reference density. In the following simulation study, we consider the univariate case and we suppose K is the normal kernel. In this case, one can easily verify that the asymptotically optimal bandwidth b opt can be estimated by b opt = 1.06σ n-1/5 , with σ is the standard deviation estimated from data. Consider (X i ) i∈Z N is a real Gaussian random field with EX i = 0 and varX i = 2 for each i ∈ Z N . Suppose the covariance function is given by c( ij ) = cov(X i , X j ) = ij -5 , for any i = j. Set n = (n, n). For the density estimate, we let n take the three values 10, 20 and 30 to show how the estimation improves when n increases (see Figure 1). For the mode estimate, we let n varies from 1 to 30. To show how the estimated values vary around the exact mode, the sites are ordered and enumerated according to lexicographic order from the site (1, 1) to site (30, 30). Recall that the origin here is (1, 1) not (0, 0). Hence, for each site (s, t) with 1 ≤ s, t ≤ 30, in the one hand, a number k ∈ {1, ..., 900} is assigned and in the other hand, the estimation of the mode is determined based on the kernel estimate of the density constructed using the set of observations 2 shows the variation of mn as a function of k. We observe that the larger the value of k, the closer the estimated value is to the exact mode. Fig. 1 The best estimated curve corresponds to the largest n where the black solid curve represents the exact density. 

{X (i,j) , 1 ≤ i ≤ s, 1 ≤ j ≤ t}. Figure

Numerical application

One of the features that better describes a density estimate is the list of its modes and the intervals of values around which data concentrate. For example, the density estimate of intensities of an image made of different zones shall exhibit different peaks, each one of them ideally corresponding to a different region in the image. In this case, a proper segmentation of the image can be obtained by computing the appropriate thresholds that separate the modes in the density estimate. Most threshold selection algorithms assume that the intensity density is multi-modal; typically bimodal. However, some types of images are essentially unimodal since a much larger proportion of just one class of pixels (e.g. the background) is present in the image, and dominates the density. In this numerical study, we will see how to segment objects from a background. We use the coins image from R package imager (see Figure 3). This image shows several coins outlined against a darker background. The number of pixels along the x-axis is called the width (n 1 = 384), along the yaxis its height (n 2 = 303). However, the image is composed of n 1 ×n 2 = 116352 pixels (sites) and in each pixel the intensity (gray level) is measured. Observe that the image data has class "cimg" which is converted into "data.frame".

Here are the first six lines of the data table of the coins image.

x y Intensity 1 1 0.1843137 2 1 0.4823529 3 1 0.5215686 4 1 0.5058824 5 1 0.5372549 6 1 0.5176471 This data table contains the intensity value in each pixel with the pixels coordinates. The density function of the intensity is estimated by the kernel estimate which is maximized to get the estimated mode ( mn = 0.17). The bandwidth is determined according to the method defined above (b n = 0.02133). Figure 4 shows the estimated density curve. Figure 5 dispays the pixels where the estimated mode is observed. It is clear that the majority of mode pixels are located in the background area. Since the background area is not totally covered by the pixels of the mode, it means that it is not uniform. This implies that to segment the image into objects and a background, we will need to determine a threshold based on the density curve. As shown on Figure 4, the estimated density has two significant beaks that correspond to background and objects of interest, a peak around the mode x = 0.17, and a second, smaller peak near to x = 0.65. We choose as a threshold x = 0.55, this is the value that minimize f n (x) on the interval [0.17, 0.65] (see Figure 6). According to this choice of threshold, we have Figure 7 that displays the segmentation of image into two zones, a background zone in pink color and objects zone in black color. From Figure 7, we can conclude that the objects (coins) can well be detected in the thresholded image. The slight overlap between the background and the coins is due to the fact that the background is not uniform.

Discussion on the choice of d and N

With regard to the kernel density estimator, it works well for low-dimensional problems, but are not effective for high dimensional problems. As noted by many authors, kernel methods suffers from the curse of dimensionality caused by the sparsity of data in high dimensional spaces. Or in other words, there will be only very few neighboring data points to any value x in a higher dimensional space, unless the sample size is extremely large. It has been shown that the best possible AM ISE rate is O(n -4/(4+d) ) which slightly increases as d increases.

We believe that estimation of the density by kernel method is feasible in as many as six dimensions. Concerning the mode estimate, for a high dimensional sample space, in practice, the argmax is usually computed over a finite grid, but the grid size exponentially increases with the dimension d, which leads to time-consuming computations. However, for graphical exploratory purposes, it suffices to deal with d ≤ 3. With regard to N , if we let for example n 1 = n 2 = ... = n N , then n = n N and the AM ISE rate is O(n -4N/(4+d) ). This means that the AM ISE rate decreases exponentially to 0 as N increases. In practice, it is reasonable to take N ≤ 3 for the spatial case and N ≤ 4 for the spatio-temporal case.

Proofs

Before we start the proofs, we introduce the known spatial block decomposition of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] which we will use several times. Let {Z i , i ∈ I n } be any set of random variables observed on the region I n . Without loss of generality, we assume that n k = 2q k p for k = 1, ..., N where q k and p are positive integers. According to the block decomposition of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF], the random variables Z i can be regrouped into 2 N q 1 × ... × q N cubic blocks of side p. Denote

U (1, n, j) = (2j k +1)p i k =2j k p+1 k=1,...,N Z i U (2, n, j) = (2j k +1)p i k =2j k p+1 k=1,...,N -1 2(j N +1)p i N =(2j N +1)p+1 Z i U (3, n, j) = (2j k +1)p i k =2j k p+1 k=1,...,N -2 2(j N -1 +1)p i N -1 =(2j N -1 +1)p+1 (2j N +1)p i N =2j N p+1 Z i ... etc ... U (2 N -1, n, j) = 2(j k +1)p i k =(2j k +1)p+1 k=1,...,N -1 (2j N +1)p i N =2j N p+1 Z i U (2 N , n, j) = 2(j k +1)p i k =(2j k +1)p+1 k=1,...,N Z i .
For each integer i = 1, ..., 2 N , we define

T (n, i) = q k -1 j k =1 k=1,...,N U (i, n, j). Thus, i∈In Z i = 2 N i=1 T (n, i). (17) 
Furthermore, for each i = 1, ..., 2 N ,, T (n, i) is a sum of r = q 1 × ... × q N of the U (i, n, j)'s. If for example we let i = 1, then T (n, 1) is a sum of r = q 1 ×...×q N of the U (1, n, j)'s. The random term U (1, n, j) is measurable with the σ-field generated by Z i with i belonging to the set of sites

S j = {i : 2j k p + 1 ≤ i k ≤ (2j k + 1)p, k = 1, ..., N }. ( 18 
)
For different values of j = (j 1 , ..., j N ), the sets of sites ( 18) are separated by a distance of at least p, i.e, dist(S j , S j ) ≥ p for any j = j .

Proof of Theorem 1 Let c 1 = sup x∈R d K(x) and c 2 = 2E X . We denote

a n = 8c 1 c 2 /( b d n )
for some arbitrary number > 0. Then, sup

x∈R d |f n (x)-Ef n (x) ≤ sup x ≤an |f n (x)-Ef n (x)|+ sup x >an |f n (x)-Ef n (x)|. ( 20 
)
Consequently, we prove the theorem if we show that each term on the righthand side of [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF] tending almost surely to zero as n → ∞. We first show that, as n → ∞,

sup x ≤an |f n (x) -Ef n (x)| -→ 0 a.s. ( 21 
)
To do so, we denote h n = b d+1 n /3R where R > 0 is the constant defined in H4, s n = 2a n h -1 n and ν n = s d n where . denotes the integer part. Since B(0, a n ) is compact, it can be covered by ν n balls centered at y j , j = 1, ..., ν n with radius h n . Taking into account the new conditions on b n ,one can easily prove ( 21) by using the same argument as in (Theorem 3.3, [START_REF] Garel | Frequency polygons for weakly dependent processes[END_REF]). It remains to show that as n → ∞,

sup x >an |f n (x) -Ef n (x)| -→ 0 a.s. (22) 
To do that, for any > 0, we can write

P sup x >an |f n (x) -Ef n (x)| ≥ ≤ P sup x >an |f n (x)| ≥ /2 + P sup x >an E|f n (x)| ≥ /2 . ( 23 
)
We will find an upper bound for each term on the right-hand side of [START_REF] Younso | On the consistency of a new kernel rule for spatially dependent data[END_REF]. Let us first deal with the first term. Clearly,

P sup

x >an

|f n (x)| ≥ /2 ≤ P sup x >an 1 nb d n x-X i >an/2 K x -X i b n ≥ /4 + P sup x >an 1 nb d n x-X i ≤an/2 K x -X i b n ≥ /4 .
However, by H5, for each x ∈ R d ,

1 nb d n x-X i >an/2 K x -X i b n ≤ 1 nb d n x-X i >an/2 x -X i b n d+1 K x -X i b n b n x -X i d+1 ≤ C nb d n x-X i >an/2 b n x -X i d+1 ≤ C a d+1 n ,
with C > 0 is generic constant. Since a n → ∞, then for n large enough, we have P sup

x >an

1 nb d n x-X i >an/2 K x -X i b n ≥ /4 = 0
Hence, for n large enough,

P sup x >an |f n (x)| ≥ /2 ≤ P sup x >an 1 nb d n x-X i ≤an/2 K x -X i b n ≥ /4 .
Since for x > a n and x -X i ≤ a n /2, X i ≥ a n /2, then,

P sup x >an |f n (x)| ≥ /2 ≤ P c 1 nb d n i∈In I { X i >an/2} ≥ /4 ,
where I A denotes the indicator function of the set A. Markov's inequality yields

P X i ≥ a n /2 ≤ 2a -1 n E X i ≤ Cb d n → 0 as n → ∞.
Therefore, for n large enough, we can write

P sup x >an |f n (x)| ≥ /2 ≤ P i∈In ∆ i ≥ /8 , (24) 
with, for each i ∈ I n ,

∆ i = c 1 (nb d n ) -1 I { X i ≥an/2} -P ( X i ≥ a n /2) .
Now, we apply the above block decomposition of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] to the random variables ∆ i . For this aim, we let Z i = ∆ i in the block decomposition. Then,

|Z i | ≤ C(nb d n ) -1 and EZ i = 0.
Thus, by [START_REF] Rao | Nonparametric Functional Estimation[END_REF],

i∈In Z i = 2 N i=1 T (n, i).
Then,

P i∈In Z i ≥ /8 ≤ 2 N i=1 P |T (n, i)| ≥ /2 N +3 . ( 25 
)
Therefore, it suffices to find an upper bound for

P |T (n, 1)| ≥ /2 N +3 .
To elaborate, enumerate the r.v.'s U (1, n, j) and the corresponding sets of sites S j in an arbitrary manner (see [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]) and refer to them respectively as

V 1 , V 2 , ..., V r and S 1 , S 2 , ..., S r . Approximate V 1 , V 2 , ..., V r by the r.v.'s V * 1 , V * 2 , .
.., V * r using Lemma 4.5 of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF]. Therefore, for each k = 1, ..., r,

|V k | ≤ Cp N (nb d n ) -1 := M n (26) 
and by [START_REF] Rosenblatt | Stationary sequences and random fields[END_REF],

r i=1 E|V i -V * i | ≤ 2rM n h((r -1)p N , p N )ϕ(p). (27) 
We have the following inequality

P T (n, 1) ≥ /2 N +3 ≤ P r i=1 |V i -V * i | ≥ /2 N +4 + P r i=1 V * i ≥ / × 2 N +4 (28) 
Markov's inequality yields

P r i=1 |V i -V * i | ≥ /(3 × 2 N +1 ) ≤ C nξ b -d n ϕ(p), (29) 
and Bernstein's inequality yields

P r i=1 V * i ≥ /2 N +4 ) ≤ 2 exp - 2 4rvar V 1 + 2M n (30) where = /(3 × 2 N +4 ). Let δ = b -d/N n , then, varV 1 ≤ p N var Z 1 + i,j: i-j ≥δ |cov(Z i , Z j )| + i,j: 0< i-j <δ |cov(Z i , Z j )|. ( 31 
)
We will find an upper bound for each term on the right-hand side of (31). By Markov's inequality,

varZ 1 ≤ c 2 1 (nb d n ) -2 P X 1 ≥ a n /2 ≤ 2c 2 1 a -1 n (nb d n ) -2 E X 1 ≤ C(n 2 b d n ) -1 . (32) 
In the other hand, by Markov's inequality and H3, we have for any i = j,

|cov(Z i , Z j )| = c 2 1 (nb d n ) -2 P X i > a n /2, X j > a n /2 -P X i > a n /2 P X j > a n /2 ≤ 2c 2 1 (nb d n ) -2 P X i > a n /2 ≤ 6c 2 1 a -2 n (nb d n ) -2 E X 1 2 ≤ C n-2 . Therefore i,j: i-j ≥δ |cov(Z i , Z j )| ≤ C n-2 i k : i ≥δ k=1,...,N ϕ( i ) ≤ Cp N n-2 i≥δ i N -1 ϕ(i) ≤ Cp N n-2 +∞ δ u N -θ-1 du ≤ Cp N n-2 δ θ-N ≤ Cp N (n 2 b d n ) -1 , (33) 
since δ = b -d/N n
. Moreover, we can easily show that i,j:

0< i-j <δ |cov(Z i , Z j )| ≤ Cp N (n 2 b d n ) -1 . (34) 
Combining ( 31)-(34), we have

varV 1 ≤ Cp N (n 2 b d n ) -1 (35) 
Hence, by ( 26), ( 30) and (35), we obtain the following inequality

P r i=1 V * i ≥ /2 N +4 ) ≤ 2 exp -C nb d n . (36) 
Combining ( 24)-( 25), ( 28)-( 29) and (36), we get

P sup x >an |f n (x)| ≥ /2 ≤ 2 N +1 exp -C nb d n + C nξ b -d n ϕ(p). (37) 
Choosing p = nb d n /(log n) 1/2N , ( 7)-( 8) yield

n∈N * N P sup x >an |f n (x)| ≥ /2 < ∞. (38) 
It remains to show that the second term on the right-hand side of the inequality (23) vanishes as n → ∞, i.e.,

P sup

x >an

E|f n (x)| ≥ /2 -→ 0. ( 39 
) For each x ∈ R d , E|f n (x)| ≤ R d K(u)f (x -b n u)du = B(0,b -1 n ) K(u)f (x -b n u)du + B(0,b -1 n ) c K(u)f (x -b n u)du. (40) Thus, if x > a n and u ∈ B(0, b -1 n ), then x -b n u ≥ a n -1. Consequently, by H1, sup x >an B(0,b -1 n ) K(u)f (x -b n u)d ≤ sup x >an-1 f (x) B(0,b -1 n ) K(u)du ≤ C sup x >an-1 f (x) -→ 0 as n → ∞. (41) 
In the other hand, we have, by H5,

sup x >an B(0,b -1 n ) c K(u)f (x -b n u)du ≤ sup u ( u d+1 K(u)) sup R d f B(0,b -1 n ) du u d+1 ≤ C B(0,b -1 n ) du u d+1 -→ 0 as n → ∞. (42) 
Combining ( 40)-( 42), we have

E|f n (x)| -→ 0 as n → ∞. (43) 
By ( 23), ( 38) and (43) together with Borel-Cantelli lemma, we get [START_REF] Tran | Kernel density estimation on random fields[END_REF]. Finally, by ( 20)-( 22), the proof is completed.

Proof of Theorem 4 Since

Ef

n (x) = R d K(u)f (x -b n u)du,
we have for any δ > 0,

sup x∈B(m,δ) c Ef n (x) ≤ sup x∈B(m,δ) c u ≤1 K(u)f (x -b n u)du+ sup x∈B(m,δ) c u >1 K(u)f (x -b n u)du ≤ sup x∈B(m,δ) c u ≤1 K(u)f (x -b n u)du + f (m) u >1 K(u)du. (44) 
Hence, if u ≤ 1 and x ∈ B(m, δ) c , since b n → 0, then for n large enough, x -b n u -m > δ -b n u > δ/2. Consequently, by [START_REF] Devroye | Recursive estimation of the mode of a multivariate density[END_REF],

sup x∈B(m,δ) c u ≤1 K(u)f (x -b n u)du ≤ sup x∈B(m,δ/2) c f (x) u ≤1 K(u)du < f (m) u ≤1 K(u)du.
Then, (44) yields lim sup

n sup x∈B(m,δ) c Ef n (x) < f (m) R d K(u)du = f (m). (45) 
Since, by Theorem 1, sup

x∈R d |f n (x) -Ef n (x)| -→ 0 a.s.
by (45), we can write lim sup

n sup B(m,δ) c f n < f (m) a.s. ( 46 
)
Since f is continuous in a neighborhood of m, by Corollary 2, there exists

δ 0 > 0 such that sup x∈B(m,δ0) |f n (x) -f (x)| -→ 0 a.s. (47) 
By ( 46)-(47), we have for any δ ≤ δ 0 ,

lim sup n sup B(m,δ) c f n < lim sup n sup B(m,δ)
f n a.s.

Finally, if we let δ tend to 0, the proof is completed.

Proof of Theorem 5 We will show that

sup x∈D ∂f n (x) ∂x k -E ∂f n (x) ∂x k = O (ψ n ) , (48) 
with ψ n is defined in [START_REF] Guyon | Estimation dun champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas markovien[END_REF]. Choose l n = b d+2 n ψ n . Since D is compact, it can be covered by

ν n = (b d+2 n ψ n ) -d (49) 
balls centered at y j , j = 1, ..., ν n with radius l n . Define

Q n,1 = max 1≤t≤ν n sup x∈D ∂f n (x) ∂x k - ∂f n (y t ) ∂x k , Q n,2 = max 1≤t≤ν n sup x∈D E ∂f n (x) ∂x k -E ∂f n (y t ) ∂x k , Q n,3 = max 1≤t≤ν n ∂f n (y t ) ∂x k -E ∂f n (y t ) ∂x k .
Hence, we can write

sup x∈D ∂f n (x) ∂x k -E ∂f n (x) ∂x k ≤ Q n,1 + Q n,2 + Q n,3 . (50) 
Since by H 4 , ∂K(x) ∂x k is Lipschzian, we get

∂f n (x) ∂x k - ∂f n (y t ) ∂x k ≤ Cb -(d+1) n x -y t ≤ Cb -(d+1) n l n ≤ Cψ n
for some generic constant C > 0. Then,

Q n,1 = O(ψ n ) and Q n,2 = O(ψ n ) a.s. ( 51 
)
To accomplish the proof of (48), it remains to show that 

Q n,3 = O(ψ n ) almost
with

S n (y) = ∂f n (y) ∂x k -E ∂f n (y) ∂x k = (nb d+1 n ) -1 i∈In ∂ ∂x k K y -X i b n -E ∂ ∂x k K y -X i b n := i∈In ∆ i (y),
where

∆ i (y) = (nb d+1 n ) -1 ∂ ∂x k K y -X i b n -E ∂ ∂x k K y -X i b n .
Therefore, E∆ i (y) = 0 and |∆ i (y)| ≤ C(nb d+1 n ) -1 by H 5. Now, we apply the above block decomposition of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] to the random variables ∆ i (y). For this aim, we set Z i (y) = ∆ i (y) in the block decomposition. Thus, by [START_REF] Rao | Nonparametric Functional Estimation[END_REF],

S n (y) = 2 N i=1 T (n, i, y).
Here we let U (i, n, j) and T (n, i) in the block decomposition be functions of y since we will take the maximum of T (n, i, y) with respect to y belonging to y 1 , ..., y ν n . Consequently, to prove (48), it suffices to show for example max

1≤t≤ν n |T (n, 1, y t )| = O(ψ n ) a.s. ( 53 
)
To do that, for a fixed t chosen, enumerate the r.v.'s U (1, n, j, y t ) and the corresponding sets of sites S j (see [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]) in an arbitrary manner and refer to them respectively as W 1 , W 2 , ..., W r and S 1 , S 2 , ..., S r . Approximate W 1 , W 2 , ..., W r by the r.v.'s W * 1 , W * 2 , ..., W * r using Lemma 4.5 of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF]. Clearly, since U (1, n, j, y t ) is a sum of p N random variables Z i (y t ), for each k = 1, ..., r,

|W k | ≤ Cp N (nb d n ) -1 . (54) 
Let n = ηψ n where η > 0 is a constant to be chosen later. We have

P T (n, i, y t )) ≥ n ≤ P r i=1 |W i -W * i | ≥ n /2 + P r i=1 W * i ≥ n /2 (55) 
We will find an upper bound for each term on the right-hand side of (55). For the first term, we get by Markov's inequality together with [START_REF] Rosenblatt | Stationary sequences and random fields[END_REF], Lemma 4.5 of [START_REF] Carbon | Kernel density estimation for random fields (density estimation for random fields)[END_REF] and (54)

P r i=1 |W i -W * i | ≥ n /2) ≤ C -1 n nξ b -(d+1) n ϕ(p). (56) 
For the second term, set λ n = (nb d+2 log n) 

W * i ≥ n /2) ≤ 2 exp -λ n ( n /2) + rλ 2 n varW 1 (57) 
Let us find an upper bound to varW 1 . To do that, set δ = b

-d/N n . We can write varW 1 ≤ p N var ∆ 1 (y) (58) 
+ i,j: i-j ≥δ |cov(∆ i (y), ∆ j (y))| + i,j: 0< i-j <δ |cov(∆ i (y), ∆ j (y))|. ( 59 
)
Since f is bounded by assumption, we have by H 5

var∆ 1 (y) = (nb d+1 n ) -2 var ∂ ∂x k K y -X 1 b n ≤ (nb d+1 n ) -2 E ∂ ∂x k K y -X 1 b n 2 ≤ (n 2 b d+2 n ) -1 sup R d f R d ∂ ∂x k K(u) 2 du ≤ C n2 b d+2 n . (60) 
We also have, for any i = j, by H2 and H 5

cov ∆ i (y), ∆ j (y) ≤ (nb d+1 n ) -2 R d ∂ ∂x k K y -u b n ∂ ∂x k K y -v b n f i,j (u, v) -f (u)f (v) dudv ≤ C(nb d+1 n ) -2 R d ∂ ∂x k K y -u b n du 2 ≤ C n2 b 2 n . Then, for δ = 1/b -d/N n , i,j: i-j ≥δ |cov(∆ i (y), ∆ j (y))| ≤ C(nb n ) -2 i k : i ≥δ k=1,...,N ϕ( i ) ≤ Cp N (nb n ) -2 i≥δ i N -1 ϕ(i) ≤ Cp N (nb n ) -2 +∞ δ v N -θ-1 dv ≤ Cp N (nb n ) -2 δ θ-N ≤ Cp N (n 2 b d+2 n ) -1 , (61) and i 
,j: 0< i-j <δ |cov(∆ i (y), ∆ j (y))| ≤ C(nb n ) -2 i,j: 0< i-j <δ 1 ≤ C(nb n ) -2 (2δp) N ≤ Cp N (n 2 b d+2 n ) -1 . (62) 
Combining ( 57)-(62), we obtain

P r i=1 W * i ≥ n /2) ≤ 2 exp (-η + C) log n . (63) 
Finally, by ( 55)-( 57) and (63), we get

P max 1≤t≤ν T (n, 1, y t )) ≥ n ≤ 2ν n exp {(-η/2 + C) log n} + Cν n nξ b -(d+1) n ϕ(p) -1 n . (64) 
If we choose p = ψ -1/N n and η large enough, then by ( 64) and (4,10), we get

n∈N * N P max 1≤t≤ν T (n, 1, y t )) ≥ n < ∞. (65) 
Finally, (53) is immediate by (65) together with Borel-Cantelli Lemma and the proof is completed.

Proof of Theorem 6

The proof is inspired from [START_REF] Shi | A note of the convergence rate of the kernel density estimator of the mode[END_REF] in which independent univariate case. Let 0 < M < ∞ and > 0 be a positive constant for which [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] in Lemma 2 is satisfied. Then,

P ( mn -m ≥ M ψ n ) ≤ P ( mn -m ≥ ) + P ( mn -m ≥ M ψ n , mn -m < ) . (66) 
For the first on the right-hand side of (66), Theorem 4 yields

n∈N * N P ( mn -m ≥ ) < ∞. (67) 
Let us now turn to the other term. Set

D n = {x ∈ D : M ψ n ≤ x -m < } .
By definition of mode estimator, we have

P ( mn -m ≥ M ψ n , mn -m < ) = P( mn ∈ D n ) ≤ P sup x∈Dn f n (x) ≥ f n (m) ≤ P sup Dn f n (x) -Ef n (x) -(f n (m) -Ef n (m)) x -m ≥ inf Dn Ef n (m) -Ef n (x) x -m := R n .
We will show that for a fixed k chosen (where k = 1, ..., d)

with |x k -m k | > 0, R n ≤ P sup x∈D ∂f n (x) ∂x k -E ∂f n (x) ∂x k ≥ Cψ n , (68) 
for some generic constant C > 0. However, we have 

Let us now turn to the term Ef n (m) -Ef n (x)/ x -m which can be splitted into three parts. Using Taylors expansion of order 2 together with the symmetry of K, we get

Ef n (x) = R d K(u)f (x -b n u)du = f (x) + b 2 n 2 1≤i,j≤d ∂ 2 ∂x i ∂x j f (x) + o(b 2 n ).
Thus,

Ef n (m) -Ef n (x) x -m = f (m) -f (x) x -m + O(b 2 n ) 1≤i,j≤d ∂ 2 ∂x i ∂x j f (m) - ∂ 2 ∂x i ∂x j f (x) x -m + o(b 2 n ) 1 x -m := T 1 + T 2 + T 3 . ( 70 
)
By Lemma 2, we have

T 1 = f (m) -f (x) x -m ≥ C x -m ≥ Cψ n . (71) 
Since x ∈ D n , then by H 1, we can easily prove

|T 2 | = O(b 2 n ) 1≤i,j≤d ∂ 2 ∂x i ∂x j f (m) - ∂ 2 ∂x i ∂x j f (x) x -m ≤ Cb 2 n x -m = o(ψ n ).
(72) Clearly, 

T 3 = o(b 2 n ) 1 x -m = o(ψ n ). ( 73 
Then, (69) and ( 74) yield (68). By Theorem 5, we get

n∈N * N R n < ∞. (75) 
Finally, according to (66)-( 68), (75) and Borel-Cantelli Lemma, the proof is completed.

Proof of Lemma 1 By strict stationarity, we can write, for each k = 1, ..., d,

E ∂f n (x) ∂x k = 1 b d+1 n R d ∂ ∂x k K x -u b n f (u)du = 1 b n R d ∂ ∂x k K (v) f (x -b n v)dv.
Using integration by parts together with H 6, we get by Taylor expansion and the symmetry of K,

E ∂f n (x) ∂x k = R d K (v) ∂ ∂x k f (x -b n v)dv = R d K (v)    ∂f (x) ∂x k + b n 1≤l≤d v l ∂ 2 f (x) ∂x l ∂x k + b 2 n 2 1≤l,s≤d v s v l ∂ 3 f (x -ζb n v) ∂x s ∂x l ∂x k + o(b 2 n )    dv = ∂f (x) ∂x k + b 2 n 2 1≤l,s≤d R d v s v l K (v) ∂ 3 f (x -ζb n v)dv ∂x s ∂x l ∂x k + o(b 2 n ),
for some 0 < ζ < 1. Finally, since by H 1, the density f has all partial derivatives bounded, then by H 7, we have for each k = 1, ..., d, Proof of Lemma 2 (see [START_REF] Dasgupta | Optimal rates for k-nn density and mode estimation[END_REF], Lemma 5) Since f is twice differentiable, then ∇f is uniformly continuous on B(m, 0 ) for some 0 > 0. Furthermore, for any v ∈ R d with v = 1, we have lim t→0 v T ∇f (x + tv)/t = v T ∇ 2 f (x)v with

sup x∈D E ∂f n (x) ∂x k - ∂f ( 
-λ 1 ≤ v T ∇ 2 f (x)v ≤ -λ 2 ,
where v T denotes the transpose of v, and -λ 1 , -λ 2 < 0 are eigenvalues of the Hessian ∇ 2 f (x). Recall that all eigenvalues of ∇ 2 f (x) are negative according to H 3. Consequently, there exists > 0 small enough such that for any v = 1 and t < ,

-2C 2 ≤ v T ∇f (x + tv)/t ≤ -2C 1 , (76) 
for some 0 < C 1 ≤ C 2 . Now, for each x ∈ B(m, ), let v = (x -m)/ x -m . Hence, by Taylor expansion, we can write for small enough,

f (x) -f (m) =
x-m 0 v T ∇f (x + tv)dt.

Finally, by (76), we get

-C 2 x -m 2 ≤ f (x) -f (m) ≤ -C 1 x -m 2
and the proof is completed.
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sup

  Dnf n (x) -Ef n (x) -(f n (m) -Ef n (m)) x -m ≤ sup Dn f n (x) -Ef n (x) -(f n (m) -Ef n (m)) |x k -m k | , since x -m = d j=1 (x j -m j ) 2 ≥ |x k -m k | with m = (m 1 , ..., m d ). Theorems 1-2 and Corollary 2 yield sup Dn |f n (x) -Ef n (x)| = sup Dn |f n (x) -f (x)| + o(1). Thus, sup Dn f n (x) -Ef n (x) -(f n (m) -Ef n (m)) x -m ≤ sup Dn f n (x) -f (x) -(f n (m) -f (m)) |x k -m k | + o(1)

  ) Combining (70)-(73), we have for n large enough inf Dn Ef n (m) -Ef n (x)x -m ≥ Cψ n .

x) ∂x k = O b 2 n , and the proof is concluded because b 2 n

 2 = O(ψ n ) by assumption on b n .

  |S n (y t )| = O(ψ n ) a.s. for each y ∈ {y 1 , ..., y ν n },

	surely, i.e.,
	max 1≤t≤ν n

  1/2 . One can easily verify that for n large enough, |λ n W 1 | < 1/2 by (54). Furthermore, λ n n = η. Applying Markov's inequality, we have by the strict stationarity
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