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This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of three statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values; and (3) optimization algorithm for minimizing the operating costs. The operating filtration cost after implementing the control methodology was €0.047 per m3 (59.6% corresponding to energy costs) when treating UWW and €0.067 per m3 when adding FW due to higher fouling rates. However, FW increased the biogas productivities, reducing the total costs to €0.035 per m3. Average downtimes for reversible fouling removal of 0.4% and 1.6% were obtained, respectively. The results confirm the capability of the proposed control system for optimizing the AnMBR performance when treating both substrates.

Introduction

Submerged anaerobic membrane bioreactors (AnMBRs) are amongst the most promising technologies for treatment of urban wastewater (UWW) [START_REF] Ben | Membrane bioreactors for wastewater treatment and reuse: a success story[END_REF]. When compared with traditional processes, such as conventional activated sludge system, AnMBRs offer several advantages [START_REF] Judd | The MBR Book: Principles and applications of membrane bioreactors for water and wastewater treatment[END_REF][START_REF] Raskin | Anaerobic membrane bioreactors for sustainable wastewater treatment[END_REF]: (i) uncoupling of hydraulic retention time (HRT) and solids retention time (SRT), (ii) improvement of organic matter removal efficiency, (iii) reduction of the environmental footprint of the treatment process, (iv) production of a solids-free purified effluent, (v) smaller amounts of sludge produced due to the low biomass yield of anaerobic microorganisms, (vi) lower energy demands (no aeration needed), and (vii) energy recovery by biogas production. In addition, the co-digestion in AnMBRs of UWW with domestic food waste (FW) is a very interesting option which may serve to enhance the biogas productivities (i.e. by increasing the organic loading rate and the influent COD/SO 4 2-ratio), thus improving the general economics of the treatment process [START_REF] Becker | Co-management of domestic wastewater and food waste: A life cycle comparison of alternative food waste diversion strategies[END_REF]. Moreover, this approach creates an opportunity for recycling energy and nutrients from both wastes [START_REF] Kibler | Food waste and the food-energy-water nexus: A review of food waste management alternatives[END_REF]. This strategy also allows the valorization of domestic FW, whose anaerobic mono-digestion is known to be associated with several complications, such as accumulation of NH 3 and volatile fatty acids (VFAs) [START_REF] Capson-Tojo | Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production[END_REF], 2016).

However, a key issue exists that affects the economics of membrane filtration processes and therefore its industrial applicability: membrane fouling [START_REF] Deng | Biofouling and control approaches in membrane bioreactors[END_REF][START_REF] Sheets | Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste[END_REF]. Fouling reduces the permeability of the membrane, which leads to an increase in the operating and maintenance costs, jeopardizing the global performance [START_REF] Judd | The MBR Book: Principles and applications of membrane bioreactors for water and wastewater treatment[END_REF].

Moreover, previous studies have suggested that fouling issues tend to get worse if adding FW to the UWW [START_REF] Pretel | Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste[END_REF]. Thus, if AnMBRs are to be a competitive alternative for UWW treatment from an economical point of view, minimizing the impact of membrane fouling is of critical importance. Therefore, one of the main challenges of this technology is to optimize the treatment performance (keeping high treatment flow rates) and the energy consumption (small physical cleaning intensities and periods) whilst minimizing the fouling effect. Particularly, avoiding irreversible fouling, which must be removed chemically and eventually determines the lifespan of the membranes, is of critical importance [START_REF] Drews | Model-based recognition of fouling mechanisms in membrane bioreactors[END_REF][START_REF] Judd | The MBR Book: Principles and applications of membrane bioreactors for water and wastewater treatment[END_REF]. Moreover, as the physical cleaning of the membranes can account for more than 75 % of the energetic consumption in AnMBRs [START_REF] Verrecht | The cost of a large-scale hollow fibre MBR[END_REF], this step must also be optimized, reducing as much as possible its frequency.

In this respect, the development of advanced control systems is crucial for a successful optimization of the process performance in AnMBRs [START_REF] Jimenez | Instrumentation and control of anaerobic digestion processes: a review and some research challenges[END_REF][START_REF] Nguyen | Automatic process control in anaerobic digestion technology: A critical review[END_REF]. Different studies have assessed theoretically (and sometimes validated experimentally) the energy and economical savings resulting from the implementation of different types of advanced control systems in aerobic membrane reactors (MBRs) [START_REF] Drews | Improving the efficiency of membrane bioreactors by a novel model-based control of membrane filtration[END_REF][START_REF] Huyskens | Validation of a supervisory control system for energy savings in membrane bioreactors[END_REF]. [START_REF] Mannina | The fouling phenomenon in membrane bioreactors: Assessment of different strategies for energy saving[END_REF] applied Monte Carlo simulations to compare the energy requirements, the effluent quality and the economic costs of five different scenarios based on an MBR model. Also, an ad-hoc platform constructed over the COST/Benchmark Simulation Model No. 1 (BSM1) [START_REF] Coop | The COST Simulation Benchmark: Description and Simulator Manual[END_REF] was applied to evaluate different control strategies in MBRs, using the energy requirements to assess the performances [START_REF] Maere | BSM-MBR: A benchmark simulation model to compare control and operational strategies for membrane bioreactors[END_REF]. [START_REF] Gabarron | Assessment of energy-saving strategies and operational costs in full-scale membrane bioreactors[END_REF] compared different optimization strategies applied to MBRs, reducing significantly the energy needs and the membrane fouling. Moreover, Ferrero et al. (2011aFerrero et al. ( , 2011bFerrero et al. ( , 2011c) reduced significant the energy requirements due to membrane scouring (up to 21%) by applying a knowledge-based control system based on a supervisory controller. Focusing on model-based control, [START_REF] Drews | Model-based recognition of fouling mechanisms in membrane bioreactors[END_REF][START_REF] Drews | Improving the efficiency of membrane bioreactors by a novel model-based control of membrane filtration[END_REF]) created a control system based on a mathematical model that successfully improved the filtration efficiency. In addition, [START_REF] Busch | Run-to-run control of membrane filtration processes[END_REF] developed a run-to-run control system to optimize the filtration performance by adjusting the filtration variables after each filtration cycle. Recently, computational fluid dynamics simulations have also been applied to optimize membrane scouring and the hydrodynamics in airlift external circulation MBRs [START_REF] Yang | Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design[END_REF][START_REF] Yang | CFD simulation and optimization of membrane scouring and nitrogen removal for an airlift external circulation membrane bioreactor[END_REF]. These studies allowed a significant reduction of reversible fouling due to cake formation, thus maximizing the MBR performance.

However, so far few control strategies have been developed and validated to optimize the performance of AnMBRs for the treatment of UWW (Robles et al., 2013a). In Robles et al. (2013a), an upper layer fuzzy-logic controller efficiently kept low fouling rates, improving the process performance. In addition, a model-based optimization method has also been applied

to improve the performance of AnMBRs treating UWW (Robles et al., 2014a). This method was effectively used for optimization of an advanced control system (consisting of an upperlayer fuzzy-logic controller), obtaining energy savings of up to 25 %. Nevertheless, to improve the economic viability of these systems, it is necessary to develop new control strategies that allow the filtration system to work under optimal conditions.

Among the different options that exist, the use of model-based control systems is of interest, not only to control the process performance, but also to predict it, allowing eventually its optimization from an energetic and/or economical approach [START_REF] Batstone | Mathematical modelling of anaerobic digestion processes: applications and future needs[END_REF][START_REF] Gernaey | Activated sludge wastewater treatment plant modelling and simulation: state of the art[END_REF][START_REF] Martin | Analysing, completing, and generating influent data for WWTP modelling: A critical review[END_REF]. Nonetheless, the predictions based on models are never totally free of uncertainty because models are always a conceptual representation of reality and are based on assumptions. Moreover, models need to be calibrated, a process that can be arduous. In this context, sensitivity analysis is a powerful tool that can be used for two main purposes: (i) quantifying the effects of the inputs on the outputs of the model and (ii)

identifying the most relevant factors and those that can be disregarded, thus simplifying the calibration process [START_REF] Pianosi | Sensitivity analysis of environmental models: A systematic review with practical workflow[END_REF].

Therefore, the objective of this study was to develop a model-based control strategy for realtime optimization of the performance of AnMBRs fed with UWW and a mixture of UWW and FW. Specifically, the strategy aimed at optimizing the operating mode of the filtration process in an AnMBR system by dynamic simulations using a previously validated filtration model. The real-time optimization strategy modified the key filtration parameters in the AnMBR according to the operating conditions of the plant, thus minimizing the operating costs in real-time. The applied model was based on an approach previously used for optimizing the input parameters of an advanced control system for filtration in AnMBRs (Robles et al., 2014a). The proposed optimization strategy consists of three sequential statistical methods: (i) a sensitivity analysis to find an identifiable input subset for the filtration process (Morris screening method) [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF], (ii) a Monte Carlo procedure to find adequate initial conditions (using the trajectory-based random sampling technique) and

(iii) an optimization algorithm to obtain the optimum input combination of values that minimizes the operating costs of the system.

Materials and methods

To accomplish the besought goal the first step of the process consisted in a sensitivity analysis that considers the different parameters susceptible to be optimized in a previously chosen model (Robles et al., 2013c(Robles et al., , 2013d)), thus selecting highly-influential parameters conforming the identifiable input subset to be optimized. Afterwards, the selection of adequate initial conditions (those leading to local minimal operational costs) of the identifiable input subset was performed via the Monte Carlo method. Knowing these values, the optimization of the highly-influential operational parameters was carried out. With this purpose, an optimization algorithm was defined. This controller stablished, at every control time (CT), the set points for the operational parameters leading to the lowest costs of the filtration process. Finally, the reduction of the total costs of the filtration process after the implementation of the control system was assessed (with and without FW in the substrate).

Description of the AnMBR plant

The data used in this study to calibrate and validate the filtration model was obtained from an AnMBR that mainly consisted of an anaerobic reactor with a working volume of 0.9 m 3 connected to two membrane tanks. Each membrane tank had a working volume of 0.6 m 3 and included one ultrafiltration hollow-fibre membrane commercial system (PURON ® , Koch Membrane Systems, 0.05 µm pore size, 31 m 2 total filtering area and outside-in filtration).

The plant was fully automated and monitored online in real-time. In addition, the anaerobic sludge was sampled once a day to assess the filtration performance. The concentration of mixed liquor total solids (MLTS) was determined according to the Standard Methods (APHA, 2005). A more precise description of the plant and its instrumentation (as well as the corresponding flow diagrams) can be found elsewhere [START_REF] Robles | Instrumentation, control, and automation for submerged anaerobic membrane bioreactors[END_REF](Robles et al., , 2013b)).

Lower-layer controllers

The lower-layer controllers implemented in the system that interact with the proposed optimization method are: (i) three PID controllers that adjust the rotating speed of the sludge recycling pump, the permeate pump and the biogas recycling blower used for membrane scouring by gas sparging; and (ii) one on-off controller that regulates the membrane operating stage by changing the position of the respective on-off valves and the flux direction of the permeate pump. A more precise description of the plant control system can be found elsewhere [START_REF] Robles | Instrumentation, control, and automation for submerged anaerobic membrane bioreactors[END_REF].

Characteristics of the substrates

As aforementioned, the proposed model-based optimisation strategy was validated for an AnMBR treating UWW and a mixture of UWW and FW. To this aim, a filtration model was calibrated and validated using data from an AnMBR system that treated UWW and a mixture of UWW and FW. The UWW was the effluent from the pre-treatment step of the Carraixet WWTP (Valencia, Spain) and the FW was collected from canteens in the university [START_REF] Moñino | Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology[END_REF]. The FW was grinded by an experimental set-up simulating a household grinding system. This set-up consisted on a grinded InSinkErator, model Evolution 100. Afterwards, the FW was pre-filtered using a mesh of 0.5 mm, similar to the one used for the UWW.

Further details can be found elsewhere [START_REF] Moñino | A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology[END_REF].

Description of the filtration model

The filtration model used in this study is a semi-empirical model based on a classical resistance-in-series model (Robles et al., 2013c). This model is able to represent the dynamic evolution of the transmembrane pressure (TMP) by equations 1 and 2.

T p net R J t TMP • • ) (   (Eq. 1)
Where, TMP (t) is the TMP at time t, µ p is the dynamic viscosity of the permeate and R T is the total filtration resistance.
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Where, R M is the resistance intrinsic to the membrane, R C is the resistance of the cake that is formed on the surface of the membrane due to solid deposition, R I is the added resistance due to irreversible membrane fouling, ω C is the mass of solids deposited on the membrane per membrane area, α C is the average specific resistance of the cake created, ω I is the mass of irreversible fouling normalized per membrane area and α I is the average specific resistance of the irreversible fouling.

The dynamics of ω C and ω I were modelled using a black-box approach. With this purpose, three different components were defined: X TS (MLTS), X mC (cake dry mass in the membrane surface), and X mI (irreversible fouling dry mass on the membrane surface). In addition, four kinetic physical processes were included in the model: (i) cake layer formation during filtration, (ii) cake layer removal by biogas sparging for membrane scouring, (iii) cake layer removal by back-flushing and (iv) irreversible fouling formation. A more precise description of the structure of the filtration model can be found elsewhere (Robles et al., 2014a).

The selected filtration model was calibrated and validated using experimental data from the above-introduced AnMBR plant when treating UWW and a mixture of UWW and FW.

Model-based optimization

As aforementioned, the first stage of the optimization process is the selection of the operational parameters associated with the filtration process that are susceptible to be optimized dynamically. These variables are the biogas recycling flow-rate for membrane cleaning (BRF), the sludge recycling flow-rate into the membrane tanks (SRF), the duration of the filtration, relaxation and back-flushing stages (t F , t R and t BF respectively) and the initiation frequency and transmembrane flow of the back-flushing stage (f BF , J BF ). It must be commented that the transmembrane flow during filtration (J F ) has not been considered for the optimization. The reason is that this value will be fixed by the influent flow-rate to the system.

Considering these selected variables, the operating mode of the membranes can be represented by Figure 1A. As this figure shows, an alternation is established between the relaxation and the back-flushing stages. More precisely, if the number of filtration cycles (f) is lower than f BF , the system will alternate between filtration and relaxation cycles. However, if f BF is equal or overpasses f, the corresponding relaxation stage will be substituted by a back-flushing stage. Figure 1B shows a schematic representation of the optimization methodology applied in this study, which is based on a previously proposed real-time optimization procedure and uses the previously introduced filtration model for calculations (Robles et al., 2014a). First of all, the Morris screening method [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] was used to perform a global sensitivity analysis (GSA) of the selected filtration model (step a) to identify the operational parameters with high influence on the cost of the filtration process (step b). Once these parameters were identified, the Monte Carlo procedure (see for instance [START_REF] Saltelli | Sensitivity Analysis[END_REF] was applied to determine the optimal initial values of the evaluated parameters (step c). These values are used to update the initial set-points of the operational parameters (step d), which are transferred to the process (step e). After the transmission of the initial set-points, every CT the optimization algorithm is started. In this work CT has been set to 1 hour. This supervisory controller calculates the new optimal set-points for the highly-influential operational parameters at each CT (step f) and transmits them (step g) to update again the set-points of the process (steps d and e). To this aim, a cost objective function was used.

Description of the costs objective function

To determine the costs related to energy consumption, the energy requirement of each process was calculated and multiplied by the cost of energy (E COST ; € per kWh). In this study E COST was set to €0.138 per kWh, which corresponded to average electricity prices in Spain.

The energy requirements of the blower (W BRF ) (adiabatic compression), sludge recycling pump (W SRF ) and permeate pump for filtration (W filtration ) or back-flushing (W back-flusing ) were calculated as shown in Robles et al. (2014a).

The total energetic costs were lumped in a single variable (C W ), which was calculated as the sum of C BRF , C SRF and C STAGE , as shown in Equation 3:

COST STAGE COST SRF COST BRF STAGE SRF BRF W E W E W E W C C C C • • •       (Eq. 3)
Where, C W is the total energetic cost, C BRF is the operating cost of membrane scouring by biogas sparging, C SRF is the operating cost of pumping the sludge, C STAGE is the operating cost of pumping permeate during the respective operating stage (i.e. filtration or back-flushing), Finally, in order to determine the combination of operational set-points that lead to the minimal value of the total operating costs (C TOTAL; € per m 3 ), Equation 4was applied.

LIFESPAN REAGENTS W TOTAL C C C C    (Eq. 4)
Where, C W is the total energetic cost, C REAGENTS is the proportional cost of reagents needed to clean the irreversible fouling produced during filtration and C LIFESPAN is the cost of membrane replacement due to irreversible fouling. C REAGENTS and C LIFESPAN were calculated as shown in Robles et al. (2014a).

Global sensitivity analysis: Morris screening method

In this study the Morris screening method [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF] has been applied to perform the GSA. This method is a one-factor-at-a-time process based on the generation of representative matrices of the combinations of values of the parameters to evaluate through a random sampling. From the matrices it determines the distribution of elemental effects (EE i ) of each input factor on the model output. Finally, the EE i distribution (F i ) for each input factor is analyzed to determine the relative importance of the input factors and obtain a good approximation of a GSA.

The selected statistical parameters to evaluate these distributions were: the standard deviation (σ) and the absolute mean (μ * ) (see for instance [START_REF] Saltelli | Sensitivity Analysis[END_REF] and [START_REF] Campolongo | An effective screening design for sensitivity analysis of large models[END_REF]).

In order to elucidate which operational parameters are the most influential on the total filtration cost, the output variable for the GSA in this study was C TOTAL (Eq. 4).

A more precise description of the GSA applied in this study can be found elsewhere (Robles et al., 2014b).

Initial values of the operation parameters: Monte Carlo method

The Monte Carlo method was used for the selection of initial values of the operational parameters close to the minimum (locally) of the function to minimize. This has two main benefits: (i) it improves the results of the dynamical optimization given by the controller and (ii) it gives optimal values of the non-influential parameters, further improving the minimization of C TOTAL . Therefore, the Monte Carlo method was applied as a previous step before the dynamic optimization. The Monte Carlo method consisting on trajectory-based random sampling was used in this study. Hence, the combination of the operational parameters giving the minimum operating cost (Eq. 4) was selected as the initial values of the model-based supervisory controller.

Simulation strategy and model calibration

MATLAB ® was used to simulate the filtration process using the previously-introduced model.

The Runge-Kutta method (ode45 function in MATLAB®) was used as integration method for solving the differential equations in the model. The model was calibrated using experimental results from operation with both substrates.

Simulations for real-time dynamic optimization of the filtration process

The dynamic optimization of the filtration process was carried out using the costs equation (Eq. 4) as objective function. The optimization algorithm was applied by using the trust region approach [START_REF] Coleman | An interior trust region approach for nonlinear minimization subject to bounds[END_REF], based on the Newton method (LSQNONLIN function in MATLAB ® ) and the Runge-Kutta method (ode45 function in MATLAB ® ).

Implementation of the Morris and Monte Carlo methods

In order to obtain results that could be extrapolated to different situations, MLTS concentrations in the entrance of the membrane tanks was ranged from 10 to 20 g•l -1 during simulation. In addition, to take into account the typical fluctuations of the flow rate entering a WWTP, the net transmembrane flow (J net ) was also varied. For each concentrations of MLTS, J net was modified from 4 to 12 LMH (l•h -1 •m -2 ), following the influent pattern from the model BSM1 [START_REF] Jeppsson | Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs[END_REF].

The average values of the operational parameters evaluated in this study are shown in Table 1.

In addition, the uncertainty considered for the sensitivity analysis (minimum and maximum values) is also presented. The range of values for the set-points of these parameters was established according to a uniform distribution. Finally, the results of the Monte Carlo procedure (which will be discussed afterwards) are also shown in Table 1.

Optimization algorithm

Using UWW as substrate, the performance of the controller (based on the optimization algorithm) was evaluated by simulation using the filtration model described above. The simulation accounted for 24 h of continuous operation and was carried out at four different MLTS concentrations entering the membrane tanks: 11, 13, 15 and 17 g•l -1 . For the codigestion experiment (mixture of UWW and FW), the performance of the supervisory controller was also evaluated in an operational period of 24 h with a MLTS concentration of 17 g•l -1 . This allowed the comparison between both feeding strategies (i.e. UWW and mixture of UWW and FW).

During the simulations J net varied according to the dynamic of BSM1 influent [START_REF] Jeppsson | Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs[END_REF] (see e-supplementary data).

As aforementioned, the CT was set to 1 hour. The computational cost for optimizing dynamically the process was between 1 to 3 minutes (using a PC Intel ® CORE TM i5 with 8 GHz of RAM).

Results and discussion

Calibration of the model

Before the application of the model, it was previously calibrated and validated using data obtained in the AnMBR plant under a wide range of operational conditions. More precisely, the model was validated for different concentrations of MLTS entering the membrane tanks (10-30 g•l -1 ), different J net (4-6 LMH) and different specific demands of gas per square meter of membrane (SDG m ) (0.1-0.5 m 3 •h -1 •m -2 , equivalent to BRFs of 3-15 m 3 •h -1 ). The model was able to predict precisely the behavior of the membrane during the studied operational conditions (R of 0.989). A more precise description of the calibration and validation of the model applied can be found elsewhere [START_REF] Moñino | A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology[END_REF].

Sensitivity analysis

Treating urban wastewater

The rankings for the operational parameters according to the sensitivity measurements obtained (µ * and σ) are presented in Table 2. Only the results for the optimized number of evaluated trajectories (r opt ) are shown.

Hierarchical clustering analysis (HCA; R software version 3.2.5.) of the µ * presented in Table 2 and the ones obtained during r opt determination resulted in three differentiated clusters formed according to the influence of the studied parameters on the model output (see esupplementary data): (i) BRF, with a much higher value of µ * when compared with the other parameters, indicating its great importance for the process costs; (ii) f BF , t BF , t F and SRF, with values of µ * that indicate a significant relative influence on the process costs; and (iii) t R and J BF , with a low relative importance. According to these results, 5 parameters were identified as highly influential on the process costs: (i) BRF (µ * = 1.253 and σ = 1.856); (ii) f BF (µ * = 0.770 and σ = 2.220); (iii) t F (µ * = 0.724 and σ = 1.921); (iv) t BF (µ * = 0.574 and σ = 1.210); and (v) SRF (µ * = 0.464 and σ = 1.584). To allow a visual identification of these parameters, a graphical representation of the results of the sensitivity parameters (µ * and σ) at r opt can be found in the Electronic Annex. Both the clustering and the graphical results suggest a high influence of BRF, SRF, t F , t BF and f BF on the cost of the process. Therefore, in this study they have been optimized dynamically as a function of the operational conditions. On the other hand, as t R and J BF present low values of µ * and σ, it can be considered that their influence on the total costs is low. Thus, their set-points were considered to be constant, keeping the initial values given by the Monte Carlo method. In addition, the GSA results allow evaluating the mathematical relationship between each parameter and the total costs. Due to their relative high values of both µ * and σ, the effects of BRF, SRF, t F , t BF and f BF can be classified as nonlinear.

The huge influence of BRF was related to the high energy consumption of this process. Thus, while an adequate value of BRF allows minimizing the solid cake formation, the irreversible fouling rates and the costs associated with biogas recirculation, too high values increase greatly the total costs of the filtration process. Concerning SRF, this parameter affects, not only the costs associated with sludge pumping, but also MLTS MT at a given J net . It is important to consider that changes of the MLTS MT modify also the BRF requirements. In addition, t F affects the amount of solids that are deposited onto the surface of the membranes. t F also influences the net water treatment flow, thus determining the normalized profitability of the process (expressed in € per m 3 ). Finally, t BF and f BF modify the extent of permeability recovery of the membranes. This is related to a partial or total removal of the solid cake.

However, it must also be considered that high values of t BF and f BF decrease J net and increase the non-filtration period of the AnMBR.

Treating urban wastewater and food waste

The values of the sensitivity measurements (µ * and σ) obtained for the optimized number of evaluated trajectories (r opt = 40) when using UWW and FW as substrates are presented in Table 2. The corresponding HCA (see e-supplementary data) resulted in very similar clusters when compared to the process treating only UWW. In this case, 5 main clusters were obtained: (i) BRF, again with a much higher value of µ * when compared with the other parameters; (ii) f BF , with higher relative values when compared to treatment of only UWW;

(iii) t BF and t F , also with values of µ * that indicate a significant relative influence; (iv) SRF and t R , with a low relative influence; and (v) J BF , with a very low relative importance. The similar responses of the systems fed with UWW and the mixture of UWW and FW confirm the applicability of the optimization methodology evaluated in this study to both substrates. In order to allow an un-biased comparison of the performances of the supervisory controller using both substrates, the same five operational parameters were identified as influential: BRF, f BF , t BF , t F and SRF. However, it must be considered that the clustering results suggest that in this case SRF could also be kept constant, reducing even more the computational costs.

As for the case using UWW as substrate, a graphical representation of the obtained sensitivity rankings treating the UWW and FW mixture is presented in the Electronic Annex.

Initial parameter estimation via the Monte Carlo method

As aforementioned, the Monte Carlo method was used to estimate the initial values of the different operational parameters object of study when applying both feeding strategies (i.e.

UWW and mixture of UWW and FW). The total filtration cost varied greatly, with values ranging between €0.04 per m 3 and €0.40 per m 3 . Therefore, it can be concluded that the total costs can be effectively minimized by selecting the proper set-points of the selected operational parameters.

The obtained results, which correspond to the combination leading to minimum local costs, are presented in Table 1 (column Monte Carlo Results). However, it is important to highlight that the Monte Carlo method cannot give an optimal combination of the operational parameters. This occurs because of the discrete variation of the values of the evaluated parameters chosen to carry out the simulations. Nevertheless, as the used sampling procedure aims at covering all the domain of variation of the parameters, the cost is locally minimized.

Starting from the initial combination given by the Monte Carlo method, the selected parameters were optimized dynamically throughout the operational period.

Performance of the supervisory controller

Treating urban wastewater

Figure 2 shows the values of BRF, SRF, t F and t BF optimized by the controller during the simulations performed with a MLTS concentration entering the membrane tank of 17 g•l -1 and the transmembrane fluxes shown in the e-supplementary data. This condition is presented because of two main reasons: (i) it allows comparing the performance of the controller using both substrates and (ii) it is the worst case scenario, meaning that in reality the performance should be improved, with less fouling and lower filtration costs when reducing MLTS MT .

As shown in Figure 2A, the value of BRF followed a very similar pattern when compared to J net . This occurred because the controller established higher values of BRF in the periods when the treatment flow rate was the highest (10-13 hours). During those flow peaks, the velocity of solid deposition on the surface of the membrane was much higher than at regular operation and therefore the controller had to increase considerably BRF to keep the TMP at appropriate values. In addition, Figure 2A also shows that the value of BRF was reduced when the treatment flow decreased, reaching even the minimum BRF value allowed in the AnMBR plant (4 m 3 •h -1 ). These conditions corresponded to the minimal membrane fouling propensity, but were also associated with low agitation of the sludge in the membrane tanks, leading to a reduction in the efficiency of the process of physical cleaning by biogas sparging.

A correlation matrix including the optimized parameters, MLTS MT , J net , TMP, the energy requirements and the filtration costs with UWW as substrate (see e-supplementary data; R software version 3.2.5.) verified the positive correlation observed between J net , TMP and BRF.

Regarding SRF, Figure 2A shows a similar behavior to that observed for BRF. The controller increased SRF at higher J net to keep MLTS MT at adequate levels. Again, the correlation matrix verified the correlation existing between BRF and SRF.

Concerning t F and t BF , it can be observed in Figure 2B that in this case these variables did not follow a pattern similar to that of J net . However, a variation of these parameters occurred through the operational period studied. Interestingly, the periods when t F and t BF varied the most were those when BRF and SRF showed their lowest values (i.e. 5-9 h and 19-24 h). This indicates that, when the controller could not further optimize BRF and SRF, it modified the parameters with lower influence (i.e. t F and t BF ) to further minimize the total filtration costs.

No linear correlations were observed between t F and t BF and any other studied parameter/variable (see e-supplementary data). The last parameter to be discussed (f BF ) remained relatively constant, around 1 BF every 10 F cycles (see Figure 3). As it can be observed, the operational mode varied according to the duration of the stages (t F and t BF ). In addition, by increasing SRF and BRF (Figure 2A) during the periods most prone to fouling (hours 10-12), the supervisory controller was able to keep the TMP under the maximum limits established by the provider (i.e. 0.6 bars).

Treating urban wastewater and food waste

Figure 4 shows the values of BRF, SRF, t F and t BF optimized by the supervisory controller when treated UWW and FW. As for the operation with UWW as substrate (Figure 2A), the values of BRF and SRF varied according to the variations in J net (see e-supplementary data).

As previously, the controller established higher values of both parameters at the points of highest J net (10-13 hours). This period corresponded to the greatest rates of solids deposition onto the membranes. Therefore, the controller increased BRF to reduce the fouling rate and increased also SRF to minimize MLTS MT .

In addition, it can be observed in Figure 4B that the values of t F are lower than those obtained with UWW as substrate (Figure 2B). Interestingly, the opposite occurred for t BF , whose length was higher with the mixture of UWW and FW. This was related to a more intense fouling caused by the FW, which led to longer BF periods to remove the cake layer from the membrane surface. Moreover, f BF increased from 1 BF every 10 F cycles to 1 BF every 4 F cycles (data not shown). Longer t BF and higher f BF with FW led to an increase of the downtime for reversible fouling removal. The average downtime for reversible fouling removal increased from 0.4 % (UWW) to 1.6 % (UWW and FW) of the total operational period. Nevertheless, it must be considered that these are low values which were achieved as a result of the controller action. As example, previous studies have reported minimum values of 2.4 % of downtime when treating UWW in an automatically-tuned advanced control system for AnMBRs (Robles et al., 2014a).

It must be mentioned that the corresponding correlation matrix (see e-supplementary data) was very similar to that obtained for UWW as substrate, verifying that the controller responded in a similar manner for both substrates. Also, as the evolution of the TMP and the different stages simulated using the substrate mixture were similar to that of UWW treatment (Figure 3), these values are not presented.

Total energy consumption

Figure 5A shows the evolution of the energy requirements of the filtration process after the implementation of the supervisory controller at 17 g•l -1 MLTS entering the membrane tank with UWW as substrate. As it can be observed, the main contributor to the energy consumption of the system was W BRF , accounting in average for 80 % of the total energy requirements and up to 87 % at the highest J net . In addition, W BRF (thus W TOTAL ) shows a similar pattern to that observed for J net . In fact, both variables were strongly correlated (see esupplementary data). While during the periods of low inflow to the plant (i.e. hours 2-9) W TOTAL reached 0.13 kWh•m -3 (with W BRF accounting for 67 %), this value increased up to 0.34 kWh•m -3 (with W BRF accounting for 87 %) at high J net (i.e. hours 9-12). At this point it must be mentioned that the results shown in this study were obtained with a model calibrated using considerably dirty membranes (i.e. the membranes were already strongly irreversibly fouled). Therefore, the energy requirements presented correspond to a very unfavorable scenario and it can be expected that their values will be considerably lower when operating with clean membranes. Nevertheless, the proposed control strategy allowed keeping the W BRF within low values (around 0.18 kWh•m -3 ). More precisely, the supervisory control system led to savings of around 50 % of the energy required for membrane scouring when compared to non-optimized cyclic operation of the same AnMBR plant (0.36 kWh•m -3 ) (Robles et al., 2013a). By coupling model-based control systems with fuzzy-logic advanced supervisory control, consumptions of 0.15 kWh•m -3 (Robles et al., 2013a) and 0.12 kWh•m -3 (Robles et al., 2014a) were achieved. The value obtained in this study was slightly higher (0.18 kWh•m - 3 ). However, it must be considered that in this case only a model must be calibrated, which can be continuously optimized by retrofitting. In addition, if the model is properly calibrated this control strategy is more straight-forward and the control action is faster when compared to the previous control strategies, which require more computational capacity.

When paying attention to the average energy requirements of the AnMBR after the implementation of the control system (Table 3), it can be observed that from the total consumption of 0.20 kWh•m -3 (operating at 17 g•l -1 MLTS entering the membrane tanks), 79.7 % corresponded to W BRF , 16.9 kWh•m -3 to W SRF , 9.53 % to W back-flushing and 4.77 % to W filtration .

The results presented in Figure 5 and Table 3 show that the energy required to clean physically the membranes by biogas sparging (W BRF ) represents the main consumption of energy in AnMBRs. Thus, there is a clear need to optimize this particular process.

Figure 5B and Table 3 also show the energy consumption of the filtration process treating 20 UWW and FW. In this case, the average total requirement was 0.34 kWh•m -3 , with a maximum value of 0.58 kWh•m -3 . The average proportion of W BRF accounted for 88.5 %, indicating the need of optimizing BRF for each specific process.

The higher average W TOTAL when adding FW (0.34 vs. 0.20 kWh•m -3 ) was related to the aforementioned increase of the fouling rate in the membranes, which implied longer nonfiltration periods, thus reducing the net volume of water treated per unit of membrane surface.

However, it must be considered that the addition of FW also led to a higher energy recovery due to an increase of the biogas production. With a SRT of 70 days at a temperature of 27 ºC, the volumetric methane production was up to 72 l CH4 •m -3 using UWW as substrate [START_REF] Pretel | Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste[END_REF]. When adding FW, this value increased up to 147 l CH4 •m -3 which, assuming a percentage of methane recovery of 80 %, was translated into an increase of the energy recovery of 0.20 kWh•m -3 . Taking this value into account, the energy requirements of the filtration process are lowered from 0.34 kWh•m -3 to 0.14 kWh•m -3 , even when operating with strongly fouled membranes. Thus, the addition of FW led to a global energy savings of 30 % when compared to the treatment of UWW as sole substrate. Therefore, it can be concluded that, even if FW was added into the UWW, the supervisory control system allowed operating the AnMBR at low energy costs.

Total costs

Figure 6A shows the evolution of the operational and maintenance costs of the filtration system after the implementation of the supervisory controller treating UWW at 17 g•l -1 MLTS. As it can be observed, C W represented the main cost of the process, accounting for an average of 60 % of the total cost. This clearly emphasizes the need to optimize the operational conditions to minimize the energy demand of the system. However, in the period of peak J net (hours 9-10) the ensemble of C REAGENTS and C LIFESPAN represented up to 90 % of the total costs. This was related to a more intense irreversible fouling occurring in this period of high-rate filtration, which caused an increase in the amounts of chemicals required to clean the membranes and lowered the membrane lifespan, raising the associated costs.

Regarding the average costs, the results operating at 17 g•l -1 MLTS entering the membranes are presented in Table 4. After the implementation of the control system, C TOTAL was €0.047 per m 3 , with C W , C REAGENTS and C LIFESPAN representing the 59.6, 17.0 and 23.4 %, respectively.

These values corroborate that C W represents the main filtration costs during regular operation.

In addition, as it has been already mentioned, the membranes used in this study were strongly fouled, and therefore lower costs are expected in real operation. Thus, the values of these latter costs should be lower in full-scale plants, further reinforcing the great importance of optimizing the energy requirement in AnMBR plant.

Figure 6B and Table 4 present the costs corresponding to the co-digestion system (UWW and FW). As shown, the obtained pattern was very similar to that obtained for treatment of UWW. However, in this case the average filtration cost corresponded to €0.067 per m 3 , with C W accounting for 69 % of this value. The higher value of C TOTAL when adding FW is again related to a higher fouling rate in the co-digestion system, which led to higher costs associated with the mechanical cleaning of the membrane. This is further suggested by the higher C W values (€0.046 per m 3 with FW vs. €0.028 per m 3 with only UWW).

However, when taking into account the economical profit related to the higher volumetric methane production when adding FW to the UWW, C TOTAL is reduced to €0.035 per m 3 , meaning that FW addition led a relative economic saving of 26 % of the filtration costs (when compared with the AnMBR system treating only UWW).

Conclusions

The proposed methodology enabled identifying the most influential filtration parameters and selecting proper initial set points for their optimization. The controller allowed a real-time optimization of these set-points, obtaining an energy demand of 0.20 kWh•m -3 (79.7% W BRF ) and a cost of €0.047 per m 3 (59.6% C W ) when treating UWW. The addition of FW increased the energy demand and the costs (0.34 kWh•m -3 and €0.067 per m 3 ) due to higher fouling intensity, but also led to the production of more biogas. The obtained results confirm the applicability of the proposed control system for optimizing the AnMBR performance when treating both substrates. 
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Table 1 .

 1 Average values of the operational parameters evaluated in this study. The intervals of uncertainty, as well as the initial values for the model-based supervisory controller (Monte Carlo results) are also presented

	Parameter Units	Substrate	Average values	Minimum Maximum	Monte Carlo results
	BRF	m 3 •h -1	UWW UWW +FW	12 12	3 3	21 21	13 13
	SRF	m 3 •h -1	UWW UWW +FW	2.1 2.1	1.5 1.5	2.7 2.7	2.0 1.8
	t F	s	UWW UWW +FW	400 400	200 200	600 600	600 485
	t R	s	UWW UWW +FW	35 35	10 10	60 60	10 10
	t BF	s	UWW UWW +FW	35 35	10 10	60 60	17 31
	f BF	-	UWW UWW +FW	11 11	1 1	21 21	10 4
	J BF	LMH	UWW UWW +FW	15 15	10 10	20 20	16 10

Table 1

 1 

Table 2 .

 2 Sensitivity rankings for r opt with UWW as substrate (r opt = 60) and the mixture of UWW and FW (r opt = 40)

		UWW			UWW + FW	
	Parameter	µ *	σ	Parameter	µ *	σ
	BRF	1.253	1.856	BRF	1.355	2.099
	f BF	0.770	2.220	f BF	0.579	1.418
	t F	0.724	1.921	t BF	0.344	1.059
	t BF	0.574	1.210	t F	0.252	0.710
	SRF	0.464	1.584	SRF	0.163	0.410
	t R	0.057	0.261	t R	0.067	0.138
	J BF	0.057	0.268	J BF	0.005	0.018

Table 2 Table 3 .

 23 Average energy requirements of the filtration process with the controller operating at 17 g•l -1 MLTS entering the membrane tanks

	Substrate	W TOTAL (kWh•m -3 )	W BRF (%)	W SRF (%)	W Stage (%)
	UWW	0.20	79.7	16.9	14.3
	UWW + FW	0.34	88.5	9.6	9.8

Table 3 Table 4 .

 34 Average costs of the filtration process with the controller operating at 17 g•l -1 MLTS entering the membrane tanks

	Substrate	C TOTAL (€ per m 3 )	C W (%)	C REAGENTS (%)	C LIFESPAN (%)
	UWW	0.047	59.6	17.0	23.4
	UWW + FW	0.067	69.0	13.0	18.0

Table 4

 4 
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