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Dear Editor, 
 

Attached you will find the manuscript entitled “Real-time optimization of 
the key filtration parameters in an AnMBR: urban wastewater mono-
digestion vs. co-digestion with domestic food waste” submitted for 
publication as an original article in Waste Management. All the authors mutually 
agree for submitting this manuscript to Waste Management, within the category 
5.003: Biological-anaerobic (anaerobic digestion). We confirm that it is an 
original work and that the information presented is not being considered for 
publication in any other journal.  

 
This study describes a model-based method for real-time optimization of the 

key filtration parameters in a submerged anaerobic membrane bioreactor 
(AnMBR) treating urban wastewater (UWW) and a mixture of UWW and 
domestic food waste (FW). Hence, the main aim of this study was to design a 
competitive and feasible control system capable of enhancing filtration in 
industrial-scale AnMBR systems with minimum operating costs. 

 
The novelty of this study lies in gaining more insight into the optimization of 

an AnMBR system at industrial scale. Indeed, to obtain representative results 
that could be extrapolated to full-scale plants, this study was carried out using 
data from an AnMBR system featuring industrial hollow-fibre (HF) membranes.  

  
The important findings that must be highlighted are:  

 The operating filtration cost after implementing the proposed control 
methodology was about €0.047 per influent m3 when treating UWW (59.6 
% corresponding to energy costs) and €0.067 per m3 when adding FW 
due to higher fouling rates.  

 FW also increased the biogas productivities, reducing the total costs to 
€0.035 per m3. 

 Average downtimes for reversible fouling removal of 0.4 % and 1.6 % 
were obtained when treating UWW and a mixture of UWW and FW, 
respectively. 

 The results confirm the capability of the proposed control system for 
optimizing the AnMBR performance when treating both UWW and a 
mixture of UWW and FW. 

 
To the knowledge of the authors, no other study has been carried out for 

the optimization of the proposed process using the described methodology. 
 
Yours sincerely, 
 
Ángel Robles Martínez, PhD 
Departament d’Enginyeria Química, ETSE-UV. 
Universitat de València 
Avinguda de la Universitat s/n, 46100, Burjassot, València, Spain 
Tel.: +34 96 354 30 85 
E-mail: angel.robles@uv.es 
 

Cover Letter



Highlights 

 Average costs of €0.047 (UWW) and €0.067 per m
3
 (UWW and FW) were obtained  

 Energy costs accounted for 59.6% and 69.0% of the total costs respectively 

 Average reversible fouling removal downtimes were 0.4% and 1.6% respectively 

 Control strategy efficiently minimized filtration costs for both substrates 
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Abstract 13 

This study describes a model-based method for real-time optimization of the key filtration 14 

parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban 15 

wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists 16 

of three statistical analyses: (1) Morris screening method to identify the key filtration 17 

parameters; (2) Monte Carlo method to establish suitable initial control inputs values; and (3) 18 

optimization algorithm for minimizing the operating costs. The operating filtration cost after 19 

implementing the control methodology was €0.047 per m
3
 (59.6% corresponding to energy 20 

costs) when treating UWW and €0.067 per m
3
 when adding FW due to higher fouling rates. 21 

However, FW increased the biogas productivities, reducing the total costs to €0.035 per m
3
. 22 

Average downtimes for reversible fouling removal of 0.4% and 1.6% were obtained, 23 

respectively. The results confirm the capability of the proposed control system for optimizing 24 
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the AnMBR performance when treating both substrates. 25 
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1. Introduction 31 

Submerged anaerobic membrane bioreactors (AnMBRs) are amongst the most promising 32 

technologies for treatment of urban wastewater (UWW) (Ben and Semmens, 2002). When 33 

compared with traditional processes, such as conventional activated sludge system, AnMBRs 34 

offer several advantages (Judd and Judd, 2011; Raskin, 2012): (i) uncoupling of hydraulic 35 

retention time (HRT) and solids retention time (SRT), (ii) improvement of organic matter 36 

removal efficiency, (iii) reduction of the environmental footprint of the treatment process, (iv) 37 

production of a solids-free purified effluent, (v) smaller amounts of sludge produced due to 38 

the low biomass yield of anaerobic microorganisms, (vi) lower energy demands (no aeration 39 

needed), and (vii) energy recovery by biogas production. In addition, the co-digestion in 40 

AnMBRs of UWW with domestic food waste (FW) is a very interesting option which may 41 

serve to enhance the biogas productivities (i.e. by increasing the organic loading rate and the 42 

influent COD/SO4
2-

 ratio), thus improving the general economics of the treatment process 43 

(Becker et al., 2017). Moreover, this approach creates an opportunity for recycling energy and 44 

nutrients from both wastes (Kibler et al., 2018). This strategy also allows the valorization of 45 

domestic FW, whose anaerobic mono-digestion is known to be associated with several 46 

complications, such as accumulation of NH3 and volatile fatty acids (VFAs) (Capson-Tojo et 47 

al., 2017, 2016). 48 

However, a key issue exists that affects the economics of membrane filtration processes and 49 
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therefore its industrial applicability: membrane fouling (Deng et al., 2016; Sheets et al., 50 

2015). Fouling reduces the permeability of the membrane, which leads to an increase in the 51 

operating and maintenance costs, jeopardizing the global performance (Judd and Judd, 2011). 52 

Moreover, previous studies have suggested that fouling issues tend to get worse if adding FW 53 

to the UWW (Pretel et al., 2016). Thus, if AnMBRs are to be a competitive alternative for 54 

UWW treatment from an economical point of view, minimizing the impact of membrane 55 

fouling is of critical importance. Therefore, one of the main challenges of this technology is to 56 

optimize the treatment performance (keeping high treatment flow rates) and the energy 57 

consumption (small physical cleaning intensities and periods) whilst minimizing the fouling 58 

effect. Particularly, avoiding irreversible fouling, which must be removed chemically and 59 

eventually determines the lifespan of the membranes, is of critical importance (Drews et al., 60 

2009; Judd and Judd, 2011). Moreover, as the physical cleaning of the membranes can 61 

account for more than 75 % of the energetic consumption in AnMBRs (Verrecht et al., 2010), 62 

this step must also be optimized, reducing as much as possible its frequency. 63 

In this respect, the development of advanced control systems is crucial for a successful 64 

optimization of the process performance in AnMBRs (Jimenez et al., 2015; Nguyen et al., 65 

2015). Different studies have assessed theoretically (and sometimes validated experimentally) 66 

the energy and economical savings resulting from the implementation of different types of 67 

advanced control systems in aerobic membrane reactors (MBRs) (Drews et al., 2007; 68 

Huyskens et al., 2011). Mannina and Cosenza (2013) applied Monte Carlo simulations to 69 

compare the energy requirements, the effluent quality and the economic costs of five different 70 

scenarios based on an MBR model. Also, an ad-hoc platform constructed over the 71 

COST/Benchmark Simulation Model No. 1 (BSM1) (Coop, 2002) was applied to evaluate 72 

different control strategies in MBRs, using the energy requirements to assess the 73 

performances (Maere et al., 2011). Gabarron et al. (2014) compared different optimization 74 
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strategies applied to MBRs, reducing significantly the energy needs and the membrane 75 

fouling. Moreover, Ferrero et al. (2011a, 2011b, 2011c) reduced significant the energy 76 

requirements due to membrane scouring (up to 21%) by applying a knowledge-based control 77 

system based on a supervisory controller. Focusing on model-based control, Drews et al. 78 

(2009, 2007) created a control system based on a mathematical model that successfully 79 

improved the filtration efficiency. In addition, Busch et al. (2007) developed a run-to-run 80 

control system to optimize the filtration performance by adjusting the filtration variables after 81 

each filtration cycle. Recently, computational fluid dynamics simulations have also been 82 

applied to optimize membrane scouring and the hydrodynamics in airlift external circulation 83 

MBRs (Yang et al., 2017, 2016). These studies allowed a significant reduction of reversible 84 

fouling due to cake formation, thus maximizing the MBR performance.  85 

However, so far few control strategies have been developed and validated to optimize the 86 

performance of AnMBRs for the treatment of UWW (Robles et al., 2013a). In Robles et al. 87 

(2013a), an upper layer fuzzy-logic controller efficiently kept low fouling rates, improving the 88 

process performance. In addition, a model-based optimization method has also been applied 89 

to improve the performance of AnMBRs treating UWW (Robles et al., 2014a). This method 90 

was effectively used for optimization of an advanced control system (consisting of an upper-91 

layer fuzzy-logic controller), obtaining energy savings of up to 25 %. Nevertheless, to 92 

improve the economic viability of these systems, it is necessary to develop new control 93 

strategies that allow the filtration system to work under optimal conditions.  94 

Among the different options that exist, the use of model-based control systems is of interest, 95 

not only to control the process performance, but also to predict it, allowing eventually its 96 

optimization from an energetic and/or economical approach (Batstone et al., 2015; Gernaey et 97 

al., 2004; Martin and Vanrolleghem, 2014). Nonetheless, the predictions based on models are 98 

never totally free of uncertainty because models are always a conceptual representation of 99 
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reality and are based on assumptions. Moreover, models need to be calibrated, a process that 100 

can be arduous. In this context, sensitivity analysis is a powerful tool that can be used for two 101 

main purposes: (i) quantifying the effects of the inputs on the outputs of the model and (ii) 102 

identifying the most relevant factors and those that can be disregarded, thus simplifying the 103 

calibration process (Pianosi et al., 2016).  104 

Therefore, the objective of this study was to develop a model-based control strategy for real-105 

time optimization of the performance of AnMBRs fed with UWW and a mixture of UWW 106 

and FW. Specifically, the strategy aimed at optimizing the operating mode of the filtration 107 

process in an AnMBR system by dynamic simulations using a previously validated filtration 108 

model. The real-time optimization strategy modified the key filtration parameters in the 109 

AnMBR according to the operating conditions of the plant, thus minimizing the operating 110 

costs in real-time. The applied model was based on an approach previously used for 111 

optimizing the input parameters of an advanced control system for filtration in AnMBRs 112 

(Robles et al., 2014a). The proposed optimization strategy consists of three sequential 113 

statistical methods: (i) a sensitivity analysis to find an identifiable input subset for the 114 

filtration process (Morris screening method) (Morris, 1991), (ii) a Monte Carlo procedure to 115 

find adequate initial conditions (using the trajectory-based random sampling technique) and 116 

(iii) an optimization algorithm to obtain the optimum input combination of values that 117 

minimizes the operating costs of the system. 118 

 119 

2. Materials and methods 120 

To accomplish the besought goal the first step of the process consisted in a sensitivity analysis 121 

that considers the different parameters susceptible to be optimized in a previously chosen 122 

model (Robles et al., 2013c, 2013d), thus selecting highly-influential parameters conforming 123 

the identifiable input subset to be optimized. Afterwards, the selection of adequate initial 124 
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conditions (those leading to local minimal operational costs) of the identifiable input subset 125 

was performed via the Monte Carlo method. Knowing these values, the optimization of the 126 

highly-influential operational parameters was carried out. With this purpose, an optimization 127 

algorithm was defined. This controller stablished, at every control time (CT), the set points for 128 

the operational parameters leading to the lowest costs of the filtration process. Finally, the 129 

reduction of the total costs of the filtration process after the implementation of the control 130 

system was assessed (with and without FW in the substrate). 131 

2.1. Description of the AnMBR plant  132 

The data used in this study to calibrate and validate the filtration model was obtained from an 133 

AnMBR that mainly consisted of an anaerobic reactor with a working volume of 0.9 m
3
 134 

connected to two membrane tanks. Each membrane tank had a working volume of 0.6 m
3
 and 135 

included one ultrafiltration hollow-fibre membrane commercial system (PURON
®
, Koch 136 

Membrane Systems, 0.05 µm pore size, 31 m
2
 total filtering area and outside-in filtration). 137 

The plant was fully automated and monitored online in real-time. In addition, the anaerobic 138 

sludge was sampled once a day to assess the filtration performance. The concentration of 139 

mixed liquor total solids (MLTS) was determined according to the Standard Methods (APHA, 140 

2005). A more precise description of the plant and its instrumentation (as well as the 141 

corresponding flow diagrams) can be found elsewhere (Robles et al., 2015, 2013b). 142 

2.1.2. Lower-layer controllers 143 

The lower-layer controllers implemented in the system that interact with the proposed 144 

optimization method are: (i) three PID controllers that adjust the rotating speed of the sludge 145 

recycling pump, the permeate pump and the biogas recycling blower used for membrane 146 

scouring by gas sparging; and (ii) one on–off controller that regulates the membrane operating 147 

stage by changing the position of the respective on–off valves and the flux direction of the 148 

permeate pump. A more precise description of the plant control system can be found 149 
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elsewhere (Robles et al., 2015). 150 

2.2. Characteristics of the substrates 151 

As aforementioned, the proposed model-based optimisation strategy was validated for an 152 

AnMBR treating UWW and a mixture of UWW and FW. To this aim, a filtration model was 153 

calibrated and validated using data from an AnMBR system that treated UWW and a mixture 154 

of UWW and FW. The UWW was the effluent from the pre-treatment step of the Carraixet 155 

WWTP (Valencia, Spain) and the FW was collected from canteens in the university (Moñino 156 

et al., 2016). The FW was grinded by an experimental set-up simulating a household grinding 157 

system. This set-up consisted on a grinded InSinkErator, model Evolution 100. Afterwards, 158 

the FW was pre-filtered using a mesh of 0.5 mm, similar to the one used for the UWW. 159 

Further details can be found elsewhere (Moñino et al., 2017). 160 

2.3. Description of the filtration model 161 

The filtration model used in this study is a semi-empirical model based on a classical 162 

resistance-in-series model (Robles et al., 2013c). This model is able to represent the dynamic 163 

evolution of the transmembrane pressure (TMP) by equations 1 and 2. 164 

Tpnet RJtTMP ··)(   (Eq. 1) 

Where, TMP (t) is the TMP at time t, µp is the dynamic viscosity of the permeate and RT is 165 

the total filtration resistance. 166 

IICCMICMT RRRRR  ·· 
  

(Eq. 2) 

Where, RM is the resistance intrinsic to the membrane, RC is the resistance of the cake that is 167 

formed on the surface of the membrane due to solid deposition, RI is the added resistance due 168 

to irreversible membrane fouling, ωC is the mass of solids deposited on the membrane per 169 

membrane area, αC is the average specific resistance of the cake created, ωI is the mass of 170 

irreversible fouling normalized per membrane area and αI is the average specific resistance of 171 
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the irreversible fouling. 172 

The dynamics of ωC and ωI were modelled using a black-box approach. With this purpose, 173 

three different components were defined: XTS (MLTS), XmC (cake dry mass in the membrane 174 

surface), and XmI (irreversible fouling dry mass on the membrane surface). In addition, four 175 

kinetic physical processes were included in the model: (i) cake layer formation during 176 

filtration, (ii) cake layer removal by biogas sparging for membrane scouring, (iii) cake layer 177 

removal by back-flushing and (iv) irreversible fouling formation. A more precise description 178 

of the structure of the filtration model can be found elsewhere (Robles et al., 2014a). 179 

The selected filtration model was calibrated and validated using experimental data from the 180 

above-introduced AnMBR plant when treating UWW and a mixture of UWW and FW. 181 

2.4. Model-based optimization 182 

As aforementioned, the first stage of the optimization process is the selection of the 183 

operational parameters associated with the filtration process that are susceptible to be 184 

optimized dynamically. These variables are the biogas recycling flow-rate for membrane 185 

cleaning (BRF), the sludge recycling flow-rate into the membrane tanks (SRF), the duration 186 

of the filtration, relaxation and back-flushing stages (tF, tR and tBF respectively) and the 187 

initiation frequency and transmembrane flow of the back-flushing stage (fBF, JBF). It must be 188 

commented that the transmembrane flow during filtration (JF) has not been considered for the 189 

optimization. The reason is that this value will be fixed by the influent flow-rate to the 190 

system.  191 

Considering these selected variables, the operating mode of the membranes can be 192 

represented by Figure 1A. As this figure shows, an alternation is established between the 193 

relaxation and the back-flushing stages. More precisely, if the number of filtration cycles (f) is 194 

lower than fBF, the system will alternate between filtration and relaxation cycles. However, if 195 

fBF is equal or overpasses f, the corresponding relaxation stage will be substituted by a back-196 
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flushing stage. Figure 1B shows a schematic representation of the optimization methodology 197 

applied in this study, which is based on a previously proposed real-time optimization 198 

procedure and uses the previously introduced filtration model for calculations (Robles et al., 199 

2014a). First of all, the Morris screening method (Morris, 1991) was used to perform a global 200 

sensitivity analysis (GSA) of the selected filtration model (step a) to identify the operational 201 

parameters with high influence on the cost of the filtration process (step b). Once these 202 

parameters were identified, the Monte Carlo procedure (see for instance Saltelli et al. (2000) 203 

was applied to determine the optimal initial values of the evaluated parameters (step c). These 204 

values are used to update the initial set-points of the operational parameters (step d), which 205 

are transferred to the process (step e). After the transmission of the initial set-points, every CT 206 

the optimization algorithm is started. In this work CT has been set to 1 hour. This supervisory 207 

controller calculates the new optimal set-points for the highly-influential operational 208 

parameters at each CT (step f) and transmits them (step g) to update again the set-points of the 209 

process (steps d and e). To this aim, a cost objective function was used. 210 

2.4.1. Description of the costs objective function 211 

To determine the costs related to energy consumption, the energy requirement of each process 212 

was calculated and multiplied by the cost of energy (ECOST; € per kWh). In this study ECOST 213 

was set to €0.138 per kWh, which corresponded to average electricity prices in Spain.  214 

The energy requirements of the blower (WBRF) (adiabatic compression), sludge recycling 215 

pump (WSRF) and permeate pump for filtration (Wfiltration) or back-flushing (Wback-flusing) were 216 

calculated as shown in Robles et al. (2014a). 217 

The total energetic costs were lumped in a single variable (CW), which was calculated as the 218 

sum of CBRF, CSRF and CSTAGE, as shown in Equation 3: 219 

COSTSTAGECOSTSRFCOSTBRFSTAGESRFBRFW EWEWEWCCCC ···    (Eq. 3) 
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Where, CW is the total energetic cost, CBRF is the operating cost of membrane scouring by 220 

biogas sparging, CSRF is the operating cost of pumping the sludge, CSTAGE is the operating cost 221 

of pumping permeate during the respective operating stage (i.e. filtration or back-flushing), 222 

Finally, in order to determine the combination of operational set-points that lead to the 223 

minimal value of the total operating costs (CTOTAL; € per m
3
), Equation 4 was applied.  224 

LIFESPANREAGENTSWTOTAL CCCC    (Eq. 4) 

Where, CW is the total energetic cost, CREAGENTS is the proportional cost of reagents needed to 225 

clean the irreversible fouling produced during filtration and CLIFESPAN is the cost of membrane 226 

replacement due to irreversible fouling. CREAGENTS and CLIFESPAN were calculated as shown in 227 

Robles et al. (2014a). 228 

2.4.2. Global sensitivity analysis: Morris screening method 229 

In this study the Morris screening method (Morris, 1991) has been applied to perform the 230 

GSA. This method is a one-factor-at-a-time process based on the generation of representative 231 

matrices of the combinations of values of the parameters to evaluate through a random 232 

sampling. From the matrices it determines the distribution of elemental effects (EEi) of each 233 

input factor on the model output. Finally, the EEi distribution (Fi) for each input factor is 234 

analyzed to determine the relative importance of the input factors and obtain a good 235 

approximation of a GSA.  236 

The selected statistical parameters to evaluate these distributions were: the standard deviation 237 

(σ) and the absolute mean (μ
*
) (see for instance Saltelli et al. (2000) and Campolongo et al. 238 

(2007)).  239 

In order to elucidate which operational parameters are the most influential on the total 240 

filtration cost, the output variable for the GSA in this study was CTOTAL (Eq. 4). 241 

A more precise description of the GSA applied in this study can be found elsewhere (Robles 242 
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et al., 2014b). 243 

2.4.3. Initial values of the operation parameters: Monte Carlo method 244 

The Monte Carlo method was used for the selection of initial values of the operational 245 

parameters close to the minimum (locally) of the function to minimize. This has two main 246 

benefits: (i) it improves the results of the dynamical optimization given by the controller and 247 

(ii) it gives optimal values of the non-influential parameters, further improving the 248 

minimization of CTOTAL. Therefore, the Monte Carlo method was applied as a previous step 249 

before the dynamic optimization. The Monte Carlo method consisting on trajectory-based 250 

random sampling was used in this study. Hence, the combination of the operational 251 

parameters giving the minimum operating cost (Eq. 4) was selected as the initial values of the 252 

model-based supervisory controller. 253 

2.4.4. Simulation strategy and model calibration 254 

MATLAB
®
 was used to simulate the filtration process using the previously-introduced model. 255 

The Runge-Kutta method (ode45 function in MATLAB®) was used as integration method for 256 

solving the differential equations in the model. The model was calibrated using experimental 257 

results from operation with both substrates.  258 

2.4.5. Simulations for real-time dynamic optimization of the filtration process 259 

The dynamic optimization of the filtration process was carried out using the costs equation 260 

(Eq. 4) as objective function. The optimization algorithm was applied by using the trust 261 

region approach (Coleman and Li, 1996), based on the Newton method (LSQNONLIN 262 

function in MATLAB
®
) and the Runge-Kutta method (ode45 function in MATLAB

®
). 263 

2.4.6. Implementation of the Morris and Monte Carlo methods 264 

In order to obtain results that could be extrapolated to different situations, MLTS 265 

concentrations in the entrance of the membrane tanks was ranged from 10 to 20 g∙l
-1

 during 266 

simulation. In addition, to take into account the typical fluctuations of the flow rate entering a 267 
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WWTP, the net transmembrane flow (Jnet) was also varied. For each concentrations of MLTS, 268 

Jnet was modified from 4 to 12 LMH  (l·h
-1

·m
-2

), following the influent pattern from the model 269 

BSM1 (Jeppsson et al., 2006). 270 

The average values of the operational parameters evaluated in this study are shown in Table 1. 271 

In addition, the uncertainty considered for the sensitivity analysis (minimum and maximum 272 

values) is also presented. The range of values for the set-points of these parameters was 273 

established according to a uniform distribution. Finally, the results of the Monte Carlo 274 

procedure (which will be discussed afterwards) are also shown in Table 1. 275 

2.4.7. Optimization algorithm 276 

Using UWW as substrate, the performance of the controller (based on the optimization 277 

algorithm) was evaluated by simulation using the filtration model described above. The 278 

simulation accounted for 24 h of continuous operation and was carried out at four different 279 

MLTS concentrations entering the membrane tanks: 11, 13, 15 and 17 g·l
-1

. For the co-280 

digestion experiment (mixture of UWW and FW), the performance of the supervisory 281 

controller was also evaluated in an operational period of 24 h with a MLTS concentration of 282 

17 g·l
-1

. This allowed the comparison between both feeding strategies (i.e. UWW and mixture 283 

of UWW and FW). 284 

During the simulations Jnet varied according to the dynamic of BSM1 influent (Jeppsson et al., 285 

2006) (see e-supplementary data). 286 

As aforementioned, the CT was set to 1 hour. The computational cost for optimizing 287 

dynamically the process was between 1 to 3 minutes (using a PC Intel
®
 CORE

TM
 i5 with 8 288 

GHz of RAM).  289 

3. Results and discussion 290 

3.1. Calibration of the model 291 

Before the application of the model, it was previously calibrated and validated using data 292 
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obtained in the AnMBR plant under a wide range of operational conditions. More precisely, 293 

the model was validated for different concentrations of MLTS entering the membrane tanks 294 

(10-30 g∙l
-1

), different Jnet (4-6 LMH) and different specific demands of gas per square meter 295 

of membrane (SDGm) (0.1-0.5 m
3
∙h

-1
∙m

-2
, equivalent to BRFs of 3-15 m

3
∙h

-1
). The model was 296 

able to predict precisely the behavior of the membrane during the studied operational 297 

conditions (R of 0.989). A more precise description of the calibration and validation of the 298 

model applied can be found elsewhere (Moñino et al., 2017). 299 

3.2. Sensitivity analysis 300 

3.2.1. Treating urban wastewater 301 

The rankings for the operational parameters according to the sensitivity measurements 302 

obtained (µ
*
 and σ) are presented in Table 2. Only the results for the optimized number of 303 

evaluated trajectories (ropt) are shown. 304 

Hierarchical clustering analysis (HCA; R software version 3.2.5.) of the µ
*
 presented in Table 305 

2 and the ones obtained during ropt determination resulted in three differentiated clusters 306 

formed according to the influence of the studied parameters on the model output (see e-307 

supplementary data): (i) BRF, with a much higher value of µ
*
 when compared with the other 308 

parameters, indicating its great importance for the process costs; (ii) fBF, tBF, tF and SRF, with 309 

values of µ
*
 that indicate a significant relative influence on the process costs; and (iii) tR and 310 

JBF, with a low relative importance. According to these results, 5 parameters were identified 311 

as highly influential on the process costs: (i) BRF (µ
*
 = 1.253 and σ = 1.856); (ii) fBF (µ

*
 = 312 

0.770 and σ = 2.220); (iii) tF (µ
*
 = 0.724 and σ = 1.921); (iv) tBF (µ

*
 = 0.574 and σ = 1.210); 313 

and (v) SRF (µ
*
 = 0.464 and σ = 1.584). To allow a visual identification of these parameters, a 314 

graphical representation of the results of the sensitivity parameters (µ
*
 and σ) at ropt can be 315 

found in the Electronic Annex. Both the clustering and the graphical results suggest a high 316 

influence of BRF, SRF, tF, tBF and fBF on the cost of the process. Therefore, in this study they 317 



14 

 

have been optimized dynamically as a function of the operational conditions. On the other 318 

hand, as tR and JBF present low values of µ
*
 and σ, it can be considered that their influence on 319 

the total costs is low. Thus, their set-points were considered to be constant, keeping the initial 320 

values given by the Monte Carlo method. In addition, the GSA results allow evaluating the 321 

mathematical relationship between each parameter and the total costs. Due to their relative 322 

high values of both µ
*
 and σ, the effects of BRF, SRF, tF, tBF and fBF can be classified as non-323 

linear. 324 

The huge influence of BRF was related to the high energy consumption of this process. Thus, 325 

while an adequate value of BRF allows minimizing the solid cake formation, the irreversible 326 

fouling rates and the costs associated with biogas recirculation, too high values increase 327 

greatly the total costs of the filtration process. Concerning SRF, this parameter affects, not 328 

only the costs associated with sludge pumping, but also MLTSMT at a given Jnet. It is 329 

important to consider that changes of the MLTSMT modify also the BRF requirements. In 330 

addition, tF affects the amount of solids that are deposited onto the surface of the membranes. 331 

tF also influences the net water treatment flow, thus determining the normalized profitability 332 

of the process (expressed in € per m
3
). Finally, tBF and fBF modify the extent of permeability 333 

recovery of the membranes. This is related to a partial or total removal of the solid cake. 334 

However, it must also be considered that high values of tBF and fBF decrease Jnet and increase 335 

the non-filtration period of the AnMBR. 336 

3.2.2. Treating urban wastewater and food waste 337 

The values of the sensitivity measurements (µ
*
 and σ) obtained for the optimized number of 338 

evaluated trajectories (ropt = 40) when using UWW and FW as substrates are presented in 339 

Table 2. The corresponding HCA (see e-supplementary data) resulted in very similar clusters 340 

when compared to the process treating only UWW. In this case, 5 main clusters were 341 

obtained: (i) BRF, again with a much higher value of µ
*
 when compared with the other 342 
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parameters; (ii) fBF, with higher relative values when compared to treatment of only UWW; 343 

(iii) tBF and tF, also with values of µ
*
 that indicate a significant relative influence; (iv) SRF 344 

and tR, with a low relative influence; and (v) JBF, with a very low relative importance. The 345 

similar responses of the systems fed with UWW and the mixture of UWW and FW confirm 346 

the applicability of the optimization methodology evaluated in this study to both substrates. In 347 

order to allow an un-biased comparison of the performances of the supervisory controller 348 

using both substrates, the same five operational parameters were identified as influential: 349 

BRF, fBF, tBF, tF and SRF. However, it must be considered that the clustering results suggest 350 

that in this case SRF could also be kept constant, reducing even more the computational costs. 351 

As for the case using UWW as substrate, a graphical representation of the obtained sensitivity 352 

rankings treating the UWW and FW mixture is presented in the Electronic Annex. 353 

3.3. Initial parameter estimation via the Monte Carlo method 354 

As aforementioned, the Monte Carlo method was used to estimate the initial values of the 355 

different operational parameters object of study when applying both feeding strategies (i.e. 356 

UWW and mixture of UWW and FW). The total filtration cost varied greatly, with values 357 

ranging between €0.04 per m
3
 and €0.40 per m

3
. Therefore, it can be concluded that the total 358 

costs can be effectively minimized by selecting the proper set-points of the selected 359 

operational parameters. 360 

The obtained results, which correspond to the combination leading to minimum local costs, 361 

are presented in Table 1 (column Monte Carlo Results). However, it is important to highlight 362 

that the Monte Carlo method cannot give an optimal combination of the operational 363 

parameters. This occurs because of the discrete variation of the values of the evaluated 364 

parameters chosen to carry out the simulations. Nevertheless, as the used sampling procedure 365 

aims at covering all the domain of variation of the parameters, the cost is locally minimized. 366 

Starting from the initial combination given by the Monte Carlo method, the selected 367 
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parameters were optimized dynamically throughout the operational period. 368 

3.4. Performance of the supervisory controller 369 

3.4.1. Treating urban wastewater 370 

Figure 2 shows the values of BRF, SRF, tF and tBF optimized by the controller during the 371 

simulations performed with a MLTS concentration entering the membrane tank of 17 g∙l
-1

 and 372 

the transmembrane fluxes shown in the e-supplementary data. This condition is presented 373 

because of two main reasons: (i) it allows comparing the performance of the controller using 374 

both substrates and (ii) it is the worst case scenario, meaning that in reality the performance 375 

should be improved, with less fouling and lower filtration costs when reducing MLTSMT. 376 

As shown in Figure 2A, the value of BRF followed a very similar pattern when compared to 377 

Jnet. This occurred because the controller established higher values of BRF in the periods 378 

when the treatment flow rate was the highest (10-13 hours). During those flow peaks, the 379 

velocity of solid deposition on the surface of the membrane was much higher than at regular 380 

operation and therefore the controller had to increase considerably BRF to keep the TMP at 381 

appropriate values. In addition, Figure 2A also shows that the value of BRF was reduced 382 

when the treatment flow decreased, reaching even the minimum BRF value allowed in the 383 

AnMBR plant (4 m
3
∙h

-1
). These conditions corresponded to the minimal membrane fouling 384 

propensity, but were also associated with low agitation of the sludge in the membrane tanks, 385 

leading to a reduction in the efficiency of the process of physical cleaning by biogas sparging. 386 

A correlation matrix including the optimized parameters, MLTSMT, Jnet, TMP, the energy 387 

requirements and the filtration costs with UWW as substrate (see e-supplementary data; R 388 

software version 3.2.5.) verified the positive correlation observed between Jnet, TMP and 389 

BRF. 390 

Regarding SRF, Figure 2A shows a similar behavior to that observed for BRF. The controller 391 

increased SRF at higher Jnet to keep MLTSMT at adequate levels. Again, the correlation matrix 392 
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verified the correlation existing between BRF and SRF. 393 

Concerning tF and tBF, it can be observed in Figure 2B that in this case these variables did not 394 

follow a pattern similar to that of Jnet. However, a variation of these parameters occurred 395 

through the operational period studied. Interestingly, the periods when tF and tBF varied the 396 

most were those when BRF and SRF showed their lowest values (i.e. 5-9 h and 19-24 h). This 397 

indicates that, when the controller could not further optimize BRF and SRF, it modified the 398 

parameters with lower influence (i.e. tF and tBF) to further minimize the total filtration costs. 399 

No linear correlations were observed between tF and tBF and any other studied 400 

parameter/variable (see e-supplementary data). The last parameter to be discussed (fBF) 401 

remained relatively constant, around 1 BF every 10 F cycles (see Figure 3). 402 

Figure 3 represents the evolution of the TMP and the sequence of operational stages (F, R and 403 

BF) performed during the simulation at 17 g∙l
-1

 MLTS entering the membrane tanks.  404 

As it can be observed, the operational mode varied according to the duration of the stages (tF 405 

and tBF). In addition, by increasing SRF and BRF (Figure 2A) during the periods most prone 406 

to fouling (hours 10-12), the supervisory controller was able to keep the TMP under the 407 

maximum limits established by the provider (i.e. 0.6 bars). 408 

3.4.2. Treating urban wastewater and food waste 409 

Figure 4 shows the values of BRF, SRF, tF and tBF optimized by the supervisory controller 410 

when treated UWW and FW. As for the operation with UWW as substrate (Figure 2A), the 411 

values of BRF and SRF varied according to the variations in Jnet (see e-supplementary data). 412 

As previously, the controller established higher values of both parameters at the points of 413 

highest Jnet (10-13 hours). This period corresponded to the greatest rates of solids deposition 414 

onto the membranes. Therefore, the controller increased BRF to reduce the fouling rate and 415 

increased also SRF to minimize MLTSMT. 416 

In addition, it can be observed in Figure 4B that the values of tF are lower than those obtained 417 



18 

 

with UWW as substrate (Figure 2B). Interestingly, the opposite occurred for tBF, whose length 418 

was higher with the mixture of UWW and FW. This was related to a more intense fouling 419 

caused by the FW, which led to longer BF periods to remove the cake layer from the 420 

membrane surface. Moreover, fBF increased from 1 BF every 10 F cycles to 1 BF every 4 F 421 

cycles (data not shown). Longer tBF and higher fBF with FW led to an increase of the 422 

downtime for reversible fouling removal. The average downtime for reversible fouling 423 

removal increased from 0.4 % (UWW) to 1.6 % (UWW and FW) of the total operational 424 

period. Nevertheless, it must be considered that these are low values which were achieved as a 425 

result of the controller action. As example, previous studies have reported minimum values of 426 

2.4 % of downtime when treating UWW in an automatically-tuned advanced control system 427 

for AnMBRs (Robles et al., 2014a).    428 

It must be mentioned that the corresponding correlation matrix (see e-supplementary data) 429 

was very similar to that obtained for UWW as substrate, verifying that the controller 430 

responded in a similar manner for both substrates. Also, as the evolution of the TMP and the 431 

different stages simulated using the substrate mixture were similar to that of UWW treatment 432 

(Figure 3), these values are not presented. 433 

3.5. Total energy consumption 434 

Figure 5A shows the evolution of the energy requirements of the filtration process after the 435 

implementation of the supervisory controller at 17 g∙l
-1

 MLTS entering the membrane tank 436 

with UWW as substrate. As it can be observed, the main contributor to the energy 437 

consumption of the system was WBRF, accounting in average for 80 % of the total energy 438 

requirements and up to 87 % at the highest Jnet. In addition, WBRF (thus WTOTAL) shows a 439 

similar pattern to that observed for Jnet. In fact, both variables were strongly correlated (see e-440 

supplementary data). While during the periods of low inflow to the plant (i.e. hours 2-9) 441 

WTOTAL reached 0.13 kWh∙m
-3

 (with WBRF accounting for 67 %), this value increased up to 442 



19 

 

0.34 kWh∙m
-3

 (with WBRF accounting for 87 %) at high Jnet (i.e. hours 9-12). At this point it 443 

must be mentioned that the results shown in this study were obtained with a model calibrated 444 

using considerably dirty membranes (i.e. the membranes were already strongly irreversibly 445 

fouled). Therefore, the energy requirements presented correspond to a very unfavorable 446 

scenario and it can be expected that their values will be considerably lower when operating 447 

with clean membranes. Nevertheless, the proposed control strategy allowed keeping the WBRF 448 

within low values (around 0.18 kWh∙m
-3

). More precisely, the supervisory control system led 449 

to savings of around 50 % of the energy required for membrane scouring when compared to 450 

non-optimized cyclic operation of the same AnMBR plant (0.36 kWh∙m
-3

) (Robles et al., 451 

2013a). By coupling model-based control systems with fuzzy-logic advanced supervisory 452 

control, consumptions of 0.15 kWh∙m
-3

 (Robles et al., 2013a) and 0.12 kWh∙m
-3

 (Robles et 453 

al., 2014a) were achieved. The value obtained in this study was slightly higher (0.18 kWh∙m
-

454 

3
). However, it must be considered that in this case only a model must be calibrated, which 455 

can be continuously optimized by retrofitting. In addition, if the model is properly calibrated 456 

this control strategy is more straight-forward and the control action is faster when compared 457 

to the previous control strategies, which require more computational capacity. 458 

When paying attention to the average energy requirements of the AnMBR after the 459 

implementation of the control system (Table 3), it can be observed that from the total 460 

consumption of 0.20 kWh∙m
-3

 (operating at 17 g∙l
-1

 MLTS entering the membrane tanks), 79.7 461 

% corresponded to WBRF, 16.9 kWh∙m
-3

 to WSRF, 9.53 %  to Wback-flushing and 4.77 % to 462 

Wfiltration.  463 

The results presented in Figure 5 and Table 3 show that the energy required to clean 464 

physically the membranes by biogas sparging (WBRF) represents the main consumption of 465 

energy in AnMBRs. Thus, there is a clear need to optimize this particular process. 466 

Figure 5B and Table 3 also show the energy consumption of the filtration process treating 467 
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UWW and FW. In this case, the average total requirement was 0.34 kWh∙m
-3

, with a 468 

maximum value of 0.58 kWh∙m
-3

. The average proportion of WBRF accounted for 88.5 %, 469 

indicating the need of optimizing BRF for each specific process. 470 

The higher average WTOTAL when adding FW (0.34 vs. 0.20 kWh∙m
-3

) was related to the 471 

aforementioned increase of the fouling rate in the membranes, which implied longer non-472 

filtration periods, thus reducing the net volume of water treated per unit of membrane surface.  473 

However, it must be considered that the addition of FW also led to a higher energy recovery 474 

due to an increase of the biogas production. With a SRT of 70 days at a temperature of 27 ºC, 475 

the volumetric methane production was up to 72 lCH4·m
-3

 using UWW as substrate (Pretel et 476 

al., 2016). When adding FW, this value increased up to 147 lCH4·m
-3

 which, assuming a 477 

percentage of methane recovery of 80 %, was translated into an increase of the energy 478 

recovery of 0.20 kWh∙m
-3

. Taking this value into account, the energy requirements of the 479 

filtration process are lowered from 0.34 kWh∙m
-3

 to 0.14 kWh∙m
-3

, even when operating with 480 

strongly fouled membranes. Thus, the addition of FW led to a global energy savings of 30 % 481 

when compared to the treatment of UWW as sole substrate. Therefore, it can be concluded 482 

that, even if FW was added into the UWW, the supervisory control system allowed operating 483 

the AnMBR at low energy costs.   484 

3.6. Total costs 485 

Figure 6A shows the evolution of the operational and maintenance costs of the filtration 486 

system after the implementation of the supervisory controller treating UWW at 17 g∙l
-1

 487 

MLTS. As it can be observed, CW represented the main cost of the process, accounting for an 488 

average of 60 % of the total cost. This clearly emphasizes the need to optimize the operational 489 

conditions to minimize the energy demand of the system. However, in the period of peak Jnet 490 

(hours 9-10) the ensemble of CREAGENTS and CLIFESPAN represented up to 90 % of the total 491 

costs. This was related to a more intense irreversible fouling occurring in this period of high-492 
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rate filtration, which caused an increase in the amounts of chemicals required to clean the 493 

membranes and lowered the membrane lifespan, raising the associated costs. 494 

Regarding the average costs, the results operating at 17 g∙l
-1

 MLTS entering the membranes 495 

are presented in Table 4. After the implementation of the control system, CTOTAL was €0.047 496 

per m
3
, with CW, CREAGENTS and CLIFESPAN representing the 59.6, 17.0 and 23.4 %, 497 

respectively.  498 

These values corroborate that CW represents the main filtration costs during regular operation. 499 

In addition, as it has been already mentioned, the membranes used in this study were strongly 500 

fouled, and therefore lower costs are expected in real operation. Thus, the values of these 501 

latter costs should be lower in full-scale plants, further reinforcing the great importance of 502 

optimizing the energy requirement in AnMBR plant. 503 

Figure 6B and Table 4 present the costs corresponding to the co-digestion system (UWW and 504 

FW). As shown, the obtained pattern was very similar to that obtained for treatment of UWW. 505 

However, in this case the average filtration cost corresponded to €0.067 per m
3
, with CW 506 

accounting for 69 % of this value. The higher value of CTOTAL when adding FW is again 507 

related to a higher fouling rate in the co-digestion system, which led to higher costs associated 508 

with the mechanical cleaning of the membrane. This is further suggested by the higher CW 509 

values (€0.046 per m
3
 with FW vs. €0.028 per m

3
 with only UWW). 510 

However, when taking into account the economical profit related to the higher volumetric 511 

methane production when adding FW to the UWW, CTOTAL is reduced to €0.035 per m
3
, 512 

meaning that FW addition led a relative economic saving of 26 % of the filtration costs (when 513 

compared with the AnMBR system treating only UWW). 514 

 515 

4. Conclusions  516 

The proposed methodology enabled identifying the most influential filtration parameters and 517 



22 

 

selecting proper initial set points for their optimization. The controller allowed a real-time 518 

optimization of these set-points, obtaining an energy demand of 0.20 kWh∙m
-3

 (79.7% WBRF) 519 

and a cost of €0.047 per m
3
 (59.6% CW) when treating UWW. The addition of FW increased 520 

the energy demand and the costs (0.34 kWh∙m
-3

 and €0.067 per m
3
) due to higher fouling 521 

intensity, but also led to the production of more biogas. The obtained results confirm the 522 

applicability of the proposed control system for optimizing the AnMBR performance when 523 

treating both substrates.  524 
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Figure captions 656 

Figure 1. (A) Sequence of the different operational stages in the membrane modules during 657 

the alternative operating mode and (B) flow diagram of the proposed optimization 658 

methodology 659 

Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisory 660 

controller. The results were obtained using UWW as substrate 661 

Figure 3. Evolution of the TMPs and different stages simulated. The results were obtained 662 

using UWW as substrate 663 

Figure 4. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisory 664 

controller. The results were obtained using UWW and FW as substrates 665 

Figure 5. Evolution of the energy requirements of the filtration process with the controller 666 

operating at 17 g∙l
-1

 MLTS entering the membrane tanks. The results for feeding strategies are 667 

shown: (A) UWW and (B) mixture of UWW and FW 668 

Figure 6. Evolution of the costs of the filtration process with the controller operating at 17 g∙l
-

669 

1
 MLTS entering the membrane tanks. The results for feeding strategies are shown: (A) UWW 670 

and (B) mixture of UWW and FW  671 
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Table captions 672 

Table 1. Average values of the operational parameters evaluated in this study. The intervals 673 

of uncertainty, as well as the initial values for the model-based supervisory controller (Monte 674 

Carlo results) are also presented 675 

Table 2. Sensitivity rankings for ropt with UWW as substrate (ropt = 60) and the mixture of 676 

UWW and FW (ropt = 40) 677 

Table 3. Average energy requirements of the filtration process with the controller operating at 678 

17 g∙l
-1

 MLTS entering the membrane tanks 679 

Table 4. Average costs of the filtration process with the controller operating at 17 g∙l
-1

 MLTS 680 

entering the membrane tanks  681 
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Supplementary material 682 

Figure S1. Net transmembrane flow (Jnet) applied during the validation of the supervisory 683 

controller by simulation. The corresponding values of the MLTS concentrations in the 684 

membrane tanks (MLTSMT) during the co-digestion experiment at 17 g·l
-1

 are also shown 685 

Figure S2. TMP simulated by the model (TMPsim) vs experimental TMP (TMPexp) 686 

Hierarchical clustering analysis based on the absolute means of the selected parameters with 687 

UWW as substrate 688 

Figure S3. Hierarchical clustering analysis based on the absolute means of the selected 689 

parameters obtained (A) with (a) UWW as substrate and (B) with UWW and FW as substrates 690 

Figure S4. Sensitivity measurements (µ
*
 and σ) obtained (A) with UWW as substrate (ropt of 691 

60) and (B) with the mixture of UWW and FW as substrate (ropt of 40)  692 

Figure S5. Correlation matrix (α = 0.05; n = 999) of the optimized parameters, the energy 693 

requirements and the filtration costs obtained (A) with UWW as substrate and (B) with 694 

mixture of UWW and FW as substrate. The MLTSMT, Jnet and TMP are also included 695 
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Abbreviation and symbols 707 

AeMBR - Aerobic membrane bioreactor 708 

AnMBR - Submerged anaerobic membrane bioreactor 709 

BRF – Biogas recycling flow-rate 710 

BF – Back-flushing period 711 

CB – Operating cost of membrane scouring by biogas sparging 712 

CLIFESPAN – Cost of membrane replacement due to irreversible fouling. 713 

CREAGENTS – Cost of reagents needed to clean irreversible fouling  714 

CSRF – Operating cost of pumping the sludge 715 

CSTAGE – Operating cost of pumping permeate  716 

CT – Control time 717 

CTOTAL – Total operating costs  718 

CW – Total energetic cost 719 

D – Pipe diameter 720 

ECOST – Cost of energy 721 

EEi – Elemental effects of each input factor on the model output 722 

f – Number of filtration periods 723 

fr – Friction factor 724 

F – Filtration period 725 

fBF – Back-flush frequency 726 

Fi – Scaled elementary effect distribution 727 

g – Acceleration of gravity 728 

GSA – Global sensitivity analysis 729 

HCA – Hierarchical clustering analysis 730 

HRT – Hydraulic retention time 731 
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JBF – Transmembrane flow during back-flush 732 

Jnet – Net transmembrane flow 733 

L – Pipe length 734 

Leq – Equivalent pipe length of accidental pressure drops 735 

M – Molar flow rate of biogas 736 

MBR - Membrane bioreactor 737 

MLTS – Mixed liquor total solids 738 

MLTSMT – MLTS concentration in the membrane tanks 739 

OFMSW - Organic fraction of municipal solid waste 740 

P1 – Absolute inlet pressure  741 

P2 – Absolute outlet pressure 742 

q – Volumetric flow rate 743 

R – Relaxation period 744 

Rg – Ideal gas constant  745 

RC – Resistance of the solid cake formed on the surface of the membrane 746 

RI – Resistance due to irreversible fouling of the membrane 747 

RM – Resistance intrinsic to the membrane  748 

ropt – Optimum number of times that the SEEi should be calculated 749 

RT – Total filtration resistance 750 

SEEi – Scaled elementary effect 751 

SDGm – Specific demand of gas per square meter of membrane 752 

SRF – Sludge recycling flow-rate 753 

SRT – Solids retention time 754 

tBF – Duration of the back-flushing stage 755 

tF – Duration of the filtration stage 756 
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Tgas – Biogas temperature 757 

TMP – Transmembrane pressure 758 

TMPsim – Simulated transmembrane pressure  759 

TMPexp – Experimental transmembrane pressure 760 

TS – Total solids 761 

tR – Duration of the relaxation stage 762 

UWW - Urban wastewater 763 

V – Fluid velocity 764 

VT – Net volume of treated wastewater 765 

Wback-flusing – Energy requirements of the back-flushing pump 766 

WBRF – Energy requirements of the biogas lower 767 

Wfiltration – Energy requirements of the permeate filtration pump 768 

WSRF – Energy requirements of the sludge recycling pump  769 

XmC – Dry mass of cake in the membrane surface 770 

XmI  – Dry mass of irreversible fouling on the membrane surface 771 

XTS – Concentration of total solids in the mixed liquor 772 

Z1-Z2 – difference in height 773 

α – Compression index 774 

αC – Average specific resistance of the solid cake  775 

αI – Average specific resistance of the irreversible fouling 776 

σ – Standard deviation  777 

ρsludge – sludge density 778 

ηblower – Overall mechanical and electrical efficiency of the blower 779 

ηpump – Overall mechanical and electrical efficiency of the pump 780 

μ – Mean  781 
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μ
*
 – Absolute mean (μ

*
) 782 

µp – Dynamic viscosity of the permeate  783 

ωC – Mass of solids settled per membrane area  784 

ωI – Mass of irreversible fouling per membrane area  785 

ΔRI,MAX – Upper threshold of irreversible fouling resistance at which membrane cleaning 786 

starts 787 

 788 
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Table 1. Average values of the operational parameters evaluated in this study. The intervals of 

uncertainty, as well as the initial values for the model-based supervisory controller (Monte Carlo 

results) are also presented  

Parameter Units Substrate 
Average 

values 
Minimum Maximum 

Monte Carlo 

results  

BRF m
3
∙h

-1 UWW 12 3 21 13 

UWW +FW 12 3 21 13 

SRF m
3
∙h

-1 UWW 2.1 1.5 2.7 2.0 

UWW +FW 2.1 1.5 2.7 1.8 

tF s 
UWW 400 200 600 600 

UWW +FW 400 200 600 485 

tR s 
UWW 35 10 60 10 

UWW +FW 35 10 60 10 

tBF s 
UWW 35 10 60 17 

UWW +FW 35 10 60 31 

fBF - 
UWW 11 1 21 10 

UWW +FW 11 1 21 4 

JBF LMH 
UWW 15 10 20 16 

UWW +FW 15 10 20 10 

 

Table 1



Table 2. Sensitivity rankings for ropt with UWW as substrate (ropt = 60) and the mixture of UWW 

and FW (ropt = 40) 

UWW UWW + FW 

Parameter µ
*
 σ Parameter µ

*
 σ 

BRF 1.253 1.856 BRF 1.355 2.099 

fBF 0.770 2.220 fBF 0.579 1.418 

tF 0.724 1.921 tBF 0.344 1.059 

tBF 0.574 1.210 tF 0.252 0.710 

SRF 0.464 1.584 SRF 0.163 0.410 

tR 0.057 0.261 tR 0.067 0.138 

JBF 0.057 0.268 JBF 0.005 0.018 

 

Table 2



Table 3. Average energy requirements of the filtration process with the controller operating at 17 

g∙l
-1

 MLTS entering the membrane tanks 

Substrate WTOTAL (kWh∙m
-3

) WBRF (%) WSRF (%) WStage (%) 

UWW 0.20 79.7 16.9 14.3 

UWW + FW 0.34 88.5 9.6 9.8 

 

Table 3



Table 4. Average costs of the filtration process with the controller operating at 17 g∙l
-1

 MLTS 

entering the membrane tanks 

Substrate CTOTAL (€ per m
3
) CW (%) CREAGENTS (%) CLIFESPAN (%) 

UWW 0.047 59.6 17.0 23.4 

UWW + FW 0.067 69.0 13.0 18.0 

 

Table 4



 

Figure 1. (A) Sequence of the different operational stages in the membrane modules during the 

alternative operating mode and (B) flow diagram of the proposed optimization methodology 
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Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisory controller. 

The results were obtained by applying the transmembrane flux shown in Figure S1 with a MLTS 

concentration entering the tanks of 17 g∙l
-1

 and using UWW as substrate 

 

Figure 2. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisor 
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Figure 3. Evolution of the TMPs and different stages simulated. The results were obtained by 

applying the transmembrane flux shown in Figure S1 with a MLTS concentration entering the 

tanks of 17 g∙l
-1

 and using UWW as substrate 
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Figure 4. (A) Values of BRF and SRF and (B) tF and tBF optimized by the supervisory controller. 

The results were obtained by applying the transmembrane flux shown in Figure S1 with a MLTS 

concentration entering the tanks of 17 g∙l
-1

 and using UWW and FW as substrates 
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Figure 5. Evolution of the energy requirements of the filtration process with the controller 

operating at 17 g∙l
-1

 MLTS entering the membrane tanks. The results for feeding strategies are 

shown: (A) UWW and (B) mixture of UWW and FW 
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Figure 6. Evolution of the costs of the filtration process with the controller operating at 17 g∙l
-1

 

MLTS entering the membrane tanks. The results for feeding strategies are shown: (A) UWW and 

(B) mixture of UWW and FW 
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