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Abstract 20 

Purple phototrophic bacteria (PPB) technology for resource recovery is still in its infancy, but 21 

progress is occurring fast, and developments are accelerating. The generally higher 22 

photobioreactor costs have to be balanced with product revenue. The PPB biomass can be used 23 

as single cell protein where high protein contents can be complemented by value add 24 

components (e.g. pigments and ployhydroxyalkanoates), merging functionalities within a 25 
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single product. This has the potential to increase the product value and impact the economic 26 

feasibility, likely justifying higher capital costs for PPB photobioreactors for real life 27 

applications, with high future growth demand potential of the PPB product. 28 
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1 Introduction 38 

Purple phototrophic bacteria (PPB) are a ubiquitous group of photosynthetic microbes with 39 

versatile metabolic capabilities. PPB perform anoxygenic photosynthesis, which does not 40 

produce oxygen because water does not serve as electron donor [1]. Instead, PPB use a diversity 41 

of organic donors, such as acetate and succinate, that serve as both carbon and electron source, 42 

and inorganic donors such as H2, H2S, or Fe2+, for anaerobic photoheterotrophic and 43 
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PPB biomass 
as product

Manufacturing Aquaculture feed
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photoautotrophic growth respectively [2]. Phototrophic growth is driven by light harvesting 44 

(LH) complexes, (LHI and LHII) containing a range of carotenoids and bacteriochlorophylls 45 

(BChls), namely BChl a and/or BChl b. BChls absorb wavelengths in the near infra-red (NIR) 46 

spectrum, >850 and >1000 nm [3], while carotenoids have accessory light harvesting functions 47 

and also serve for photo-inhibition protection in the visible range (400-600 nm) [4]. The 48 

utilisation of light as energy source enables biomass yields close to unity on chemical oxygen 49 

demand (COD) basis during photoheterotrophic growth, and the exclusive capability of 50 

absorbing NIR wavelengths allows effective selection of PPB in non-sterile environments, such 51 

as wastewater [5].  52 

The combination of effective NIR selection and enrichment with anaerobic photoheterotrophy 53 

and the consequent high biomass yields, have led to the re-emergence of PPB for environmental 54 

biotechnological applications, with a focus on resource recovery. Specifically, PPB have been 55 

applied for secondary/tertiary wastewater treatment, achieving the simultaneous removal of 56 

organics, nitrogen, and phosphorus from various wastewaters [2, 6]. Non-oxidative removal 57 

via biological assimilation enables the partitioning of soluble components (e.g. soluble COD, 58 

NH4
+-N and PO4

3--P) into PPB biomass, a solid which can be recovered. This biomass is 59 

characterised by high crude protein (CP) contents at around 60% dry weight (DW), and varying 60 

amounts of carotenoids, BChls, vitamins and polyhydroxyalkanoates (PHAs) (Figure 1). 61 

Consequently, the generated biomass and its components are potential products, depending on 62 

quality which is mostly determined by the substrate used. Indeed, biomass has been tested as 63 

single cell protein (SCP) source, for example, as a feed additive and bulk ingredient in 64 

aquaculture [7, 8].  65 

Photobioreactor (PBR) systems for biomass production and wastewater treatment have been 66 

researched extensively in the algae field [9]. It has been well established that the critical barriers 67 

are largely economic rather than technical. This is due to the increased capital and operational 68 



costs of PBRs compared to conventional treatment processes such as activated sludge systems 69 

[10, 11]. In fact, the monetisation of the biomass or related products is a prerequisite to balance 70 

the costs and to enable reasonable amortisation rates. Compared to microalgae, PPB products 71 

have received little attention and there are no commercial product. Nevertheless, if PPB are to 72 

be applied for wastewater treatment and resource recovery, PPB products have to generate 73 

revenue, necessitating the type of commercially focused research realised for microalgae 74 

products [12].  75 

While it is an advantage for resource recovery to have biomass yields close to unity, it is a 76 

costly problem if this biomass cannot be valorised. The application as SCP has great potential 77 

due to the high protein content in PPB biomass, without requirement for extensive post-78 

processing, as bulk biomass can be used directly. There is also potential value addition from 79 

the combination of PPB cell components. Other than proteins, PPB contain pigments (i.e. 80 

BChls and carotenoids) and PHA with potential additional functional benefits such as meat 81 

coloration and immuno-nutritional properties in, for example, aquaculture feeds [13, 14]. 82 

Whole cell PPB biomass with added functionalities will likely increase product value, 83 

improving the economic feasibility of the PPB technology.  84 

Here, we summarise the most recent advances in the application of PPB biomass as SCP and 85 

its value-added potential due to the presence of other compounds, such as pigments or PHA. 86 

This review also addresses recent developments in cultivation of PPB in different 87 

configurations, as they are key to determine the production costs. Finally, recommendations 88 

for a successful implementation of PPB technology are given.  89 

 90 



 91 

Figure 1: PPB cell diagram (left) and approximate product content (right; average values from 92 

the data presented in Capson-Tojo et al. (2020)).  93 

 94 

2 PPB as single cell protein and added-value components for feeds 95 

Production of fish and shellfish from aquaculture grew from around 10 million metric tonnes 96 

in 1987 to more than 80 million tonnes in 2017 [15]. Critically, the production of fed-fish, those 97 

fed on formulated compound diets, tripled between 2000 and 2017, while harvest of forage fish 98 

for fishmeal, the major protein source in aquaculture feeds, declined over the same period [15, 99 

16]. This has resulted in a doubling of fishmeal price since 2020 [15] that, along with questions 100 

over sustainability, has driven demand for alternative protein ingredients for fish feeds from 101 

the manufacturers. Most plant or algae-based substitutes lack the correct balance of amino 102 

acids, contain anti-nutritional factors [17], and have insufficient protein content to formulate 103 

feeds for the most valuable farmed fish and shrimp that require  >40% dietary protein . In 104 

contrast, PPB biomass is generally characterised by high crude protein contents (~60% DW), 105 

with a balanced amino acid profile, and including elevated levels of the essential amino acids 106 

cysteine and methionine [18], which are often added to aquaculture feed [19]. High protein 107 

contents and adequate amino acid profiles enable feed protein substitution for high value 108 

aquaculture species, such as salmonids carnivorous marine fish and shrimp that require up to 109 

60% of protein in their diets [20]. In fact, PPB can substitute a major fraction of fishmeal in 110 

diets for Asian sea bass [7]. Fishmeal substitution with PPB was also tested in prawn feed trials, 111 
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underlining the application of PPB biomass across diverse valuable taxa [8]. At lower inclusion 112 

rates, PPB inclusion in commercial fish (Nile tilapia, marble goby, barramundi and Tor 113 

tambroides [21, 22] and shrimp feed (Litopenaeus vannamei) increased survival, growth and 114 

resistance to challenges, compared with a control diet [23]. Theoretically, this makes PPB 115 

biomass as valuable as fishmeal (~1,500 USD·tonne-1), although the critical price point to 116 

compete is expected to be lower than that of fishmeal. Here, immuno-nutritional components 117 

such as carotenoids, BChls, vitamins and PHA provide additional points-of-value (Figure 1). 118 

This is particularly the case for whole cell PPB products, which avoid costly substitution of 119 

extracted pure compounds to enhance vitamin, amino acid, and pigment levels. The value 120 

proposition for animals other than fish differs drastically, especially when low value protein 121 

sources such as soybean meal are substituted (470 USD·tonne-1), which would hardly cover 122 

the production costs [24]. We therefore focus on PPB as source of SCP for aquaculture, with 123 

the substitution of fishmeal as primary target.  124 

2.1 Secondary points-of-value 125 

2.1.1 PPB pigments: carotenoids and bacteriochlorophylls 126 

Carotenoids, especially xanthophylls, such as astaxanthin (ASX), are used as antioxidants, and 127 

as pigments for meat and skin coloration in commercial aqua feed. for shrimps and salmonids 128 

[25]. Incorporation of ASX in feed is recommended at levels of 50–100 mg·kgfeed
-1 in 129 

aquaculture, which represents between 10-18% of the total feed costs [26]. 130 

While PPB do not produce ASX, they do contain a range of other xanthophylls such as 131 

spirilloxanthin, lutein, okenone, spheroidene, rhodopin, etc., besides a wide range of carotenes, 132 

including lycopene, neurosporene, etc. [27]. These might be relevant as meat colorants (more 133 

relevant for shrimps and to a lesser extent for fish) and/or as antioxidants and vitamin A 134 

precursors, which can improve the immune functions, liver structure and reproduction 135 

performance in fish and crustaceans [28]. Understanding the value of specific PPB pigments, 136 



other than lutein, is hampered by the fact that only a handful of analytical standards are 137 

available for chemical analysis. Consequently, development of methods for accurate carotenoid 138 

quantification, and evaluation of their effects as feed components is an essential prerequisite to 139 

extend the application spectrum and value of PPB biomass as a feed component. A similar 140 

problem applies to BChls in PPB, noting that chlorophyll a from cyanobacteria is a bioactive 141 

component, and part of the diet in herbivorous fish that comprise the majority of fish farmed 142 

for food [29]. Consequently, the potential value of pigments in PPB biomass has not yet been 143 

determined, a serious omission, as whole cell PPB products contain around 5-10 mg·g-1 total 144 

carotenoids and ~10-20 mg·g-1 BChls [2]. 145 

Intracellular carotenoids in whole cell products have substantial benefits over synthetic 146 

products, with the latter being more easily degraded by light, oxygen, acidity and temperature 147 

[26]. This stability may enable lower carotenoid inclusion rates in feed. Pigment content of PPB can be manipulated 148 

to a degree, for example via light intensity, but the natural selection of specific carotenoids in 149 

PPB biomass has not been reported [30]. Establishing how well the various PPB carotenoids 150 

are utilised by fish and shrimp, and potential impacts on animal growth performance are clear 151 

avenues for future research to enable full appraisal of benefits and potential revenues. 152 

2.1.2 Polyhydroxyalkanoates (PHA) 153 

Diseases remain a major constraint to growth and profitability in global aquaculture [15, 31]. 154 

While significant advances in disease control have been made, antibiotic use in some sectors 155 

of the industry remains high [32]. Set against a global "one health" initiative to reduce 156 

antimicrobial resistance in the environment and food supply to reduce the public health threat 157 

[31], alternative means of reducing or controlling diseases in aquaculture have high potential 158 

value. PHAs have been intensively studied for application as biodegradable polymers or 159 

bioplastics for packaging. In addition, PHA may have antimicrobial properties and 160 

immunomodulatory effects in fish and shrimps [13, 33]. In fact, PHA-rich additives in feed 161 



might increase resistance against common pathogens in aquaculture [34], a topic that has 162 

recently been reviewed [13]. Inclusion rates between 0.2-5%wt (weight) PHA generally 163 

increase the average weight gains, growth rates and survival rates of fish and shrimps in various 164 

growth stages, with species dependant effects [35]. These effects are at least partly caused by 165 

the microbial PHA degradation to short chain fatty acids (SCFA) in the gastrointestinal tract 166 

of the fish or shrimp. SCFA are commercially used as antimicrobial bio-agents in commercial 167 

animal feed [36].  168 

Mixed and pure PPB cultures readily produce PHA [37] and can accumulate up to 82%wt under 169 

nutrient limiting conditions in dedicated processes [38]. For feed applications, high PHA 170 

contents are not required to reach the desired PHA inclusion rates for feed applications (usually 171 

around 0.2-5%wt). Non-PHA directed PPB growth resulted in around 2.5%wt of PHA [7], 172 

which may be sufficient to add value to the PPB biomass. With limited extra effort, small 173 

amounts of PHA can be generated in a PPB process. Intracellular PHA is naturally bio-174 

encapsulated, which enables effective delivery to the gastrointestinal tract of the target species, 175 

improving feed palatability (no PHA odour), while minimising losses through leaching during 176 

feeding. The amorphous character of intracellular PHA also improves the biotic and abiotic 177 

degradability compared to crystalline PHA [39]. This might be a more realistic application of 178 

PPB-generated PHA, compared to pure PHA production from PPB, which incurs substantial 179 

extraction and purification costs and has production rates that are orders of magnitude lower 180 

(~0.5 g PHA·L-1·d -1) [2] compared to aerobic platforms (>10 g PHA·L-1·d-1) [40]. Instead, 181 

PHA within the PPB biomass, together with the protein and pigment contents, can substantially 182 

increase the biomass values, thanks to the potential benefits of combined functionalities within 183 

a single product. There is currently no research about the combined effects on performance of 184 

aquatic species fed intracellular PHA from PPB. 185 



3 PPB cultivation systems 186 

For microalgae cultivation, the most commonly applied systems are high rate algae ponds 187 

(HRAPs), with some niche applications of closed PBRs for high value products from sterile 188 

substrates [41]. The costs and life cycle analyses for microalgae systems have been detailed in 189 

several reviews, e.g. [42].  190 

Economic analyses for PPB mediated systems are basic, and usually rely on artificially 191 

illuminated, small-scale lab research, which hardly captures the true picture of a scaled, 192 

outdoors PPB wastewater treatment plant [24, 43]. The main problem at the moment is that 193 

scaled capital and operational costs have not been detailed, as studies in outdoors, scalable 194 

systems are absent from the literature. Therefore, accurate datasets evaluating annual 195 

performances, including areal productivities, removal efficiencies and rates, as well as the 196 

quality and consistency of the produced biomass and its applicability as product, are missing. 197 

PPB reactor technology is still in its infancy. Recent progress is limited to medium-scale 198 

laboratory and field reactors (<100 L) employing artificial illumination in controlled 199 

environments. There is no consensus on the reactor design, and several configurations have 200 

been proposed. These include closed PBRs (flat plate, tubular, cylindrical, sequencing batch 201 

reactors, gas-lift, etc.) and reconfigured HRAP [2].  202 

One might think that 60 years of algal research would have paved the way for PPB, but results 203 

from algal research cannot directly be translated to PPB systems. This is a consequence of the 204 

profound differences among these two microbial groups and include; (i) NIR vs. visible (VIS) 205 

light uptake (ii) anaerobic vs. aerobic phototrophic growth (iii) photoheterotrophic vs. 206 

photoautotrophic growth which necessitate organic carbon vs. CO2 supply. Due to the COD 207 

requirements, PPB are fundamentally more suited to secondary treatment, whereas algae 208 

systems are well suited to tertiary applications. In addition, higher biomass concentrations can 209 

be achieved in PPB reactors, and PPB grow faster than algae [2]. These aspects affect the 210 



process fundamentally, modifying the light distribution through the reactor, potential microbial 211 

synergies and competitions, the growth kinetics, reactor design and mixing, biomass contents, 212 

and various design parameters, such as hydraulic retention time (HRT), sludge retention time 213 

(SRT) and organic loading rate (OLR). Open ponds have lower volumetric cost per unit than 214 

closed PBRs, but the combination of poor NIR penetration, high PPB biomass concentrations, 215 

and the requirement to limit oxygen input (see below) complicate their use. Recent studies 216 

confirm the issue of light limitation in ponds, with light-limited processes at light paths (pond 217 

depth) of 10, 15 and 20 cm (surface to volume ratio (S/V) of 5-10 m2·m-3) [44, 45]. Sepúlveda-218 

Muñoz, Ángeles [45] found an improved performance with a light path of 7.5 cm when 219 

combined with a light intensity increase from 100–200 W·m-2, confirming that light was 220 

limiting. A 15 cm deep horizontal PBR (simulating a pond) required HRTs of 4-11 d, which 221 

are much higher than those commonly applied (PPB have phototrophic growth rates of 2-4 d-1 222 

[46-48]). This further confirm light limitation at these conditions. Such short light transfer 223 

distances imply large footprints (land areas), which increases cost and oxygen transfer into the 224 

liquid. Excessive oxygen transfer (i) inhibits PPB pigment synthesis [49] and allows the growth 225 

of aerobic heterotrophs. This has the potential to result in complete out-competition of PPB 226 

[50]. This will most certainly result in mixed cultures, inconsistent product contents, and 227 

reduced value and may be referred to as PPBALBAZOD (Purple Phototrophic Bacteria, Algae, 228 

Bacteria, Zooplankton and Detritus). 229 

Flat plate PBRs might be an elegant alternative to ponds, reducing the required land area and 230 

the oxygen transfer, while effectively doubling the light path (i.e. at the same pond depth and 231 

PBR thickness, the light path is double in the PBR due to illumination from both sides) and 232 

increasing the illuminated surface to volume ratio, albeit at higher capital cost (Figure 2). Costs 233 

can be further decreased by low energy mixing options, no need for CO2 supply or O2 stripping, 234 

and no cooling requirements. PPB tolerate up to 55°C and daily temperature fluctuations 235 



between 20-30°C [51]. Any viable PBR must be run outdoors unless energy for artificial 236 

illumination is free (or exceptionally cheap) [2]. Mixing, harvesting, up-concentration, drying 237 

and sterilisation costs have to be added. To date, there is no realistic value assessing these costs 238 

as long term outdoor data are missing, and economic studies and life cycle analysis are based 239 

on lab results [24, 43, 46]. The maximum allowable production costs cannot exceed the sum 240 

of wastewater treatment (i.e. discharge savings) and the product revenue to enable a reasonable 241 

payback time for the PPB technology. Mixing is an issue still to be addressed. Inert gas mixing 242 

and return liquid mixing is energetically expensive, and paddle wheels increase oxygen transfer 243 

[52]. PPB can be harvested as biofilms from illuminated submerged surfaces at >10% dry solids 244 

[5, 7]. Formation of flocculant or granular biomass also has the potential to reduce harvesting 245 

costs [53, 54], and might improve the product consistency over time.  246 

 247 

Figure 2: Qualitative comparison of an open pond and a flat plate PBR for PPB cultivation. 248 

Pictures from (top) phototrophic purple bacteria ponds of the Universidad Rey Juan Carlos and 249 

Aqualia and (bottom) flat plate PBR from the University of Queensland. 250 

4 Further research  251 

In order to advance and finally implement the PPB technology in the real world, research needs 252 

Picture from the Universidad Rey Juan Carlos and Aqualia (top) and The University of Queensland (bottom) 



to move to relevant-scale outdoor units. These units will enable the determination of the impact 253 

that biotic and abiotic factors have on the wastewater treatment performance, as well as on the 254 

PPB cultivation and the product quality on an annual basis. This will enable an economic 255 

evaluation, while producing large quantities of PPB biomass that can be used for feed trials. 256 

Further fundamental research is needed on the manipulation of pigment and PHA contents, 257 

including validating their effect via dedicated feed trials. This should include feed 258 

manufacturing as well as nutritional aspects, and requires a multidisciplinary team of 259 

researchers. High value fish and shrimp is a clear initial target to maximise the value of the 260 

product. However, use as feed is overall the most economically viable use of PPB biomass, 261 

and has already been validated in the more expensive algae area . 262 

 263 

5 Conclusion  264 

PPB technology is still in its infancy, but progress is occurring fast, and developments are 265 

accelerating. The economics of different PPB cultivation systems have to be evaluated and the 266 

value of PPB biomass as product will play a major role in the overall feasibility and subsequent 267 

realisation of a PPB platform. The potential value add of the product will impact the overall 268 

feasibility, likely justifying higher capital costs for closed photo bioreactors for real life 269 

applications, with high future growth demand potential of the PPB product. 270 

 271 
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