
HAL Id: hal-03778765
https://hal.inrae.fr/hal-03778765

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Combining Climatic and Genomic Data Improves
Range-Wide Tree Height Growth Prediction in a Forest

Tree
Juliette Archambeau, Marta Benito-Garzón, Frederic Barraquand, Marina de

Miguel, Christophe Plomion, Santiago C. Gonzalez-Martinez

To cite this version:
Juliette Archambeau, Marta Benito-Garzón, Frederic Barraquand, Marina de Miguel, Christophe
Plomion, et al.. Combining Climatic and Genomic Data Improves Range-Wide Tree Height Growth
Prediction in a Forest Tree. The American Naturalist, 2022, �10.1086/720619�. �hal-03778765�

https://hal.inrae.fr/hal-03778765
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Combining climatic and genomic data improves range-wide

tree height growth prediction in a forest tree

Juliette Archambeau1,∗

Marta Benito Garzón1

Frédéric Barraquand2

Marina de Miguel1,3

Christophe Plomion1

Santiago C. González-Martı́nez1
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Abstract

Population response functions based on climatic and phenotypic data from common gardens

have long been the gold standard for predicting quantitative trait variation in new environments.

However, prediction accuracy might be enhanced by incorporating genomic information that

captures the neutral and adaptive processes behind intra-population genetic variation. We used

five clonal common gardens containing 34 provenances (523 genotypes) of maritime pine (Pi-

nus pinaster Aiton) to determine whether models combining climatic and genomic data capture

the underlying drivers of height-growth variation, and thus improve predictions at large geo-

graphical scales. The plastic component explained most of the height-growth variation, probably

resulting from population responses to multiple environmental factors. The genetic component

stemmed mainly from climate adaptation, and the distinct demographic and selective histo-

ries of the different maritime pine gene pools. Models combining climate-of-origin and gene

pool of the provenances, and positive-effect height-associated alleles (PEAs) captured most of

the genetic component of height-growth and better predicted new provenances compared to the

climate-based population response functions. Regionally-selected PEAs were better predictors

than globally-selected PEAs, showing high predictive ability in some environments, even when

included alone in the models. These results are therefore promising for the future use of genome-

based prediction of quantitative traits.
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Introduction

Global change is expected to have a profound impact on forests (Franklin et al., 2016; Seidl et al.,

2017), and whether tree populations will be able to migrate or persist across their current range

is uncertain (Aitken et al., 2008). Assessing the potential of populations to accommodate fu-

ture environmental conditions requires a thorough understanding of the origin of variation in

quantitative traits subject to natural selection (Alberto et al., 2013; Shaw and Etterson, 2012). To

this aim, a necessary first step is to quantify the plastic and genetic components of adaptive traits

and their interaction in multiple environments (Des Marais et al., 2013; Merilä and Hendry, 2014),

which has been done extensively in forest trees (Franks et al., 2014). A second step consists of

identifying the underlying drivers of these components (Merilä and Hendry, 2014). The plastic

component corresponds to the ability of one genotype to produce varying phenotypes depending

on the environment (Bradshaw, 1965). Phenotypic plasticity can help individuals to overcome

new conditions up to a certain threshold (Nicotra et al., 2010), and can be to some extent ge-

netically assimilated and therefore involved in the evolutionary process of adaptation (Pigliucci

et al., 2006). The genetic component can stem from both neutral (e.g. population demographic

history and genetic drift) and adaptive processes (e.g. adaptation to local biotic and abiotic

environments), both processes implying changes in allele frequencies. Populations are locally

adapted when they have higher fitness in their own environment than populations from other

environments (Kawecki and Ebert, 2004). In forest trees, a large amount of work highlighted

the importance of climate in driving the plastic and genetic responses of quantitative traits to

new environmental conditions (Savolainen et al., 2007; Valladares et al., 2014b). However, it is

still unclear how multiple and interacting drivers underlying quantitative trait variation could

be combined to improve predictions of population responses to global change. The increasing

availability of genomic data opens new opportunities to boost prediction accuracy, which is crit-

ical for breeding (i.e. genomic selection; Grattapaglia and Resende, 2011), to anticipate future

distribution of natural populations (e.g. Razgour et al., 2019), or to support the ongoing develop-
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ment of assisted gene flow strategies aiming to help populations adapt to future environments

(Browne et al., 2019; MacLachlan et al., 2021; Mahony et al., 2020).

In forest trees, a long history of common gardens (Langlet, 1971) has provided a unique

framework to associate population-specific quantitative trait variation with large environmental

or geographical gradients, and thus identify populations at risk under climate change (Fréjaville

et al., 2020; Pedlar and McKenney, 2017; Rehfeldt et al., 2018, 2003, 1999; Savolainen et al., 2007).

The development of population response functions was a step forward to evaluate the relative

contribution of plasticity -associated to current climatic conditions (i.e. the climate in the common

gardens)- and genetic adaptation -associated to the past climatic conditions under which the

populations have evolved (i.e. the climate-of-origin of the provenances tested)- in explaining

quantitative trait variation (O’Neill et al., 2008; Wang et al., 2010). These models have now been

applied to a large variety of traits (Benito Garzón et al., 2019; Leites et al., 2012a,b; Vizcaı́no-

Palomar et al., 2020) and one of their main conclusions is that trait variation across species

ranges is mostly associated with the climate in the common garden (i.e. related to the plastic

component) and, only to a much lesser extent, with the climate-of-origin of the provenances (i.e.

related to the genetic component) (Benito Garzón et al., 2019; Leites et al., 2012b). Importantly,

these models do not allow us to determine to what extent associations between trait variation and

provenance climate-of-origin, or the higher trait values of local compared to foreign populations,

are caused by adaptive or neutral processes (Franks et al., 2014; Hereford, 2009; Leimu and

Fischer, 2008). This limits our understanding of the genetic processes that led to the current

patterns of quantitative trait variation, and therefore our ability to predict trait variation of new

(untested in common gardens) populations under new environments.

The advent and generalization of genomic tools have enhanced our understanding of adap-

tive and neutral genetic processes resulting in trait variation, and their relationship with climatic

gradients (Leroy et al., 2020; Savolainen et al., 2013; Sork, 2018). Integrating genomic information

into quantitative trait prediction would be highly valuable to consider intraspecific variability at a

finer scale than in current models (Mahony et al., 2020), thereby probably improving model accu-
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racy, especially for populations not previously planted in commons gardens. More specifically,

rapidly growing knowledge on trait-associated alleles identified by Genome-Wide Association

Studies (GWAS) is promising for anticipating the genetic response of populations to new envi-

ronments (Browne et al., 2019; Exposito-Alonso et al., 2018). For example, Mahony et al. (2020)

used counts of alleles positively associated with the traits of interest (PEAs) to describe patterns

and identify drivers of local adaptation in lodgepole pine. However, the use of genomic infor-

mation in trait prediction is hindered by the high polygenicity of most quantitative traits (Barghi

et al., 2020; Pritchard et al., 2010), as shown recently in maritime pine (de Miguel et al., 2022),

and the potential variation in the effects of trait-associated alleles across different environments

(Anderson et al., 2013; Tiffin and Ross-Ibarra, 2014). In addition, patterns in allele frequencies

induced by population demographic history are often correlated with environmental gradients

(Alberto et al., 2013; Latta, 2009; Nadeau et al., 2016), which makes difficult to separate the sig-

nature of population structure from that of adaptive processes (Sella and Barton, 2019; Sohail

et al., 2019). At the species range scale, population structure hinders the use of genomic rela-

tionship matrices, which provide more accurate estimates of genetic parameters (e.g. breeding

values, additive and non-additive variance) within breeding populations than previously used

pedigree-based approaches (Bouvet et al., 2016; El-Dien et al., 2018). Indeed, admixed popula-

tions or distinct genetic groups may present different means and variances of their genetic values,

which requires new statistical methods to estimate them (e.g. Muff et al., 2019). Thus, integrat-

ing genomic information into quantitative trait prediction in natural populations, while highly

valuable, remains challenging.

Forest trees are remarkable models to study the genetic and plastic components of quan-

titative trait variation. Forest tree populations often have large effective population size and

are distributed along a large range of environmental conditions, which makes them especially

suitable to study current and future responses to climate (Alberto et al., 2013; Savolainen et al.,

2007). Moreover, forest trees remain largely undomesticated (including those species with breed-

ing programs) and, therefore, genetic variation in natural populations has been little influenced
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by human-induced selection (Neale and Savolainen, 2004). However, forest trees have also large

and complex genomes (especially conifers; Mackay et al., 2012), that show a rapid decay of link-

age disequilibrium (Olson et al., 2010), and extensive genotyping would be needed to identify

all (most) relevant polymorphisms underlying (highly polygenic) quantitative traits (Jaramillo-

Correa et al., 2015; Neale and Savolainen, 2004). In addition, although early results have been

convincing in predicting trait variation within tree breeding populations (i.e. using populations

with relatively low effective population size; Jarquı́n et al., 2014; Resende et al., 2012; Resende Jr

et al., 2012), predicting the genetic component of trait variation across populations or geograph-

ical regions of forest trees remains poorly explored.

In the present study, we aim to identify the potential drivers of the plastic and genetic compo-

nents of height growth in distinct maritime pine gene pools (i.e. genetic clusters) and investigate

how common garden data can be combined with genomics to efficiently predict height-growth

variation across the species range. We compared Bayesian hierarchical mixed models that in-

ferred height-growth variation in maritime pine as a function of climatic and genomic-related

variables, using a clonal common garden network (CLONAPIN) consisting of five sites and 34

provenances (523 genotypes and 12,841 trees). First, we evaluated the relative importance of po-

tential drivers underlying height-growth variation. We expected that: (i) the plastic component

explains most trait variation and is associated with climate in the common gardens, (ii) the ge-

netic component is driven by both adaptive processes, such as adaptation to climate, and neutral

processes, such as population demographic history. Second, we compared the out-of-sample

predictive ability (on unknown observations or provenances) of models based exclusively on the

common garden design and models including (either separately or jointly) potential predictors

of the genetic component of trait variation, notably those related to climate and positive-effect

height-associated alleles (PEAs). We expected that the distinct demographic history of maritime

pine gene pools, the provenance climate-of-origin and the counts of PEAs, either combined or

alone, may improve height-growth predictions of unknown provenances. We also expected that

height-associated alleles selected regionally, i.e. in particular environments, would have a better
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predictive ability than globally-selected alleles. Our study is a step towards integrating the recent

knowledge brought by large genomic datasets to the modeling of quantitative trait variation in

forest trees. Combining common gardens with genomic tools hold great promise for speeding

up and improving trait predictions at large scales and for a wide range of species and popu-

lations. However, a robust framework is needed to make reliable predictions and to determine

when and to what extent genomics can help in making decisions in conservation strategies or in

anticipating population responses to climate change.

Methods

Plant material and phenotypic measurements

Maritime pine (Pinus pinaster Ait., Pinaceae) is an economically important forest tree, largely

exploited for its wood (Viñas et al., 2016). It has also an important ecological function stabiliz-

ing coastal and fossil dunes and as keystone species supporting forest biodiversity. Native to the

western part of the Mediterranean Basin, the Atlas mountains in Morocco, and the south-west At-

lantic coast of Europe, its natural distribution spans from the High Atlas mountains in the south

(Morocco) to French Brittany in the north, and from the coast of Portugal in the west to western

Italy in the east. Maritime pine is a wind-pollinated, outcrossing and long-lived tree species that

can grow on a wide range of substrates, from sandy and acidic soils to more calcareous ones. It

can also withstand many different climates: from the dry climate of the Mediterranean Basin to

the highly humid climate of the Atlantic Europe region, and the continental climate of central

Spain. Maritime pine populations are highly fragmented and can be grouped into six gene pools

(see fig. 1; Alberto et al., 2013; Jaramillo-Correa et al., 2015), that is genetic clusters that cannot be

differentiated on the basis of neutral genetic markers and that probably derive from a common

glacial refuge (Bucci et al., 2007; Santos-del Blanco et al., 2012).

Height growth is a key adaptive trait in forest trees, including maritime pine. Height can be

seen as the end-product of multiple ecophysiological processes that are both genetically regulated
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and affected by multiple environmental effects (Grattapaglia et al., 2009). As such, taller trees

compete more efficiently for light, water and nutrients, and are also more likely to have high

fecundity (Aitken and Bemmels, 2015; Rehfeldt et al., 1999; Wu and Ying, 2004). We obtained

height data from the clonal common garden network CLONAPIN, consisting of five common

gardens located in different environments (also referred as test sites; fig. 1). Three sites are lo-

cated in the Atlantic Europe region, with mild winters, high annual rainfall and relatively wet

summers: Bordeaux in the French part, and Asturias and Portugal in the Iberian part, the Por-

tugal site experiencing slightly colder winters and half the summer precipitation than the site

in Asturias. The two other sites, Cáceres and Madrid, are located in the Mediterranean region

with high temperatures and intense summer drought, as well as large precipitation differences

between summer and winter. In 2010 or 2011 depending on the test site, clonal replicates from

34 provenances were planted in a randomized complete block design with eight blocks. For

each provenance, trees represent between 2 and 28 genotypes (clones), on average about 15 (see

Rodrı́guez-Quilón et al., 2016, for details). Genotypes were originally sampled from natural pop-

ulations, with enough distance among trees (over 50 m) to avoid sampling related individuals.

Depending on the site, height was measured from one to four times, when the trees were between

13 and 41 month old (table S1). Only survivors were measured for height, which resulted in a

strongly unbalanced design as 92% and 75% of the trees died in Cáceres and Madrid, respectively

(partly due to the clay soils and a strong summer drought). After removing genotypes for which

we had no genomic information, we analyzed 33,121 height observations from 12,841 trees and

523 genotypes (table S2).

[Figure 1 goes roughly here.]

Gene pool assignment and positive-effect alleles (PEAs)

DNA was extracted from leaves collected in the Asturias common garden and genotyped with a

9k Illumina Infinium SNP assay (described in Plomion et al., 2016), resulting in 5,165 high-quality

polymorphic SNPs scored on 523 genotypes. There were on average only 3.3 missing values per
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genotype (ranging between 0 and 142). For each genotype, the proportion belonging to each gene

pool was estimated in Jaramillo-Correa et al. (2015), using nine nuSSRs as well as a subset of the

same SNPs as in our study (1,745 SNPs) and the Bayesian approach available in Structure v. 2.3.3

(table S3; Pritchard et al., 2000). This gene pool assignment aimed at reflecting the neutral genetic

structure in maritime pine, which results from population demographic history and genetic drift,

but may also arise from different selective histories across gene pools.

Based on the 523 genotypes for which there were both genotypic and phenotypic data, we

performed four GWAS following the Bayesian variable selection regression (BVSR) methodol-

ogy implemented in the piMASS software (Guan and Stephens, 2011), correcting for population

structure and using the height BLUPs reported in de Miguel et al. (2022), that accounted for site

and block effects. First, a global GWAS was performed to identify SNPs that have an association

with height at range-wide geographical scales, thus using the combined phenotypic data from

the five common gardens. Second, three regional GWAS were performed to identify SNPs that

have a local association with height in a particular geographical region r (i.e. in a particular

environment), thus using separately data from the Iberian Atlantic common gardens (Asturias

and Portugal), the French Atlantic common garden (Bordeaux) and the Mediterranean common

gardens (Madrid and Cáceres). For each of the four GWAS, we selected the 350 SNPs (∼7% top

associations) with the highest absolute Rao-Blackwellized estimates of the posterior effect size,

corresponding approximately to the estimated number of SNPs with non-zero effects on height

in a previous multi-trait study using the same SNP marker set (de Miguel et al., 2022). These

SNPs were used to compute the counts of global and regional positive-effect alleles (gPEAs and

rPEAs) for each genotype (see section 2.1 of the Supplementary Information for more details).

Climatic data

In forest trees, large-scale patterns of allele frequencies or quantitative trait variation are known

to be associated with climatic variables related to mean temperature and precipitation (e.g. Eckert

et al., 2010; Fréjaville et al., 2020; Leites et al., 2019; Mahony et al., 2020; McLane et al., 2011), or
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episodic climatic conditions, such as summer aridity or maximum temperatures (Fréjaville et al.,

2020; Grivet et al., 2011; Jaramillo-Correa et al., 2015; McLane et al., 2011; Rehfeldt et al., 2003).

As climate change will cause major changes in temperature and precipitation in the near future,

particularly in the Mediterranean basin, there is a need to understand the complex influence of

climatic variables on quantitative trait variation. We extracted monthly and yearly climatic data

from the EuMedClim database with 1 km resolution (Fréjaville and Benito Garzón, 2018). The

climatic similarity among test sites was described by a covariance matrix Ω including six variables

related to both extreme and average temperature and precipitation in the test sites during the

year preceding the measurements, and with at most a correlation coefficient of 0.85 among each

other (see section 3.1 in the Supplementary Information for more details). The climatic similarity

among provenances was described by a covariance matrix Φ including four variables related to

the mean temperature and precipitation in the provenance locations over the period from 1901 to

2009 (i.e. representing the climate under which provenances have evolved), and with at most a

correlation coefficient of 0.77 among each other (see section 3.2 in the Supplementary Information

for more details).

Hierarchical height-growth models

Twelve height-growth models were compared. We first built two baseline models relying exclu-

sively on the common garden design and aimed at quantifying the relative contribution of the

genetic and plastic components of height-growth variation (models M1 and M2; table 1). Second,

we used climatic and genomic data to detect association of height-growth variation with poten-

tial underlying drivers related to plasticity, adaptation to climate or gene pool assignment (i.e. a

proxy of the population demographic history and genetic drift experienced by the populations),

and estimated gene pool-specific total genetic variances (models M3 to M6; table 1). Third, we

built models either including separately or combining potential drivers of the genetic component

of height-growth variation to predict unknown observations and provenances without relying on

the common garden design (models M7 to M12; table 1). In every model, the logarithm of height
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(log(h)) was used as a response variable to stabilize the variance. Tree age at the time of measure-

ment i was included as a covariate to account for the average height-growth trajectory. This im-

plies that all models shared the form log(hi) = f (agei)+m(covariates), where m(covariates) is the

rest of the model. Therefore, all models can also be written hi = exp( f (agei)) exp(m(covariates)),

which explains why covariates in our models affect height growth (i.e. modulate the height-

growth trajectory) rather than simply height. We used a second-degree polynomial to account

for tree age ( f (agei + age2
i )) because the logarithm of height first increases linearly with age and

then reaches a threshold (fig. S11). Each tree was measured between one and four times (14%

of the trees were measured only once), but we did not include a varying intercept for each tree

as it resulted in model miss-specification warnings and strong overfitting. A description of each

model specification follows.

[Table 1 goes roughly here.]

Baseline models M1 and M2: separating the genetic and plastic components of height-growth

variation

In the baseline model M1, height h was modeled as a function of tree age, varying intercepts for

the sites Ss and blocks nested within sites Bb(s) (i.e. the plastic component), and varying intercepts

for the provenances Pp and genotypes within provenances Gg(p) (i.e. the genetic component):

log(hisbpg) ∼ N (Xβ + µsbpg , σ2)

Xβ = β0 + βageagei + βage2age2
i

µsbpg = Ss + Bb(s) + Pp + Gg(p)

(1)

where X is the 3-column design matrix and β is a vector including the intercept β0 and the

coefficients βage and βage2 of the fixed effect variables (age and age2, respectively). µsbpg is the

vector of varying intercepts. Model M2 was based on model M1 but including an interaction term

between provenance and site (SsPp). We also performed a model without the genetic component

(called M0) whose outputs are reported in the Supplementary Information.
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Explanatory models M3 to M6: potential drivers underlying height-growth variation

In model M3, we hypothesized that the plastic component of height growth was influenced by the

climatic similarity among test sites during the year preceding the measurements. This model can

be expressed with the same likelihood as M1 but with the vector of varying intercepts equal to:

µisbpg = Ss + Bb(s) + Pp + Gg(p) + csis

csis ∼ N (0, Ω σ2
csis

)

(2)

where Ω is the covariance matrix describing the climatic similarity between test sites s during

the year i preceding the measurements (fig. S6) and csis are varying intercepts associated with

the climatic conditions in each test site s during the year i. In M3, the plastic component was

partitioned between the regression on the climatic covariates (csis) and the deviations related to

block and site effects due to the local environmental conditions that are not accounted for by the

selected climatic covariates.

In models M4, M5 and M6, we investigated the drivers of the genetic component of height

growth. In M4, we hypothesized that the genetic component was influenced by the proportion

belonging to each gene pool j. M5 extends M4 by estimating different total genetic variances in

each gene pool while accounting for admixture among gene pools, following Muff et al. (2019).

Equations for M4 and M5 can be found in section 4 of the Supplementary Information. In M6, we

hypothesized that populations are genetically adapted to the climatic conditions in which they

evolved. Thus, we quantified the association between height growth and the climatic similarity

among provenances, while still accounting for the gene pool assignment, such as:

µijsbpg = Ss + Bb(s) + Pp + Gg(p) + csis + cpp +
6

∑
j=1

qgjgj

cpp ∼ N (0, Φ σ2
cpp

)

(3)

where qgj corresponds to the proportion belonging of each genotype g to the gene pool j,

gj is the mean relative contribution of gene pool j to height growth, Φ is the covariance matrix
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describing the climatic similarity between provenances p (fig. S9) and cpp are varying intercepts

associated with the climate in each provenance p. Therefore, in M6, the genetic component was

partitioned among the regression on the climatic covariates (cpp), the gene pool covariates (gj),

and the deviations related to the genotype (Gg(p)) and provenance (Pp) effects (resulting, for

example, from adaptation to environmental variables not measured in our study).

Predictive models M7 to M12: combining climatic and genomic information to improve predic-

tions

In this last set of models, we replaced the provenance and genotype intercepts with different

potential drivers of height-growth variation that do not rely directly on the common garden de-

sign, namely the gene pool assignment (as in M4), two variables describing the climate in the

provenance locations (min.pre the precipitation of the driest month and max.temp the maximum

temperature of the warmest month) and either global or regional PEAs. This allowed us to deter-

mine whether these potential drivers were able to predict the height-growth genetic component

as accurately as the provenance and genotype intercepts (i.e. the variables relying directly on

the common garden design). In models M7 and M8, the potential predictors were all included

together in the models to quantify their predictive performance conditionally to the other pre-

dictors, and were expressed as follows (here for M7):

µjsbpg = Ss + Bb(s) +
6

∑
j=1

qgjgj + βmin.pre,smin.prep

+ βmax.temp,smax.tempp + βgPEA,sgPEAg

(4)

where min.prep and max.tempp are the climatic variables in the provenance locations, βmin.pre,s

and βmax.temp,s their site-specific slopes, gPEAg the counts of global PEAs and βgPEA,s its site-

specific slopes. M8 is identical to M7, except that the counts of gPEAs were replaced by counts

of rPEAs (i.e. regionally-selected alleles, with positive effects in specific geographical regions

or environments). We also performed models in which the potential predictors were included

individually to determine their specific predictive performance: the gene pool assignment in M9,
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the provenance climate-of-origin in M10 and the counts of gPEAs and rPEAs, in M11 and M12,

respectively.

All models were inferred in a Bayesian framework as this approach better handles unbalanced

and multilevel designs (Clark, 2005) and also to better propagate sources of uncertainty from

data and parameter values into the estimates (de Villemereuil, 2019). Priors used in the models

were weakly informative and are provided in section 4.2 of the Supplementary Information. To

build the models, we used the brms package (Bürkner, 2017), based on the no-U-turn sampler

algorithm. Models were run with four chains and between 2,000 and 3,000 iterations per chain

depending on the models (including 1,000 warm-up samples not used for the inference). All

analyses were undertaken in R version 3.6.3 (R Core Team, 2020).

Comparing model goodness-of-fit and predictive ability

Three partitions of the data (P1, P2 and P3) were used to evaluate model goodness-of-fit (i.e.

in-sample explanatory power, using training datasets) and predictive ability (out-of-sample pre-

dictive power, using test datasets). In P1, we aimed to predict new observations, an observation

being a height-growth measurement in a given year on one individual. P1 corresponds to a ran-

dom split of the data between 75% of observations used to fit the models (the training dataset of

24,840 observations) and 25% of observations used to evaluate model predictions (the test dataset

of 8,281 observations). Notice that the test dataset of the P1 partition was not totally independent

from the training dataset as it belongs to the same genotypes/provenances and blocks/sites. In

P2 and P3, we aimed to predict new provenances. P2 corresponds to a random split between

a training dataset of 28 provenances and a test dataset containing the remaining 6 provenances.

P3 corresponds to a non-random split between a training dataset of 28 provenances and a test

dataset containing 6 provenances with at least one provenance from each under-represented gene

pool (i.e. northern Africa, south-eastern Spain and Corsican gene pools; see section 6.3 of the

Supplementary Information for details). Therefore, the test datasets of the P2 and P3 partitions

represent fully independent sets of provenances.

15



To evaluate the model goodness-of-fit, we calculated the in-sample (in the training dataset) pro-

portion of the variance explained by each model m in each common garden s, conditional on the

age effect, such as: R2
ms|age = (Vpredms −Vage2s)/(Vys −Vage2s), where Vpredms is the variance of the

modeled predictive means from model m in site s, Vys the phenotypic variance in the site s and

Vage2s the variance explained by the age effect in the model M2 in site s. We used Vage2 of model

M2 and not of model m because the variance predicted by the different fixed effects of some of

the models (M7 to M12) could not be properly separated. Moreover, as M2 is the model with

the highest predictive ability among the models relying only on the common garden design (ta-

ble S4), it constitutes an adequate baseline for model comparison. In addition, for baseline models

M1 and M2, we also calculated the in-sample proportion of the variance explained by the dif-

ferent model components (i.e. genetic, environment and genetic × environment) conditional on

the age effect, e.g. for the genetic component in M1: R2
1,gen|age = (Vpred1,gen −Vage1)/(Vy −Vage1)

where Vpred1,gen is the variance explained by the genetic component (including the provenance and

clone effects) in M1, Vy the phenotypic variance and Vage1 the variance explained by the age effect

in M1.

Finally, to evaluate the model predictive ability, we calculated the out-of-sample (in the test

dataset) proportion of the variance predicted by each model m in each common garden s con-

ditional on the age effect, that we called prediction R2
ms|age. Details about calculating prediction

R2
ms|age and some supplementary indexes used for model comparison are presented in section 5

of the Supplementary Information.

Results

Underlying drivers of height-growth variation

In this part, we disentangled the different components of height-growth variation and provided

insights on their underlying drivers. Baseline and explanatory models (i.e. models M1 to M6)

explained ∼81.5% of height-growth variation, including 57% due to the age effect (table S4).
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Based on M1, ∼47% (45-48% CIs) of the variation that was not explained by the age effect (i.e.

deviating from the growth trajectory) came from the plastic component, ∼11% (11-12% CIs) from

the genetic component and ∼43% (42-44% CIs) remained unexplained (fig. 2A & table S5). In M2

(same model as M1 but adding the provenance-by-site interaction), the proportion of variance

explained by the provenance-by-site interaction was not different from zero (table S5). Therefore,

we mostly interpret parameter estimates of M1 (fig. 3), whose results are very similar to M2,

but with smaller credible intervals (tables S15 & S18). The plastic component was largely driven

by the variance among sites (σ2
S), with very little contribution of the variance among blocks

(σ2
B; table S15). Trees grew the least in Madrid and the most in Asturias (fig. 3 & table S16). The

genetic component was equally attributed to the variance among provenances (σ2
P) and genotypes

(σ2
G; table S15), with the average height of the provenances appearing to be influenced by their

belonging to particular gene pools (fig. 3; and more details in section 6.1.1 of the Supplementary

Information).

[Figure 2 and 3 go roughly here.]

Based on M3, the plastic component of height-growth came only marginally from the variance

associated with climate similarity among sites, which was more than five times lower than the

variance associated with site intercepts (fig. 2B & table S19). However, M3 may be unable to

separate the effect of these two components (see section 6.1.2 in the Supplementary Information).

Indeed, when estimating the effect of the climate similarity among sites in a model that did not

include varying intercepts for the sites, we found that height growth was positively associated

with the climatic conditions in Bordeaux and Asturias, and negatively with those in Madrid and

Cáceres, the two Mediterranean sites, and to a lesser extent also in Portugal (table S24).

Based on M6, the genetic component of height growth was mostly determined by the climatic

similarity among provenances and to a lesser extent by the gene pool assignment (fig. 2C &

table S29). However, the effects of the gene pools and climatic similarity among provenances

were partially confounded, so that the association between height growth and the gene pools

was stronger when the climatic similarity among provenances was not included in the models
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(i.e. model M4; table S25). Populations from climatic regions neighboring the Atlantic Ocean, and

mainly belonging to the French and Iberian Atlantic gene pools, were generally the tallest (e.g.

CAD, SIE, PUE, LAM and CAS in northwestern Spain; all provenances along the French Atlantic

coast; figs. 2 & 3). Interestingly, the Leiria (LEI) provenance, which has a strong Iberian Atlantic

component (table S3) and had the highest climate intercept estimate (similar to that of the French

Atlantic provenances; fig. 2C), was not among the tallest provenances (fig. 3), probably due to

its mixed ancestry with the central Spain gene pool (table S3). Also, the Corsican provenances

showed contrasted climate intercepts (fig. 2), with a positive influence on height growth for Pinia

(PIA) but not for Pineta (PIE), located under more Mediterranean conditions, which could explain

their large differences in height growth (fig. 3). Finally, the four provenances from south-eastern

Spain and northern Africa gene pools, under harsh Mediterranean climates, showed all negative

climate intercepts (fig. 2). Noticeably, the total genetic variance of the Iberian and French Atlantic

gene pools were likely to be lower than that of the Corsican and south-eastern Spain gene pools,

and to a lesser extent the central Spain gene pool, thus resulting in gene pool-specific heritabilities

(model M5; table S28 and fig. S13A).

Improved prediction of new observations and provenances by combining climatic

and genomic data

In this part, we compared the baseline model M2 (relying exclusively on the common garden

design) to the predictive models that either combine genomic and climatic drivers of height-

growth variation (i.e. models M7 and M8) or include each driver separately (i.e. models M9 to

M12). Models combining genomic and climatic data generally explained in-sample variation

almost as well as M2, and sometimes even better; e.g. model M8 (which includes regional PEAs,

rPEAs) in the Mediterranean sites (Madrid and Cáceres) (fig. S10). Models including each driver

of height-growth variation separately had a lower goodness-of-fit (for all common gardens) than

both M2 and the models combining the genomic and climatic data, except for M12 (the model
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including only rPEAs), which explained in-sample variation almost as well as M2 and even better

than M7 in Madrid (fig. S10).

Model differences in their predictive ability on new observations (observations not used to fit

the models; test dataset of the P1 partition) showed similar patterns than for the goodness-of-fit

(fig. 4), which was expected as the new observations were sampled among the same provenances

and genotypes. However, importantly, models combining genomic and climatic data provided

much better predictions of height-growth on new provenances (provenances not used to fit the

models; test datasets of the P2 and P3 partitions) than did M2, with M8 having a better predictive

ability than M7 in the Mediterranean sites in the P2 partition and in the Atlantic sites in the P3

partition (fig. 4). Models including each driver of height-growth variation separately had also

a higher predictive ability on new provenances than M2, albeit lower than models combining

genomic and climatic data, except model M12 that showed a higher predictive ability than M7 in

the Mediterranean sites in the P2 partition (fig. 4). In model M12, one standard deviation increase

in rPEAs was associated, on average, with 19.0% increase in height in Madrid, 12.7% in Cáceres,

13.0% in Portugal, 10.4% in Asturias and 9.6% in Bordeaux (section 6.4 of the Supplementary

Information). More details on model comparisons are given in section 5 of the Supplementary

Information.

[Figure 4 goes roughly here.]

Discussion

We combined genomic, climatic and phenotypic data from five common gardens and 34 prove-

nances of maritime pine (over 30,000 observations) to predict range-wide variation in height

growth, a key adaptive trait in forest trees. The plastic component explained the largest part of

the deviation from the mean height-growth trajectory (∼47%), probably due to multiple (con-

founded) environmental factors, including climate. The genetic component explained ∼11% of

the deviation from the mean height-growth trajectory and was mainly associated with the prove-

19



nance climate-of-origin (a proxy of adaptation to climate), whose effect was partially confounded

with the proportion belonging to distinct gene pools (a proxy for population demographic his-

tory and genetic drift, probably reflecting also the different selective histories of the gene pools).

Importantly, we showed that models combining climatic drivers of adaptation, gene pool as-

signment and counts of height-associated positive-effect alleles (PEAs) captured well the genetic

component underlying height-growth variation. They also better predicted height growth of new

provenances than models relying exclusively on the common garden design or models includ-

ing separately climatic and genomic information (e.g. the widely used climate-based population

response functions). Interestingly, PEAs that show a regional association with height growth

(rPEAs) had a higher predictive ability than PEAs identified globally across the species range

(gPEAs). These results pave the way towards integrating genomics into large-scale predictive

models of quantitative trait variation.

Predominant role of height-growth plasticity

Plants are known for their remarkable phenotypic plasticity to changing environments (Brad-

shaw, 1965). In long-lived forest trees, the plastic component of quantitative trait variation es-

timated based on the common garden design is generally higher than the genetic component

(Benito Garzón et al., 2019; Franks et al., 2014), e.g. in maritime pine (Chambel et al., 2007; Cor-

cuera et al., 2010; de la Mata et al., 2012; Vizcaı́no-Palomar et al., 2020). This plastic component

is also generally associated with the climatic conditions experienced by the trees (Benito Garzón

et al., 2019; Franks et al., 2014), allowing them to overcome changing climate up to a certain

threshold (Matesanz et al., 2010; Nicotra et al., 2010; Valladares et al., 2014a). In our study, the

plastic component of height growth was largely higher than the genetic component (fig. 2) and,

although climate plays a role, was likely to be driven by multiple and interacting drivers includ-

ing the biotic environment, soil quality, and other factors not considered in our study.

Plants also present an important genetic variation in plasticity (i.e. the genotype-by-environ-

ment interaction, G×E; Des Marais et al., 2013; Sork, 2018), often approximated by the family or
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provenance-by-site interaction in forest tree common gardens, as is the case in our study. G×E

is particularly prevalent for growth traits in trees (Li et al., 2017), as already shown in maritime

pine (Alı́a et al., 1997; Corcuera et al., 2010; Correia et al., 2010; de la Mata et al., 2012); but see

Chambel et al. (2007) where no provenance-specific responses were observed under two different

watering regimes. In our study, provenance-by-site interaction was only weakly associated with

height growth and the proportion of variance it explained was not different from zero (model M2;

table S5). Previous work in the context of tree breeding argued that G×E may hinder model

transferability across sites and populations (Resende et al., 2012; Resende Jr et al., 2012). In

maritime pine, our results suggest that large-scale predictions of height-growth variation will be

only marginally impacted by not accounting for provenance-by-environment interaction. How-

ever, further work is necessary to assess the importance of the genetic variation of plasticity at

the genotype level.

Potential drivers underlying height-growth genetic component

Our study shows that the height-growth genetic component in maritime pine is mostly associ-

ated with adaptation to climate, whose effect is partially confounded with the effect of gene pool

assignment, reflecting both adaptive (different selective histories) and neutral processes (popu-

lation demographic history and genetic drift) (fig. 2; see also Jaramillo-Correa et al., 2015). For

example, the higher growth of most provenances from the French Atlantic gene pool (known

for their high growth under a wide range of conditions, including Mediterranean sites in our

study; see also Alı́a et al., 1997; Corcuera et al., 2010; de la Mata et al., 2012) was both associated

with the provenance climate-of-origin and the gene pool assignment. As another example, in

the northern Africa gene pool, the Madisouka (MAD) provenance was taller than the Tamrabta

(TAM) provenance, which could be both explained by its noticeable ancestry proportion (23.3%)

from the south-eastern Spanish gene pool (Jaramillo-Correa et al., 2015) or its adaptation to lower

elevation (300 m lower than TAM). As a last example, the Leiria (LEI) provenance grew well in

Asturias and Bordeaux as was the case for French Atlantic provenances (that share similar cli-
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mates) but unlike them, it did not maintain growth in drier and warmer sites, probably due to a

different genetic background (this provenance has a strong central Spain gene pool component;

table S3). Nevertheless, in contrast to the three examples above, for some provenances, the ef-

fects of the gene pool assignment and adaptation to climate on height growth could be clearly

separated. This was the case, for example, for the Corsican provenances: the higher growth of

Pinia (PIA) than Pineta (PIE) can only be explained by adaptation to different environmental

conditions (and in particular climate), as both belong to the same gene pool. Indeed PIA is at

the sea level under a climate similar to that of provenances from Central and south-eastern Spain

whereas PIE is located at an altitude of 750 m a.s.l. in the mountains under a climate similar to

that of the Atlantic provenances (fig. S9). These different adaptations within a same gene pool

calls for a more targeted investigation of the Corsican gene pool. More generally, a QST − FST

analysis supported adaptive differentiation of height growth in maritime pine (see details in

section 7 of the Supplementary Information).

The entanglement of the effect of climate adaptation and gene pool assignment to explain

the genetic component of height-growth variation may partly stem from the distinct selective

histories experienced in different parts of maritime pine range, despite gene pools being identi-

fied using genetic markers considered neutral (Jaramillo-Correa et al., 2015). This is supported

by the estimation of gene pool-specific heritabilities in our study (model M5): the Corsican gene

pool, and to a lesser extent the south-eastern Spain gene pool, have higher heritabilities than the

French and Iberian Atlantic gene pools (fig. S13; and see section 6.1.3 for a potential explanation

of this pattern).

Overall, maritime pine proved to be a particularly suitable model species to study the joint in-

fluence of genetic neutral (population demographic history, genetic drift) and adaptive (climate

adaptation) processes on quantitative traits. Further work on provenances that have different

demographic histories but are exposed to similar climates (e.g. the LEI provenance and prove-

nances from the Atlantic gene pools) would be relevant for understanding how a given genetic

background guides population adaptation. Conversely, targeting provenances that have a similar
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demographic history but are found in highly contrasted environments (e.g. the Corsican prove-

nances) would be valuable to identify signatures of adaptation while avoiding common issues

due to confounding population structure (Berg et al., 2019; Sella and Barton, 2019; Sohail et al.,

2019). Likewise, investigating trait genetic architecture will also help better understand how

adaptive and neutral processes have shaped the genotype-phenotype map and how this will in-

fluence future responses to selection, e.g. in Kardos and Luikart (2021) and see de Miguel et al.

(2022) for maritime pine. Finally, it would also be critical to consider drivers of adaptation other

than climate, such as resistance to pathogens or other biotic-related traits.

Towards integrating genomics into population response functions

Anticipating how provenances will grow in new environments is key to guide forest conserva-

tion strategies and population translocations to compensate for rapid climate change (Aitken and

Whitlock, 2013). To date, population response functions based on the climate in the provenance

location have been the most widely used method for anticipating trait values when transplanting

provenances in new environments (Fréjaville et al., 2020; O’Neill et al., 2008; Pedlar and McKen-

ney, 2017; Rehfeldt et al., 2018, 2003, 1999; Wang et al., 2010). Genome-informed predictive mod-

eling of key adaptive traits is highly promising as it may provide a means to further integrate

adaptive or neutral genetic variation in the predictions, and to consider intraspecific variability

at a finer scale than current models, thus gaining in prediction accuracy (Holliday et al., 2017).

In valley oak, Browne et al. (2019) used genomic estimated breeding values (GEBVs; sum of the

marker predicted effects, also known as polygenic scores) to identify genotypes that will grow

faster under future climates. In lodgepole pine, Mahony et al. (2020) showed that phenotype-

associated positive-effect alleles (PEAs, as used in our study) can predict phenotypic traits (e.g.

cold injury) as well as climatic or geographical variables. In our study, we investigated whether

including genomic information related to past demographic and selective processes resulting in

distinct gene pools and counts of trait-associated alleles could improve range-wide height-growth

predictions in maritime pine. Models combining climatic conditions in the provenance location,
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gene pool assignment, and PEAs captured most of the genetic component of height-growth vari-

ation (see fig. S10) and better predicted height growth of new provenances, compared to models

relying exclusively on the common garden design or models including separately climatic or ge-

nomic information (see fig. 4). This suggests that range-wide trait prediction would benefit from

jointly considering different sources of information (i.e. climatic and genomic), even though

they may have overlapping effects (e.g. confounded effects of provenance climate-of-origin and

gene pool assignment), as it may help to embrace the complexity and multidimensionality of

the genetic component underlying quantitative traits. Noticeably, regional PEAs were generally

better predictors of height growth in new provenances than gene pool assignment or provenance

climate-of-origin as, when they were included alone in the models, they made better predictions

in the driest common gardens (Madrid, Cáceres and Portugal) and similar ones to models com-

bining multiple drivers of height growth variation in all common gardens except Bordeaux (P2

partition in fig. 4). Although this highlights the major role that trait-associated alleles identified

using GWAS may play in predictive modeling, predicting traits of new provenances depends also

on the number of provenances used to fit the models and the strength of the genetic relationship

among them (Hidalgo et al., 2016; Jarquı́n et al., 2014; Moghaddar et al., 2014; Resende et al.,

2012). This was reflected in our study by better predictive ability on new provenances in the P2

partition (random) compared to the P3 partition (containing provenances from underrepresented

gene pools) for models including climatic and genomic information separately but not for mod-

els considering both jointly (fig. 4). Thus combining multiple sources of information may also be

particularly relevant for predicting traits in marginal or difficult-to-access populations, as they

normally belong to underrepresented geographical areas/gene pools in ecological and genetic

studies.

The high predictive ability of PEAs, both alone and combined with climatic and gene pool

information, was somehow unexpected given the sparse genomic sampling in our study: 5,165

SNPs to cover the 28 Gbp maritime pine genome (Zonneveld, 2012). Indeed, conifers have par-

ticularly huge genomes, generally ranging from 18 to 35 Gbp (Mackay et al., 2012) and thus
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rendering the current cost of whole-genome resequencing prohibitive (Holliday et al., 2017). Tar-

geted genotyping approaches, such as the one used in the present study, select candidate genes

based on previous population and functional studies, thus allowing to include potential targets of

selection and climate adaptation, but probably inducing an ascertainment bias (Jaramillo-Correa

et al., 2015). However, as height is a particularly polygenic trait (degree of polygenicity estimated

at ∼7% in de Miguel et al., 2022), we were able to identify a considerable number of PEAs despite

the weak genome coverage of our study. Further genomic sampling would be highly valuable

to capture the polygenic architecture of height more broadly, turning PEAs into much better

predictors than the provenance climate-of-origin or the gene pool assignment, and ultimately

making climatic data redundant, at least for main range populations (see above for marginal

populations). This would also allow to characterize the genetic variation within provenances

more precisely, thereby increasing the estimation accuracy and reducing the residual variance.

Similar to Mahony et al. (2020) and MacLachlan et al. (2021) who selected the positive-effect

alleles as the 1% of SNPs that showed the strongest association with phenotypes (estimated via

a GWAS performed on 18,525 SNPs), we used PEA counts instead of the more commonly used

polygenic scores (Browne et al., 2019; Fuller et al., 2020; Pritchard et al., 2010). Unlike polygenic

scores, PEAs do not account for allele effect sizes, thus minimizing the circularity of the analysis

(i.e. effect sizes that are estimated based on the same dataset as the one used for the models, only

serve for PEAs identification) and potentially enhancing the prediction accuracy across genetic

groups compared to polygenic scores. Indeed, low observed transferability of polygenic scores

across genetic groups (Barton et al., 2019; Martin et al., 2017, 2019) may stem from varying ef-

fect sizes of ”peripheral” alleles (i.e. alleles indirectly affecting the phenotype), as suggested in

Mathieson (2021).

Although combining climatic and genomic information allowed us to capture most of the ge-

netic component of height-growth variation (fig. S10), the residual variance remained high in our

study. As already mentioned, this may be partly related to the models’ difficulty in accounting

for genetic variation within provenances, which might be improved by denser genomic sampling.
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However, this unexplained variance may also originate from developmental stochasticity, which

can play an important role in explaining differences between individuals with the same geno-

type (Ballouz et al., 2019; Vogt, 2015). Height growth may also be influenced by the correlative

effects of other traits. For example, Stern et al. (2020) recently showed that variation in some

human traits (hair color and educational attainment), previously thought to be under selection,

can instead be explained by indirect selection via a correlated response to other traits. Therefore,

multi-trait models may be the next necessary step to improve our understanding and predictive

ability of quantitative trait variation at large geographical scales (e.g. Csilléry et al., 2020).

A last noticeable results was that rPEAs (positive-effect alleles identified in specific geograph-

ical regions, i.e. particular environments) had generally a higher predictive ability than gPEAs

(positive-effect alleles identified range-wide) (fig. 4). Interestingly, only a small proportion of

rPEAs were shared among geographical regions in our study (20% shared between the Iberian

and French Atlantic regions, 12% between the French Atlantic and Mediterranean regions, and

24% between the Iberian Atlantic and Mediterranean regions; fig. S2), although we cannot ex-

clude that the proportion of shared rPEAs among regions is a function of the sample size (see

details in the section 2.2 of the Supplementary Information). Moreover, those that were shared

among different regions showed consistently similar effects across regions (e.g. positive effects

in two or more regions rather than antagonist effects). This supports the predominance of condi-

tional neutrality, i.e. alleles that are advantageous in some environments and neutral in others,

over antagonistic pleiotropy, i.e. alleles that are advantageous in some environments and disad-

vantageous in others (Tiffin and Ross-Ibarra, 2014). Such pattern has already been reported in

plants (Anderson et al., 2013; Prunier et al., 2012). Our results show that, despite a high stability

in the level of polygenicity for height between the Atlantic and Mediterranean regions (de Miguel

et al., 2022), height-growth variation in Mediterranean sites is unlikely to be affected by the same

loci as in the other regions, probably as a result of genetic divergence in separated southern refu-

gia during the last glaciation. Overall, identifying positive-effect alleles for different geographical

regions separately has the potential to greatly improve the predictive ability of the models, but at
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the cost of reducing GWAS power (due to lower sample size than in global, wide-range analyses).

Finally, caution has to be taken when generalizing our results to older trees as the drivers

of height growth in young trees may differ from that of adult trees. For example, G×E on tree

height can be age-dependant (Gwaze et al., 2001; Rehfeldt et al., 2018; Zas et al., 2003) and the

plastic component may be higher in younger trees, especially in maritime pine (Vizcaı́no-Palomar

et al., 2020). Nevertheless, a recent measurement in the Bordeaux common garden (2018) showed

a high correlation between young saplings and 10-year old trees for height (Pearson’s correlation

coefficient of 0.893 based on height BLUPs; for details on BLUP estimation see de Miguel et al.,

2022). Moreover, our study remains indicative of how trees respond to varying environmental

conditions during establishment and early-growing stages, a critical phase where most mortality

(i.e. selection) is expected to take place (Postma and Ågren, 2016). In addition to ontogenic

effects, high mortality in the Mediterranean common gardens (Cáceres and Madrid), after a

marked summer drought, may have biased estimates of some parameters of interest. Indeed,

if this environmental filtering was not independent of tree height, it could have resulted in an

underestimation of the genetic variance. Nonetheless, height distributions in Cáceres and Madrid

were only slightly right-skewed, suggesting uniform selection across height classes (fig. S21), and

thus no bias due to high mortality in these common gardens.

Conclusion

The present study connects climate-based population response functions that have been exten-

sively used in predictive models for forest trees (Leites et al., 2012a; Rehfeldt et al., 2003, 1999;

Wang et al., 2010) with recent genomic approaches to investigate the potential drivers behind

the genetic and plastic components of height-growth variation and predict how provenances will

grow when transplanted into new climates. The integration of genomic data into range-wide

predictive models is in its infancy and still lacks a well-established framework, especially for non-

model species such as forest trees. We showed that combining climatic and genomic information
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(i.e. provenance climate-of-origin, gene pool assignment and trait-associated positive-effect al-

lele counts) can improve model predictions for a highly polygenic adaptive trait such as height

growth, despite sparse genomic sampling. Further genomic sampling may help to improve the

accuracy of the estimates, notably through improved characterization of within-provenance ge-

netic variation. Moreover, comparative studies between maritime pine and more continuously

distributed species (e.g. Scots pine; Alberto et al., 2013) and/or living under stronger climatic

limitations, would be highly valuable to determine whether our findings can be generalized to

species with contrasted population demographic and selective history. Finally, our study focuses

specifically on the height-growth genetic component of standing populations, but considering

evolutionary processes (e.g. genetic drift in small populations, extreme selection events, etc.) into

the predictions would be necessary to anticipate the response of future forest tree generations

to changing climatic conditions and thus provide a much-needed longer-term vision (Waldvogel

et al., 2020).
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Tables

Variables
Baseline Explanatory models Predictive models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Site/Block × × × × × × × × × × × ×

Provenance × × × × × ×

Genotype × × × × ×

Site × Provenance ×

Climatic similarity among sites × × × ×

Proportion belonging to each gene pool × × × × × ×

Gene pool-specific genetic variance ×

Climatic similarity among provenances ×

Provenance climate-of-origin × × ×

Global PEAs (gPEAs) × ×

Regional PEAs (rPEAs) × ×

Table 1. Variables included in the height-growth models. Baseline models M1 and M2 separate the

genetic and plastic components of height-growth variation via varying intercepts relying exclusively on

the common garden design. Explanatory models (models M3 to M6) test different hypotheses regarding the

potential drivers underlying height-growth variation. Predictive models (models M7 to M12) are used to

compare the predictions on new observations and provenances when combining or including separately

genomic and climatic drivers of height-growth variation. The provenance climate-of-origin is evaluated

using the precipitation of the driest month, min.pre, and the maximum temperature of the warmest month,

max.temp. gPEAs and rPEAs correspond to the counts of height-associated positive-effect alleles, selected

either globally (across all common gardens) or regionally (in specific common gardens). The provenance

climate-of-origin and the PEAs were included in the predictive models with site-specific slopes. All models

also contained the age effect, not shown in the table.
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Figure legends

Figure 1. The five common gardens and 34 provenances of maritime pine (CLONAPIN common garden

network) used in this study. The distribution of maritime pine is also shown (based on EUFORGEN map,

http://www.euforgen.org/). Pie charts represent the proportions belonging to each gene pool for each

provenance (see legend) as estimated in Jaramillo-Correa et al. (2015). Provenance names can be found in

table S2.

.

Figure 2. Understanding the genetic and plastic bases of height-growth variation and their potential

underlying drivers. A) shows the variance partitioning conditional on age from model M1 in the P1

partition. B) displays the partitioning of the plastic (i.e. environment) component in model M3 among

the intercepts of the sites (common gardens) (Ss) and the intercepts associated with the climatic similarity

among sites during the year preceding the measurements (csis). C) displays the partitioning of the genetic

component in model M6 among the intercepts of the provenances (Pp), the intercepts associated with the

climatic similarity among provenances (cpp) and the intercepts of the the gene pools (gj). The median

and 0.95 credible intervals shown in B) and C) were obtained by fitting the models M3 and M6 on the P1

partition. Provenance names can be found in table S2.

Figure 3. Posterior distributions of the site and provenance intercepts (Ss and Pp) in model M1 on a map

representation. Provenances are colored according to the main gene pool they belong to. The exact values

of the median, standard deviation and 0.95 credible interval of the posterior distributions of the site and

provenance intercepts are shown in tables S16 & S17, respectively. The top right picture shows the height

difference in 2019 between one tree from Coca in central Spain (COC) and another from Puerto de Vega

in the Iberian Atlantic region (PUE) growing next to each other in the Bordeaux common garden. The

bottom picture shows the height difference between the trees growing in Madrid and Asturias, under

highly contrasted environments, three years after plantation (2013). Provenance names can be found in

table S2.
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Figure 4. Model predictive ability on new observations (P1 partition) or new provenances (P2 and P3 parti-

tions) based on the out-of-sample proportion of predicted variance conditional on the age effect (prediction

R2
ms|age) in the test datasets (data not used to fit the models). In the P1 partition, the training dataset was

obtained by randomly sampling 75% of the observations and the test dataset contains the remaining 25%

observations. In the P2 partition, the training dataset was obtained by randomly sampling 28 provenances

and the test dataset contains the remaining 6 provenances. The P3 partition corresponds to a non-random

split between a training dataset of 28 provenances and a test dataset containing 6 provenances with at

least one provenance from each under-represented gene pool. The exact values of the prediction R2
ms|age

estimates and their associated credible intervals can be found in tables S4 (P1 partition), S9 (P2 partition)

& S12 (P3 partition).
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