
HAL Id: hal-03778879
https://hal.inrae.fr/hal-03778879

Submitted on 16 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multibreed genomic evaluation for production traits of
dairy cattle in the United States using single-step

genomic best linear unbiased predictor
A. Cesarani, D. Lourenco, S. Tsuruta, A. Legarra, E.L. Nicolazzi, P.M.

Vanraden, I. Misztal

To cite this version:
A. Cesarani, D. Lourenco, S. Tsuruta, A. Legarra, E.L. Nicolazzi, et al.. Multibreed genomic evaluation
for production traits of dairy cattle in the United States using single-step genomic best linear unbiased
predictor. Journal of Dairy Science, 2022, 105 (6), pp.5141-5152. �10.3168/jds.2021-21505�. �hal-
03778879�

https://hal.inrae.fr/hal-03778879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


5141

ABSTRACT

Official multibreed genomic evaluations for dairy 
cattle in the United States are based on multibreed 
BLUP evaluation followed by single-breed estimation 
of SNP effects. Single-step genomic BLUP (ssGBLUP) 
allows the straight computation of genomic (G)EBV 
in a multibreed context. This work aimed to develop 
ssGBLUP multibreed genomic predictions for US dairy 
cattle using the algorithm for proven and young (APY) 
to compute the inverse of the genomic relationship ma-
trix. Only purebred Ayrshire (AY), Brown Swiss (BS), 
Guernsey (GU), Holstein (HO), and Jersey (JE) ani-
mals were considered. A 3-trait model with milk (MY), 
fat (FY), and protein (PY) yields was applied using 
about 45 million phenotypes recorded from January 
2000 to June 2020. The whole data set included about 
29.5 million animals, of which almost 4 million were 
genotyped. All the effects in the model were breed spe-
cific, and breed was also considered as fixed unknown 
parent groups. Evaluations were done for (1) each sin-
gle breed separately (single); (2) HO and JE together 
(HO_JE); (3) AY, BS, and GU together (AY_BS_GU); 
(4) all the 5 breeds together (5_BREEDS). Initially, 
15k core animals were used in APY for AY_BS_GU 
and 5_BREEDS, but larger core sets with more ani-
mals from the least represented breeds were also tested. 
The HO_JE evaluation had a fixed set of 30k core 
animals, with an equal representation of the 2 breeds, 
whereas HO and JE single-breed analysis involved 15k 
core animals. Validation for cows was based on cor-
relations between adjusted phenotypes and (G)EBV, 
whereas for bulls on the regression of daughter yield 
deviations on (G)EBV. Because breed was correctly 
considered in the model, BLUP results for single and 

multibreed analyses were the same. Under ssGBLUP, 
predictability and reliability for AY, BS, and GU were 
on average 7% and 2% lower in 5_BREEDS compared 
with single-breed evaluations, respectively. However, 
validation parameters for these 3 breeds became better 
than in the single-breed evaluations when 45k animals 
were included in the core set for 5_BREEDS. Evalu-
ations for Holsteins were more stable across scenarios 
because of the greatest number of genotyped animals 
and amount of data. Combining AY, BS, and GU into 
one evaluation resulted in predictions similar to the 
ones from single breed, especially when using about 
30k core animals in APY. The results showed that 
single-step large-scale multibreed evaluations are com-
putationally feasible, but fine tuning is needed to avoid 
a reduction in reliability when numerically dominant 
breeds are combined. Having evaluations for AY, BS, 
and GU separated from HO and JE may reduce infla-
tion of GEBV for the first 3 breeds.
Key words: all-breed model, across-breed predictions, 
unknown parent group, genomic selection

INTRODUCTION

Official multibreed genomic evaluations for dairy 
cattle in the United States are based on multibreed 
BLUP evaluations followed by single-breed estimation 
of SNP effects. This is the so-called multistep method 
(VanRaden, 2008; VanRaden et al., 2009), where ge-
nomic PTA is obtained as the combination of direct 
genomic value based on markers and parent average. 
The effectiveness of genomic evaluations relies on the 
availability of a large reference population where the 
marker effects can be estimated (Goddard, 2009). 
The accuracy of this estimation strongly depends on 
the size of the reference population. VanRaden et al. 
(2009) demonstrated that, when the genotyping was 
performed almost exclusively on elite bulls, there was a 
linear increase in estimation reliability with the number 
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of bulls added to the reference population. Nowadays, 
the availability of genotypes drastically increased and 
the number of animals with genomic information re-
cently hit 5 million only in the United States (https:​/​/​
queries​.uscdcb​.com/​Genotype/​counts​.html).

Single-step genomic BLUP (ssGBLUP) has been 
adopted in lieu of the multistep method for genetic 
evaluations in several farm animal species over the 
years. The ssGBLUP involves the inverse of a realized 
relationship matrix (H−1; Aguilar et al., 2010), which 
combines the pedigree relationship matrix (A) and the 
genomic relationship matrix (G). Despite past limits 
due to problems with unknown parent groups (UPG) 
and computational cost, recent studies demonstrated 
the validity of this method for evaluating breeding val-
ues in several different livestock species including dairy 
(Himmelbauer et al., 2021; Liu and Alkhoder, 2021; 
Pimentel et al., 2021) and beef cattle (Lourenco et al., 
2015), buffalo (Aspilcueta-Borquis et al., 2015; Cesarani 
et al., 2021a), goats (Teissier et al., 2018), and sheep 
(Cesarani et al., 2019; Macedo et al., 2020). Recently, 
better prediction features of ssGBLUP compared with 
BLUP in US Holstein were reported (Cesarani et al., 
2021b). Those authors used about 860k genotyped 
animals and demonstrated that old phenotypic records 
(i.e., before 2000) can be removed without reducing 
prediction accuracy of young selection candidates. 
Moreover, they concluded that the best way to con-
sider UPG in ssGBLUP is to include them in both A 
and the relationship matrix among genotyped animals 
(A22), as also described by Tsuruta et al. (2019) and 
Masuda et al. (2021). Another advantage of ssGBLUP 
is the consideration of genomic preselection (Masuda 
et al., 2018), that is, animals selected based on their 
GEBV before they have phenotypes available (Patry 
and Ducrocq, 2011; Jibrila et al., 2020).

Some studies have already investigated multibreed 
genomic evaluation models. Winkelman et al. (2015) 
applied the multibreed evaluation, using different 
blended or hybrid genomic models, to Holstein (HO), 
Jersey (JE), and their crosses from New Zealand; these 
authors reported high reliabilities for pure- and cross-
breds, with the latter showing higher accuracy for some 
traits. Different types of SNP panels and genomic mod-
els (i.e., GBLUP and Bayesian methods) were tested in 
crossbreeds, and the highest accuracy for crossbreeds 
was achieved when their data were considered (Khanse-
fid et al., 2020). Creating a genomic relationship matrix 
among all genotyped animals belonging to different 
breeds in ssGBLUP can be challenging; however, it may 
help overcome the limitation due to the small reference 
population size in some breeds. This research aimed to 
develop ssGBLUP multibreed genomic predictions for 

US dairy cattle using purebred Ayrshire (AY), Brown 
Swiss (BS), Guernsey (GU), HO, and JE animals.

MATERIALS AND METHODS

Data

No animals were used in this study, and ethical ap-
proval for the use of animals was thus deemed unneces-
sary.

Data used in the official multibreed genomic evalu-
ations for US dairy cattle breeds were provided by 
the Council on Dairy Cattle Breeding (Bowie, MD). 
Only purebred AY, BS, GU, HO, and JE animals were 
considered. It is important to note that animals are 
considered purebred if they have more than 90% pedi-
gree-based ancestry from one breed. The data sets were 
analyzed in 4 different scenarios: (1) each single breed 
separately (single); (2) HO and JE together (HO_JE); 
(3) AY, BS, and GU together (AY_BS_GU); and (4) 
all the 5 breeds together (5_BREEDS). Number of 
phenotypic lactation records (and cows), genotyped 
animals, and total animals in the pedigree (traced back 
3 generations) are shown in Table 1. Milk (MY), fat 
(FY), and protein (PY) yields recorded from January 
2000 to June 2020 were considered. The 305-d yields 
for the first 5 lactations included projected records for 
the final lactation and for lactations not yet completed 
by June 2020. The projected records were expanded to 
have the same genetic variance as completed records 
but given less weight to account for their larger error 
variance (VanRaden, 1997). According to the real lac-
tation length, different weights are applied to project 
the records to 305 d: the shorter the lactation, the lower 
the weight. Animals were genotyped with 48 different 
arrays ranging from <3,000 to >600,000 usable SNPs. 
Genotypes were imputed, within each breed, to a com-
mon set of 79,294 selected SNPs using Findhap version 
3 (VanRaden, 2016).

Single-step GBLUP was used in all the scenarios. 
The algorithm for proven and young (APY; Misztal 
et al., 2014) was used when the number of genotyped 
animals exceeded 50k (i.e., in single for Holstein and 
Jersey evaluations with 15k random core animals, in 
HO_JE with 30k random core following an equal rep-
resentation of the 2 breeds, in AY_BS_GU, and in 5_
BREEDS with 15k random core animals). According to 
Pocrnic et al. (2016), the number of largest eigenvalues 
explaining 98% of the variance of G (EIGEN98), which 
represents the number of core animals in APY, in the 
US cattle populations varies from 11k to 19k; however, 
this number can be higher in multibreed populations if 
there is less overlap among breeds (Pocrnic et al., 2019). 
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Because the EIGEN98 when combining AY, BS, and 
GU was 19,184, being 14,909 for BS alone, we tested 
one sub-scenario under AY_BS_GU with 15k BS and 
all AY and GU (AY_BS_GU_30k). Additionally, we 
compared AY_BS_GU and AY_BS_GU_30k against 
one analysis without APY, meaning G with almost 61k 
animals was directly inverted (AY_BS_GU_direct). 
The 5_BREEDS scenario had a sub-scenario where 45k 
core animals were used, being composed by 5k AY, 5k 
BS, 5k GU, 15k HO, and 15k JE (5_BREEDS_45k).

Model and Analysis

Two evaluation methods were considered: (1) tradi-
tional BLUP (BLUP) with UPG; (2) ssGBLUP with 
UPG for A and A22, implemented as in Tsuruta et 
al. (2019) and Cesarani et al. (2021b). The UPG were 
defined based on breed, sex, and year of birth. The lat-
ter consisted of different groups for animals born before 
2000, from 2001 to 2005, from 2006 to 2010, and from 
2011 to 2020. Therefore, a total of 8 UPG were assigned 
within each breed.

A 3-trait repeatability BLUP animal model was ap-
plied in the single scenario according to Cesarani et al. 
(2021b), whereas the model used in the present study 
for ssGBLUP is described as SS_UPG2 in the same 
paper. In particular, the following 3-trait repeatability 
animal model was applied for the traditional BLUP:

	 y = Xb + Zhh + ZaQaga + Zaa + Zpp + e,	

where y was the vector of the phenotypic records (i.e., 
milk, fat, and protein lactation yields); b was the vec-
tor of the considered fixed effects of herd-management, 
age-parity, inbreeding coefficient covariates, and heter-
osis; h was the vector of the random effect of the herd-
sire combination; g was the vector of the fixed effect 
of UPG; a was the vector of animal additive genetic 

effect; p was the vector of permanent environmental 
effect; and e was the vector or residuals. Heterosis is 
included because purebred animals can have up to 10% 
of other breeds (VanRaden et al., 2007). A single het-
erosis regression coefficient per animal was computed, 
as 1 − Σsidi, where si and di are fractions of the sire’s 
and dam’s genes from breed i (VanRaden, 1992); this 
results in 0 for a 100% purebred animal, but is different 
from 0 if, say, the bull was 100% Holstein and the dam 
was 95% Holstein and 5% Jersey. X was the incidence 
matrix relating each phenotypic record to the fixed ef-
fects in b; Qa was an incidence matrix relating animals 
in vector a to UPG in vector ga; Zh, Za, and Zp were 
incidence matrices relating phenotypic records in y to 
herd-sire, animal, and permanent environment effects, 
respectively. The h vector had mean zero and variance 
I ⊗ Vh, where I was an identity matrix and Vh was a 3 
× 3 matrix of herd-sire variances and covariances, and 
⊗ was the Kronecker product. The vector a had mean 
zero and variance A ⊗ Va, where A was the numera-
tor relationship matrix and Va was a 3 × 3 matrix of 
additive genetic variances and covariances. Finally, the 
vector p had mean zero and variance I ⊗ Vp, where 
I was an identity matrix and Vp was a 3 × 3 matrix 
of permanent environment variances and covariances. 
The ssGBLUP model had the same effect structure of 
BLUP but the covariance structure for Zaa and ZaQaga 
also contained genomic relationships. In particular, the 
covariance matrix for the additive genetic effect in ssG-
BLUP was given by
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where H* was the inverse of the realized relationship 
matrix with UPG added to the pedigree relationship 
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Table 1. Number of records, cows, genotypes, and total animals in 5 single breeds and in the combined 
scenarios1

Scenario

Phenotypes

 

Animals

N Cows Genotypes2 Total

AY 116,674 47,174   9,202 94,500
BS 328,811 138,418   47,309 292,923
GU 129,422 58,554   5,032 100,643
HO 40,298,113 17,484,436   3,407,476 26,586,363
JE 4,134,973 1,704,641   427,286 2,467,946
AY_BS_GU 574,907 244,146   61,543 488,066
5_BREEDS 45,007,993 19,433,223   3,896,305 29,542,375
HO_JE 44,433,086 19,189,077   3,834,762 29,054,309
1AY = Ayrshire; BS = Brown Swiss; GU = Guernsey; HO = Holstein; JE = Jersey; 5_BREEDS = all 5 breeds 
together. 
2Genotypes were used in genomic model only (i.e., single-step genomic BLUP).
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matrix A and to the matrix of pedigree relationships 
among genotyped animals A22; A

* was the inverse of 
the pedigree relationship matrix with UPG, modified 
with the QP transformation (Quaas, 1988); GAPY

−1  was 
the inverse of the genomic relationship matrix (G) built 
with or without the APY according to the scenario (see 
above). The G matrix was constructed according to the 
method 1 of VanRaden, 2008 (i.e., centered and scaled 
by current allele frequencies from all genotyped ani-
mals). The genomic matrix was combined with 5% of 
A22 to avoid singularity; the latter matrix was built 
based on the algorithm proposed by Colleau (2002). 
Moreover, G was scaled based on A22 so the 2 matrices 
had same average values for both diagonal and off-diag-
onal elements.

Variance components for MY, FY, and PY were ob-
tained from VanRaden et al. (2014): heritability was 
0.20 for all the 3 traits; genetic correlations were 0.45 
(MY vs. FY), 0.81 (MY vs. PY), and 0.60 (FY vs. PY). 
The heterogeneous herd variance was adjusted accord-
ing to Wiggans and VanRaden (1991). The pre-adjust-
ments for herd-year variance also adjust all breeds to 
have equal genetic variance (VanRaden et al., 2007). 
Higher heritability in different breeds is accounted for 
in the model by higher weights obtained from the ratios 
of genetic to error variance. The same pre-adjustments 
and variance ratios are applied to all the 3 traits.

In AY_BS_GU, HO_JE, and 5_BREEDS scenarios, 
fixed effects were made breed-specific by concatenat-
ing a breed indicator to the effect levels and nesting 
covariables for inbreeding and heterosis within breed.

The mixed model equations (MME) were solved us-
ing iteration on data and a block preconditioning con-
jugate gradient with the software BLUP90IOD2 (ver. 
3.113; Tsuruta et al., 2001; Tsuruta and Misztal, 2008). 
If the MME are Ax = b, the convergence criterion 
was b − Ax2/b2, with a termination criterion of 10−15. 
The computations were carried out on a Linux server 
(x86_64) equipped with Intel Xeon E5–2683 v4 2.10 
GHz processor with 32 cores.

Validation of Breeding Values

The (G)EBV were validated within each tested sce-
nario. Two data sets were considered: (1) complete, 
with phenotypes for milk, fat, and protein recorded in 
cows born from 1992 to 2018; (2) reduced, with phe-
notypic records from cows born up to 2014. Genotyped 
cows born between 2015 and 2018 with phenotypes in 
the complete but not in the reduced data set were in 
the validation set. The numbers of validation cows were 
181 for AY, 2,423 for BS, 750 for GU, 577,340 for HO, 
and 90,666 for JE. Genotyped bulls with no daughters 
with phenotypes in the reduced but at least 10 daugh-

ters in the complete data set were in the validation 
group for AY (n = 17), BS (n = 107), and GU (n = 
28), whereas 50 daughters were requested for HO (n = 
3,278) and JE (n = 471) validation bulls.

In this study, theoretical accuracies were not ana-
lyzed, and models were compared based on validation 
reliabilities. The validation for bulls was carried out us-
ing daughter yield deviations (DYD), estimated in the 
complete data sets for all bulls following the method 
by Liu et al. (2004) and the algorithm by Mrode and 
Swanson (2004). The validation reliability of predic-
tions for bulls was measured using the coefficient of 
determination (R2) from the regression of DYD on (G)
EBV. The validation for cows was based on the esti-
mates of phenotypes adjusted for fixed effects (Yadj), 
computed based on the complete data set using PRE-
DICTF90 (ver. 1.5; Misztal et al., 2018). Note that the 
R2 cannot be, strictly speaking, interpreted as a reli-
ability (squared correlation between true and estimated 
BV) unless the number of daughters in the DYD is 
very high. The predictive ability [i.e., the correlation 
between Yadj and (G)EBV] was used as a measure of 
accuracy of predictions for validation cows. Note that 
this correlation cannot be interpreted as an accuracy 
(correlation between true and estimated BV). Finally, 
the inflation of predictions was measured through the 
regression coefficients (b1) of the regression of DYD or 
YPRED on (G)EBV.

There are several reasons to use one criterion for 
bulls and another for cows. First, in this manner, we 
can compare each of these criteria with preceding 
studies for bulls (e.g., VanRaden et al., 2009) and for 
cows (e.g., Bengtsson et al., 2020; VanRaden et al., 
2020). Second, measures of goodness of fit for bulls and 
cows are not comparable, as bulls have been strongly 
selected, which results in a decrease in cross-validation 
accuracy (Bijma, 2012). Third, it is not easy to develop 
a simple statistic that can be used for bulls and cows 
simultaneously.

RESULTS AND DISCUSSION

Table 2 reports the comparison between (G)EBV es-
timated in single and 5_BREEDS_45k scenarios. Since 
animals were not connected by the pedigree and the 
breed was correctly accounted for by the model, BLUP 
results for single and all multibreed scenarios were the 
same: correlations between raw EBVs estimated in 
BLUP single and BLUP multibreed were 1.00 for all 
breeds and traits. In the genomic models, correlations 
between raw GEBVs estimated in ssGBLUP single and 
ssGBLUP 5_BREEDS_45k ranged from 0.95 (MY for 
AY and BS) to 1. The latter was the case for all cor-
relations involving HO and JE, probably because of 
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the greatest number of genotypes. Moreover, we also 
computed the slope of the regression of (G)EBV in 
5_BREEDS on (G)EBV in single models. As expected, 
slopes for BLUP were always 1, confirming that breed 
was correctly considered, and animals were not con-
nected by the pedigree. Acceptable slope values were 
also found for ssGBLUP as values ranged from 0.93 
(MY and PY for BS) to 1.02 (MY for AY).

The coefficients of determination (R2) for bulls in sin-
gle-breed and multibreed analyses are shown in Table 
3. As expected, the highest values for BLUP were ob-
served for the numerically dominant breeds (i.e., Jersey 
and Holstein). All the 7 tested genomic scenarios had 
greater values compared with BLUP; however, some 
differences were observed among the genomic scenarios. 
Within the single scenario, ssGBLUP showed values 
that were on average (±SD) 0.23 (±0.14) points greater 
than the ones from BLUP in all considered breeds. The 
greatest increases moving from BLUP to ssGBLUP 
were observed for the breeds with larger numbers of 
genotyped animals (i.e., BS, JE, and HO). Looking at 
the 5_BREEDS scenario, there was a considerable re-
duction in R2 for BS compared with the single scenario. 
Contrasting, there was an overall increase of 16 points 
in R2 for AY when moving from single to 5_BREEDS. 
A small drop in R2 was observed for fat and protein in 
GU. The validation results for AY, BS, and GU should 
be taken with caution because of the limited numbers 
of validation bulls, which were 17, 107, and 28, respec-
tively. When the number of validation bulls was large 
enough (i.e., for HO and JE), R2 was similar between 
single and 5_BREEDS scenarios. A successful transi-
tion from single-breed to multibreed evaluations would 
produce R2 and dispersion in the latter that are at least 
as good as in the former.

A factor contributing to the drop in R2 in our study 
was the breed representation in the core group. When 
randomly selecting 15k animals among the 5 breeds 
to be in the core set, the breeds with less genotyped 
animals were not well represented. While there were 
13,049 Holsteins in the core, there were only 1,720 JE, 
182 BS, 32 AY, and 17 GU. After increasing the core 
size to 45k (5_BREEDS_45k), which included 15k HO, 
15k JE, 5k AY, 5k BS, and 5k GU, R2 increased to 
similar or larger levels as in the single scenario.

Multibreed analyses for the 3 breeds with fewer data 
were performed to investigate whether the genomic 
information from HO and JE was responsible for the 
loss in prediction accuracy and validation reliability. Is-
sues in multibreed evaluations are common when some 
breeds have many more genotyped animals than others. 
In such a case, SNP effects and frequencies are driven 
by the numerically dominant breeds, which causes a 
drop in validation reliability and an increase in inflation 
of GEBV for smaller breeds (van den Berg et al., 2020). 
Validation reliabilities for the AY_BS_GU scenario 
were not homogeneous across breeds when comparing 
with the single scenario. We observed larger R2 for AY, 
slightly larger for BS, and slightly lower for GU. Com-
paring to AY_BS_GU_30k, which had 15k BS and all 
AY and GU in the core, results were similar for BS and 
GU. When the AY_BS_GU evaluation involved the 
direct inverse of G (AY_BS_GU_direct), the average 
R2 across traits remained 0.40 for BS and 0.26 for GU. 
The large oscillation in R2 for AY confirms the number 
of validation bulls is too small to draw any conclusions.

Having a multibreed evaluation with combined data 
from the breeds with fewer data is a possibility; there-
fore, investigating an evaluation with data from the 
numerically dominant breeds becomes interesting. The 
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Table 2. Comparison between genomic EBV estimated in single and 5_BREEDS_45k scenarios1

Correlation

BLUP

 

ssGBLUP2

MY FY PY MY FY PY

  AY 1.00 1.00 1.00   0.95 0.96 0.96
  BS 1.00 1.00 1.00   0.95 0.96 0.97
  GU 1.00 1.00 1.00   0.97 0.98 0.98
  HO 1.00 1.00 1.00   1.00 1.00 1.00
  JE 1.00 1.00 1.00   1.00 1.00 1.00
Slope3              
  AY 1.00 1.00 1.00   1.02 0.98 0.99
  BS 1.00 1.00 1.00   0.93 0.96 0.93
  GU 1.00 1.00 1.00   0.95 0.95 0.95
  HO 1.00 1.00 1.00   1.00 1.00 1.00
  JE 1.00 1.00 1.00   0.99 0.98 0.98
1AY = Ayrshire; BS = Brown Swiss; GU = Guernsey; HO = Holstein; JE = Jersey; 5_BREEDS = all 5 breeds 
together. 
2ssGBLUP = single-step genomic BLUP.
3The slope of the regression of 5_BREEDS_45k on single.
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evaluation combining HO and JE produced a similar R2 
for HO bulls across all traits and a slight increase in R2 
for milk in JE when compared with 5_BREEDS_45k. 
Small changes of 0.01 or 0.02 for some traits when 
changing the model to account for different breeds can 
be because of the scaling of G to match A22. In such a 
case, diagonals and off-diagonals of G are set to have 
the same average as in A22 (Chen et al., 2011; Vitezica 
et al., 2011), which may be different by breed; however, 
the statistics for A22 are computed across all the breeds 
included in the model. One way to possibly solve this 
issue is to scale G differently based on A22 constructed 
separately for each breed. Another way would be to use 
metafounders (Legarra et al., 2015), which scales A22 
to match G and sets pseudoindividuals as proxies for 
the base animals.

Predictive abilities (i.e., validation reliability for 
cows) for validation cows in single-breed and multibreed 
analyses are shown in Table 4. The number of validation 
cows was large enough for most breeds, so the results 
for BS and GU were more stable for cows than bulls. 
Ayrshire still had a small number of validation cows 
(n = 181), which resulted in unexpected predictivities 
for some scenarios and a small gain of 0.02 (milk and 
protein) and 0.03 (fat) when switching from BLUP to 
single-breed ssGBLUP. Overall, the gain in predictivity 
by using genomic single-breed models was 0.16 for BS, 
0.09 for GU, 0.21 for HO, and 0.17 for JE. When mov-
ing from single to 5_BREEDS scenarios, the average 
predictivity for HO and JE was similar, whereas the av-
erage predictivity for AY, BS, and GU cows decreased 
from 0.42 to 0.36. Again, this drop was mainly driven 
by the number and composition of the core animals in 
5_BREEDS, which did not have a good representation 
of AY, BS, and GU. Using 45k core animals in APY for 
the multibreed evaluation (5_BREEDS_45k) increased 
the average predictivity for AY, BS, and GU cows to 
0.45. Predictivity for HO and JE did not change. When 
evaluations for AY, BS, and GU were done separately 
from HO and JE (i.e., AY_BS_GU, AY_BS_GU_30k, 
and AY_BS_GU_direct), predictivities were overall 
similar to the single scenario. Likewise, predictivities 
for HO and JE did not considerably change from single 
to HO_JE scenarios. However, small fluctuations were 
observed across traits and breeds.

One of the concerns with multibreed evaluations is 
the increase in inflation of GEBV by combining breeds 
that have been selected differently. In this study, when 
breeds were combined in the same evaluation, we cre-
ated breed-specific fixed effects and used UPG based 
on breed in addition to year of birth interval and sex. 
Thus, levels of effects were defined within breed (i.e., 
the effect of age by parity number 1 was assumed to be 
different in different breeds). Whereas UPG take care of 
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the genetic differences among breeds, the breed-specific 
fixed effects account for other nongenetic variation, 
such as different effects of parity number or different 
levels of average within breed heterosis. An initial in-
vestigation showed that not considering breed-specific 
fixed effects in the model resulted in lower validation 
reliability and predictivity and increased inflation of 
EBV and GEBV (results not shown).

The inflation and deflation of (G)EBV were assessed 
in this study by investigating the slope (b1) of the re-
gression of DYD on (G)EBV for bulls (Table 5) and of 
adjusted phenotypes on (G)EBV for cows (Table 6). 
According to Tsuruta et al. (2011), estimates within 
15% from 1 are acceptable, whereas estimates within 
5% are considered good predictions. Across traits, EBV 
for bulls were inflated for most of the breeds. Average 
b1 for BS, GU, and HO was 0.63, 0.71, and 0.88. A 
deflation happened for milk and protein in JE. Adding 
genomic information in single-breed evaluations helped 
to reduce inflation and deflation. Combining the 5 
breeds (5_BREEDS) increased the average inflation of 
BS GEBV compared with the single scenario, and small 
fluctuations were observed across breeds and traits. 
When using 45k core animals (5_BREEDS_45k), infla-
tion and deflation levels were, in general, similar to 
5_BREEDS. The only exception was AY that showed 
more inconsistencies across scenarios because of the 
small number of bulls. Overall, the AY_BS_GU sce-
narios resulted in b1 that were similar to the single 
scenario for those breeds. The b1 for HO did not vary 
much across 5_BREEDS and HO_JE scenarios com-
pared with the single scenario, whereas small changes 
were observed for JE. Inflation and deflation patterns 
were very similar between bulls and cows, with b1 val-
ues from BS and GU cows in AY_BS_GU closer to the 
ones in the single scenario, stable b1 across scenarios 
for HO, and small variation for JE. The exception in 
this comparison between bulls and cows was AY that 
had less variation in the evaluations using 3 breeds 
compared with the single scenario.

Validation statistics for AY and GU in multibreed 
evaluations in the United States have not been reported 
before mainly because of the small number of valida-
tion bulls available and the late onset of genomic selec-
tion for those breeds. Whereas genomic selection was 
officially implemented for HO, JE, and BS in 2009, it 
only started in 2013 for AY and 2016 for GU. Olson et 
al. (2012) investigated the use of multibreed reference 
populations under multistep methods in the United 
States, but only genotypes for HO, JE, and BS were 
used. The authors concluded that predictivity across 
breeds was limited but breeds with fewer data slightly 
benefited from a multibreed estimation of SNP effects. 
Similar results were found by VanRaden et al. (2020), 
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who included 5 breeds and many more animals. How-
ever, the estimation of SNP effects is still in a single-
breed fashion for routine US dairy evaluations because 
of the small gains. This is true also for the evaluations 
in other countries (Su et al., 2010; Shabalina et al., 
2020).

Although the estimation of SNP effects is single-breed 
for most of the dairy evaluations, the deregressed EBV 
used to estimate SNP effects in the multistep process 
are computed based on multibreed BLUP evaluations. 
VanRaden et al. (2007) developed an all-breed model 
for routine BLUP evaluations in the United States 
that considered AY, BS, GU, HO, JE, and Milking 
Shorthorn, in addition to crossbreds. The advantage 
of combining different breeds is to have updated breed 
differences, and a reason to include data for crossbred 
animals is to have extra, accurate information for both 
parents, which can increase their EBV reliability.

In our study, we used ssGBLUP, which is an exten-
sion of BLUP to include relationships based on genomic 
information. We showed that having multibreed ge-
nomic evaluations in a single run is possible because 
validation reliabilities, predictabilities, and regression 
coefficients were not considerably different from those 
in single-breed evaluations, especially for the breeds 
with enough validation animals. Multibreed evaluations 
should deliver GEBV with at least the same reliability 
and inflation-deflation level as the single-breed evalu-
ations. Although we did not include data on crossbred 
animals in this study, several studies have shown the 
usefulness of ssGBLUP in multibreed and crossbred 
evaluations and that accuracy of predictions for cross-
bred animals greatly improves when their genotypes are 
in the evaluation (Lourenco et al., 2016; Xiang et al., 
2016; Pocrnic et al., 2019). The current genomic evalu-
ation for crossbred dairy in the United States is based 
on purebred direct genomic values (DGV) weighted by 
breed proportion (VanRaden et al., 2020), and the ge-
nomic predictions from this method are more accurate 
than parent average. Additional accuracy could pos-
sibly be added by having a multibreed and crossbred 
joint ssGBLUP evaluation, which is currently under 
investigation.

The use of ssGBLUP in a multibreed context, how-
ever, implies that SNP effects are the same for all the 
breeds in the data set. Similar to the other results, SNP 
estimates can also be more conditioned to the more 
numerically dominant breeds and different from those 
estimated in single-breed models. Because the number 
of genotypes is constantly increasing, DGV for the 
newly genotyped animals can be estimated by using 
indirect predictions instead of solving the whole MME 
(Lourenco et al., 2015). The DGV estimated using 

SNP effects from multibreed models will be different 
from those of single-breed models, but they could be 
more accurate. In our laboratory, studies on indirect 
predictions and a new algorithm to approximate their 
theoretical reliabilities are under investigation.

Because of the large number of genotyped animals, 
APY was used to compute G−1 for BS, HO, and JE 
as single breed, AY_BS_GU, AY_BS_GU_30k, all 5_
BREEDS scenarios, and HO_JE. Pocrnic et al. (2016) 
found the number of core animals in purebred cattle 
populations would vary from 10 to 19k; however, this 
may not apply to multibreed populations. In such a 
case, the number of core animals should represent the 
dimensionality within each breed, which implies us-
ing the number of core animals for each breed as the 
number of eigenvalues explaining 98% of the variance 
of G. This was confirmed by the fact that using 15k 
core animals randomly sampled among all the geno-
typed animals caused some fluctuations in validation 
reliability, predictivity, and b1 for bulls and cows in 
the multi- compared with single-breed evaluations. 
Therefore, if the multibreed evaluation involves the 5 
breeds, 45k core animals may be enough, whereas 30k 
is enough for AY_BS_GU and 30k for HO_JE. Adding 
crossbred genotypes to the evaluation may not increase 
the number of core animals because of the sharing of 
independent chromosome segments with the purebred 
parents (Pocrnic et al., 2019). Independent chromosome 
segments can also be shared among different breeds, 
especially if there was recent introgression from the use 
of a few sires across breeds.

When combining multiple breeds in a joint ssGBLUP 
evaluation with APY, it is important to have a good 
representation of all breeds in the core (Mäntysaari et 
al., 2017; Vandenplas et al., 2018). Additionally, model-
ing the breed effects in a proper way guarantees more 
accurate predictions in any multibreed evaluations. 
In this study we added breed code to all the fixed ef-
fects to ensure animals from different breeds were not 
mistakenly in the same group. Breed effects were also 
added to the model as a fixed UPG. Therefore, GEBV 
resulting from the multibreed models were adjusted for 
breed-specific fixed effects but contained genetic breed 
effects combined with selection pathway by sex and 
year of birth (i.e., the original definition of UPG). This 
model ensured that predictions from multibreed and 
single breed were more similar. When the model does 
not correctly account for the breed and breed-specific ef-
fects, extremely high reliabilities from multi- compared 
with single-breed models may be observed due to the 
prediction of breed effects instead of GEBV (Bermann 
et al., 2021). However, this is not the case in this study 
because all validations are done within breed.
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Table 7 shows number of rounds and computing time 
(i.e., only the preconditioning conjugate gradient with 
iteration on data) to reach convergence assuming a cri-
terion of 10−15 in all the scenarios. The computing cost 
for AY, BS, and GU was small in the single scenario 
and in the 3 AY_BS_GU scenarios. For HO, it took 
2.7 h for BLUP and 7.4 h for ssGBLUP (3.4 million 
genotyped animals) in the single scenario. Larger com-
puting time was recently reported by Cesarani et al. 
(2021b), who analyzed Holstein data up to 2018 with 
861k genotypes. The larger computing costs reported 
in that previous work could be because of the use of 
selected genotypes only for cows with records and their 
parents, in addition to more UPG. When the 5 breeds 
were combined, the computing time increased 1.8 times 
for BLUP, 2.7 times for 5_BREEDS, and 8.6 times for 
5_BREEDS_45k compared with single HO. The largest 
number of iterations suggests a possible lack of com-
patibility between genomic and pedigree information 
after combining different breeds. Additionally, because 
scaling of G is based on an average A22 across breeds, 
the combination of the 5 breeds possibly resulted in 
an H−1 that has a larger condition number. As far as 
the time needed for the creation of the relationship 
matrices, it took about 2.5 d to create the matrices 
for the 3.4 million HO, about 3.5 d for 5_BREEDS, 
and about 5 d for 5_BREEDS_45k. About half of this 
time was used in the creation of A22 for the scaling of 
G. A new algorithm is under investigation to reduce 
the computing time required for the construction of 
A22. This algorithm considers the APY structure and 
sparsity, meaning that coefficients of A22 are computed 
separately for core and noncore animals.

CONCLUSIONS

Results of the present study demonstrated that 
large-scale ssGBLUP multibreed evaluations are com-
putationally feasible, and that genomic EBV are as 
reliable as in single-breed evaluation when the number 
of genotyped animals in the APY core represent the 
dimensionality of the genomic information within the 
breeds. Accounting for genetic and nongenetic breed 
effects is important when combining several breeds in 
a joint evaluation; for instance, fixed effects need to 
be redefined within breed. Fine tuning is still needed 
to avoid a reduction in reliability for less represented 
breeds when numerically dominant breeds are in the 
evaluation. Having evaluations for Ayrshire, Brown 
Swiss, and Guernsey separate from Holstein and Jerseys 
may reduce inflation of GEBV for the first 3 breeds.

ACKNOWLEDGMENTS

This study was partially funded by Agriculture and 
Food Research Initiative Competitive Grant no. 2020-
67015-31030 from the US Department of Agriculture’s 
National Institute of Food and Agriculture. The authors 
thank the Council on Dairy Cattle Breeding (CDCB, 
Bowie, MD) for providing access to the data. The con-
tribution of dairy producers who supplied data through 
their participation in the Dairy Herd Improvement 
program and the Dairy Records Processing Centers 
that edited and relayed information to the Council of 
Dairy Cattle Breeding are also acknowledged. Discus-
sions with Duane Norman (CDCB, Bowie, MD) and 
Yutaka Masuda (Rakuno Gakuen University, Ebetsu, 

Cesarani et al.: MULTIBREED GENOMIC EVALUATION IN US DAIRY CATTLE

Table 7. Computational costs for all considered scenarios in terms of number of rounds and seconds per round needed to reach a convergence 
criterion of 10−15
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Rounds

 

s/round

 

Time2,3

BLUP ssGBLUP BLUP ssGBLUP BLUP ssGBLUP

AY 504 863   0.08 0.08   <1 min ~1 min
BS 364 867   0.18 0.45   1 min ~6 min
GU 345 757   0.07 0.07   <1 min <1 min
HO 457 473   21.25 56.31   2.7 h 7.4 h
JE 586 432   2.00 5.58   ~20 min ~40 min
AY_BS_GU 592 1,534   3.01 0.81   ~3 min ~20 min
AY_BS_GU_30k 1,581   4.11   ~1.4 h
AY_BS_GU_direct 1,529   2.22   ~50 min
5_BREEDS 643 1,142   27.01 64.84   4.8 h ~20 h
5_BREEDS_45k 1,763   130.68   ~64 h
HO_JE 479 1,403   40.57 81.71   5.4 h ~32 h
1AY = Ayrshire; BS = Brown Swiss; GU = Guernsey; HO = Holstein; JE = Jersey; 5_BREEDS = all 5 breeds together.
2Time to reach the convergence (i.e., only time for the preconditioning conjugate gradient with iteration on data). ssGBLUP = single-step 
genomic BLUP.
3Computations were carried out on a Linux server (x86_64) equipped with Intel Xeon E5–2683 v4 2.10 GHz processor with 32 cores. Parallel 
threads used between 12 and 20 cores.
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