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A B S T R A C T
Classical calibration methods in hydrology are commonly performed with a single cost function
computed on long time series. Even though the hydrological model has acceptable scores in NSE
and KGE, unbalancing problems can still arise between overall score and the model performance
for flood events, and particularly flash floods. Enhancing multi-criteria calibration methods with
multi-scale signatures to improve distributed flood modeling remains a challenge. In this study,
the potential of hydrological signatures computed continuously and at the scale of flood events
on long time series, is employed within various multi-criteria calibration approaches to attain a
more efficient hydrological model. This work presents an improved and original signature-based
calibration approach, implemented in the variational data assimilation algorithm of SMASH (Spatially
distributed Modelling and ASsimilation for Hydrology) platform, applied over 141 catchments mostly
located in the French Mediterranean region. Several signatures, especially flood event signatures
are firstly computed, relying on a proposed automatic hydrograph segmentation algorithm. Suitable
signatures for constraining the model are selected based on their global sensitivity analysis to model
parameters. Several multi-criteria calibration strategies with the selected signatures are eventually
performed, including a multi-objective optimization approach, and a single-objective optimization
approach, that transforms the multi-criteria problem into a single-objective function. Note that in the
first approach, the proposed technique based on a simple additive weighting method is used to select an
optimal solution obtained from a set of non-inferior solutions. The suggested methods show that, for a
global calibration, the average relative error in simulating the peak flow has been dropped from about
0.27 to 0.01-0.08 and from about 0.30 to 0.18-0.21 with various multi-criteria optimization strategies,
respectively in calibration and temporal validation. For a distributed calibration, while the average
NSE (resp. KGE) still slightly decreases from 0.78 (resp. 0.86) to 0.75 (resp. 0.81) in calibration,
the quality of simulated peak flow has been enhanced about 1.5 times in average. In particular,
the NSE (resp. KGE) calculated solely on 111 flood events which are picked from 23 downstream
gauges has been improved from 0.80 (resp. 0.71) up to 0.83 (resp. 0.78) in median. These results have
demonstrated the robustness and delicacy of the model constrained by the signatures for enhancing
flash flood forecasting systems.

1. Introduction
The calibration of hydrological model parameters is a

crucial issue in view to improve model performance in sim-
ulating catchment response but is a tough problem because
of modeling-data errors and relatively sparse observability
of hydrological responses. Whatever their status and com-
plexity, hydrological models are conventionally calibrated
with a discharge time series at the outlet of a catchment,
representing integrative information of upstream hydrolog-
ical processes. These results in ill-posed calibration inverse
problems with non unique solutions, which has been called
equifinality issue in hydrological modeling by K. Beven
(cf. Beven (2011) and references therein) after Bertalanffy
(1968) in general system theory. This poses a major chal-
lenge, especially in the context of climate change and in
Mediterranean areas, where an intensification of the fre-
quency of extreme precipitation is possible (Tramblay and
Somot, 2018; Tramblay, Neppel, Carreau and Najib, 2013;
Pujol, Neppel and Sabatier, 2007). To produce more accurate
flood forecasts in terms of location, magnitude and timing
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of hydrological responses, improving model-data fusion and
exploitation of the most information available in calibration
is of prior importance, which can be studied by taking ad-
vantage of hydrological signatures in calibration (e.g. Roux,
Labat, Garambois, Maubourguet, Chorda and Dartus (2011);
Shafii and Tolson (2015); Oliveira, Fleischmann and Paiva
(2021); Mostafaie, Forootan, Safari and Schumacher (2018);
Sahraei, Asadzadeh and Unduche (2020); Wu, Chen, Ye,
Guo, Meng and Zhang (2021)).

In hydrology, most calibration approaches attempt to
optimize input parameters of a model such that they result
in a minimal misfit between simulated and observed dis-
charge. Nevertheless, because no single metric can exhaus-
tively represent this misfit, the calibration of a hydrological
model is "inherently multi-objective" as remarked by Gupta,
Sorooshian and Yapo (1998). Several performance metrics
have been proposed over the past decades in the literature
for hydrological modeling. The classical quadratic Nash-
Sutcliffe efficiency (NSE) Nash and Sutcliffe (1970) (cf. Ap-
pendix A.1) has been used for long time. The Kling–Gupta
(KGE) (cf. Appendix A.2) proposed in Gupta, Kling, Yilmaz
and Martinez (2009) and based on a decomposition of the
NSE has also become widely used. Other metrics, in form
of signature measures (see review and in McMillan (2021)),
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have been proposed in the literature for model evaluation
(e.g. Yilmaz, Gupta and Wagener (2008)) and used in model
optimization (e.g. Roux et al. (2011); Shafii and Tolson
(2015); Mostafaie et al. (2018); Sahraei et al. (2020); Wu
et al. (2021) and references therein). Moreover, hydrological
signatures are a useful tool to effectively evaluate models
and diagnose the role of their components in explaining the
discrepancy between the simulated and observed behavior
(Gupta et al., 2009), especially when combined with global
sensitivity analysis (Horner, 2020). There is still a need
for automated methods capable of computing signatures on
observed and modeled hydrological responses, at multiple
time scales with the underlying difficulty of flood events
segmentation, and perform global sensitivity analysis of
simulated signatures to model parameters (Horner, 2020).

Considering multiple metrics, including multi-scale sig-
natures, in a hydrological calibration problem pertains to
multi-criteria optimization problems. Basically, there are
three categories for solving a multi-criteria problem in vari-
ous domains: i. obtain a full non-inferior solution set (Pareto-
front) by solving the multi-objective optimization problem,
which is the mainstream approach (Khorram, Khaledian
and Khaledyan, 2014; Abbass, Sarker and Newton, 2001;
Goel, Vaidyanathan, Haftka, Shyy, Queipo and Tucker,
2007; Tavakkoli-Moghaddam, Azarkish and Sadeghnejad-
Barkousaraie, 2011; Padhye and Deb, 2011; Yeh and Chuang,
2011; Das, Nikum, Krishnan and Pratihar, 2020; Torres-
Treviño, Reyes-Valdes, López and Praga-Alejo, 2011), ii.
transform multi-criteria problem into a single-objective
optimization problem (Ross, Abbey, Bouffard and Jos, 2015;
El-Ghandour and Elbeltagi, 2014; Veluscek, Kalganova,
Broomhead and Grichnik, 2015; Masuda, Harada and Kuri-
hara, 2012), iii. select an unique solution after obtaining the
Pareto optimal solution set by adding some constraints based
on specific preferences (Chibeles-Martins, Pinto-Varela,
Barbosa-Póvoa and Novais, 2016; Wu, Liu and Lur, 2015).
In hydrology, state-of-the-art multi-criteria-optimization-
using-signatures-liked calibration strategies are roughly di-
vided into three approaches:

1. The signatures are intervened in the calibration al-
gorithm. For instance, Wu et al. (2021); Sahraei
et al. (2020) among others proposed multi-criteria
approaches to improve the optimal value of the cal-
ibration metric (NSE). This approach is more ad-
vanced in term of algorithm1, comparing to traditional
sampling methods as Shuffled Complex Evolution
(SCE-UA) (Duan, Gupta and Sorooshian, 1993), by
using additional criterion based on some hydrological
signatures such as: the peak flow, high-low and low-
flow, etc.. These signatures-based metrics enable to
sort and rank efficiently the parameter sets for the
optimization problem.

1Mathematically, the calibration metric is unchanged (the optimization
problem is always based on NSE). The signatures-based metrics are used
in the algorithm to help optimize the calibration metric (assuming that the
studied signatures and the discharge are closely correlated).

2. Transform the signatures-based multi-criteria prob-
lem into a single-objective function. For example,
Mizukami, Rakovec, Newman, Clark, Wood, Gupta
and Kumar (2019); Roux et al. (2011) tried to en-
hance the calibration metric by emphasizing specific
hydrological signatures. A typical and classical ap-
proach of this idea is to utilize a calibration metric
(cost function) based on the decomposition of NSE
(for example: KGE in Appendix A.2). Moreover, we
can combine NSE-liked cost functions and multi-
signatures for the optimization problem. For example,
the cost function introduced by Roux et al. (2011), in
the context of “event-based hydrological modeling”,
to account for the shape of flash flood hydrographs
and especially the timing and maximum peak flow.
This method enables to calibrate the weight for each
objective function (that represents the important of
each objective function in the optimization problem),
however, it can not generate a set of alternative solu-
tions based on multi-objective functions.

3. Obtain a full estimated non-inferior solution set. Typi-
cally, Yapo, Gupta and Sorooshian (1998); Guo, Zhou,
Lu, Zou, Zhang and Bi (2014); Oliveira et al. (2021)
can generate a set of non-dominated solutions based
on multi-objective functions but selection of an op-
timal solution from the non-dominated set has not
received attention. Even the study in Mostafaie et al.
(2018) proposed a simple technique to select the opti-
mal solution from Pareto front by ranking the param-
eter sets with their distance to the reference solution,
this can only be applicable when assuming that the ob-
jective functions have equal roles in the optimization
problem.

While the potential of signatures for constraining hydro-
logical models has been employed in McMillan (2021);
Westerberg and McMillan (2015), and the interest of flood
event signatures dedicated to multi-criteria calibration has
been conveyed in Roux et al. (2011) for an event model, most
of published paper on the signatures-based multi-criteria
and multi-objective optimization has not yet been fully and
rigorously achieved. One of the difficulties of this problem is
the automatic computation of signatures, especially for flood
event signatures, that requires a segmentation method (e.g.
Astagneau, Bourgin, Andréassian and Perrin (2021)) to cap-
ture some hydrological information in flash flood events. In
this study, we focus on multi-criteria calibration metrics with
single-objective function and with multi-objective functions
for uniform parameters, then a multi-criteria calibration
with single-objective function for distributed parameters of
a distributed model aiming at flood modeling. Note that
multi-objective optimization is one of several approaches for
multi-criteria calibration method, which attempts to simul-
taneously minimize multi-objective functions to obtain not
only one but a set of optimal solutions. This study proposes
an original calibration approach combining automated seg-
mentation of flood events and signature computation within
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a variational data assimilation (VDA) algorithm from Jay-
Allemand, Javelle, Gejadze, Arnaud, Malaterre, Fine and
Organde (2020) enabling high dimensional spatially dis-
tributed calibration, now with multi-criteria metrics adapted
to floods. Classical global calibration algorithm have also
been upgraded that way. These upgrades, including new cost
functions and adjoint model update, have been implemented
into the SMASH platform, which Fortran source code has
recently been interfaced in Python (Jay-Allemand, Colleoni,
Garambois, Javelle and Julie, 2022).

The remaining sections of this paper are organized as
follows: in section 2, we give a brief representation of the
data and conceptual hydrological model. Next, we describe
in Section 3 our methodology for computing some essential
signatures and then our signatures-based calibration meth-
ods on the multi-criteria and multi-objective optimization.
In Section 4, we showcase some results on the signatures,
calibration results as well as give some discussions and
finally, Section 5 concludes on this work.

2. Data and model
2.1. Data

The relatively large dataset from Jay-Allemand (2020)
that is used in this study contains time series of hydro-
meteorological variables and time invariant catchment at-
tributes for four high rainfall-flow areas in France, identified
as study areas of the PICS research project2. It encompasses
141 catchments including 23 drainage basins (downstream
gauges), which are mostly located in the French Mediter-
ranean region (Fig. 1). This is a subset of a larger dataset
of 4,190 French catchments from INRAE-HYCAR research
unit (Brigode, Génot, Lobligeois and Delaigue, 2020; De-
laigue, Génot, Lebecherel, Brigode and Bourgin, 2020).
Concerning the hydrological model inputs, observation data
covers a period about 13 years of hourly distributed dis-
charge and rainfall from 2006 to 2019. Discharge data are
collected by the French Ministry of Environment covering
the period of the forcing data and have been extracted
from the (Hydro) platform3. The rainfall grids are the radar
observation reanalysis ANTILOPE J+1 provided by Météo-
France at a grid resolution of 1 km2 (Champeaux, Dupuy,
Laurantin, Soulan, Tabary and Soubeyroux, 2009). The po-
tential evapotranspiration (PET) is obtained by applying a
simple formula (Oudin, Hervieu, Michel, Perrin, Andréas-
sian, Anctil and Loumagne, 2005) to SAFRAN (Quintana-
Seguí, Le Moigne, Durand, Martin, Habets, Baillon, Canel-
las, Franchisteguy and Morel, 2008) temperature grids at
8 km resolution an empirically desaggregated at hourly time
step and 1 km spatial resolution, i.e. at the same spatio-
temporal resolution than rainfall. Note that observation data,
rainfall grids and discharge time series, over the selected
catchments have few missing data as detailed in Table 1, so
that it can be neglected when performing the computations

2https://pics.ifsttar.fr
3http://www.hydro.eaufrance.fr/

and analysis in this study. Catchment information concern-
ing river name, surface, code, number of upstream gauges
and missing rates in downstream gauges are mentioned in
Table 1. Raster maps, at 1 km resolution, of upstream drained
area and D8 flow directions have been obtained by pro-
cessing fine DEM provided by IGN (Institut Geographique
National).

Figure 1: Spatial distribution of 141 catchments of the PICS
dataset on the map of France. Four studied areas are repre-
sented by different colors. The size of each marker illustrates
how large the catchment is.

2.2. Forward hydrological model
SMASH is a computational software framework, wrapped

in Python (Jay-Allemand et al., 2022), and dedicated to
spatially distributed hydrological modeling including vari-
ational data assimilation (VDA) and calibration method
(adjoint) adapted to high dimensional problems (cf. Jay-
Allemand et al. (2020); Colleoni, Garambois, Javelle, Jay-
Allemand and Arnaud (2022) and references therein) . It is
designed to simulate discharge hydrographs at any spatial
location within a basin and reproduce the hydrological
response of contrasted catchments.

Let Ω ⊂ ℝ2 be a 2D spatial domain (catchment) and
𝑡 > 0 be the physical time. A regular lattice Ω covers Ω
and𝐷(𝑥) is the drainage plan obtained from terrain elevation
processing. The number of active cells within a catchment Ω
is denoted 𝑁𝑥.

The hydrological model is a dynamic operator  map-
ping observed input fields of rainfall and evapotranspiration
𝑷
(

𝑥, 𝑡′
), 𝑬 (

𝑥, 𝑡′
), ∀ (𝑥, 𝑡′) ∈ Ω×[0, 𝑡] onto discharge field

𝑄(𝑥, 𝑡) such that:
𝑄 (𝑥, 𝑡) =

[

𝑷
(

𝑥, 𝑡′
)

,𝑬
(

𝑥, 𝑡′
)

,𝒉 (𝑥, 0) ,𝜽 (𝑥) , 𝑡
]

,
∀𝑥 ∈ Ω, 𝑡′ ∈ [0, 𝑡] (1)

with 𝒉 (𝑥, 𝑡) the 𝑁𝑠-dimensional vector of model states 2D
fields and 𝜽 the 𝑁𝑝-dimensional vector of model parameters
2D fields. In the following, 𝜽 is also called control vector in
optimization context.
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Code River name Surface
(𝑘𝑚2)

Missing
rates (%)

Total
upstream
gauges

H3201010 Le Loing 2302 0.14 (3.68) 8
V3524010 La Cance 381 0.14 (4.31) 3
V3744010 Le Doux 621 0.14 (4.02) 2
V4154010 L’Eyrieux 649 0.14 (7.38) 3
V5064010 L’Ardèche 2264 0.14 (4.22) 9
V5474015 La Cèze 1112 0.14 (3.76) 6
V7164015 Le Gardon 1093 0.14 (16.62) 10
Y1232010 L’Aude 1828 0.14 (3.74) 11
Y1364010 Le Fresquel 935 0.14 (3.74) 4
Y1415020 L’Orbiel 242 0.14 (3.74) 2
Y1564010 L’Orbieu 589 0.14 (3.77) 3
Y1605050 La Cesse 251 0.14 (4.64) 1
Y2332015 L’Hérault 2208 0.14 (7.22) 12
Y2584010 L’Orb 1336 0.14 (4.04) 11
Y3204040 Le Lez 168 0.14 (15.55) 3
Y3444020 Le Vidourle 503 0.14 (7.97) 4
Y3534010 Le Vistre 496 0.14 (4.42) 1
Y4624010 Le Gapeau 535 0.14 (3.79) 6
Y5312010 L’Argens 2512 0.14 (5.08) 10
Y5444010 La Giscle 201 0.14 (9.96) 2
Y5534030 La Siagne 492 0.14 (5.30) 5
Y5615030 Le Loup 289 0.14 (3.79) 1
Y6434010 L’Estéron 442 0.14 (7.70) 1

Table 1
General information about 23 downstream gauges of the PICS
data. Code, river name, surface, missing rate of rainfall (resp.
discharge) in downstream gauge during the period 2006-2019,
and number of upstream are represented by the columns from
left to right.

In this study, a parsimonious 6 parameters model struc-
ture from Colleoni et al. (2022) is used (Fig. 2). For a given
cell 𝑖 of coordinates 𝑥 ∈ Ω, in the proposed model S6,
four reservoirs ,  , 𝑟 and 𝑙 of respective capacity 𝑐𝑖,
𝑐𝑝, 𝑐𝑡𝑟 and 𝑐𝑡𝑙, are considered for simulating respectively the
interception, the production of runoff and its transfer within
a cell. Their state vector is denoted:

𝒉(𝑥, 𝑡) ≡
(

𝒉𝑖(𝑥, 𝑡),𝒉𝑝(𝑥, 𝑡),𝒉𝑡𝑟(𝑥, 𝑡),𝒉𝑟(𝑥, 𝑡),𝒉𝑡𝑙(𝑥, 𝑡)
)𝑇 .

The parameter vector of SMASH model structure S6 is:
𝜽(𝑥) ≡

(

𝑐𝑖(𝑥), 𝑐𝑝(𝑥), 𝑐𝑡𝑟(𝑥), 𝑐𝑟(𝑥), 𝑚𝑙(𝑥), 𝑐𝑡𝑙(𝑥)
)𝑇 .

Hence the size of state vector is 𝑁𝑠 × 𝑁𝑥 and the size
of parameter vector that is optimized in the following is
𝑁𝑝×𝑁𝑥. Considering tens of cells or more over a simulated
catchments domain Ω, the calibration of 𝜽 is a high dimen-
sional inverse problem. All details related to hydrological
model operator and model description are fully explained in
Colleoni et al. (2022).
2.3. Calibration algorithms

Given simulated and observed discharge at gauged cells
𝑥𝑘 ∈ Ω, 𝑘 ∈ 1, .., 𝑁𝑔, respectively denoted 𝑄𝑘(𝑡) and 𝑄∗

𝑘(𝑡),we define the objective function as:
𝐽 (𝜽) = 𝐽𝑜𝑏𝑠(𝜽) + 𝛼𝐽𝑟𝑒𝑔(𝜽) (2)

where the observation cost function is:

𝐽𝑜𝑏𝑠 =
1
𝑁𝑔

𝑁𝑔
∑

𝑘=1
𝑗∗𝑘

measuring the misfit, via several adapted metrics detailed
later, between simulated and observed discharge. In this
study, 𝑁𝑔 = 1, that is for single gauge optimization. Note
that simulated discharge:

𝑄𝑘(𝑡) =
[

𝑷
(

𝑥, 𝑡′
)

,𝑬
(

𝑥, 𝑡′
)

,𝒉 (𝑥, 0) ,𝜽 (𝑥)
]

,
∀𝑥 ∈ Ω𝑘, 𝑡

′ ∈ [0, 𝑡]

with Ω𝑘 ⊂ Ω denoting the spatial domain including all
upstream cells of a gauge at 𝑥𝑘, depends on the control vector
𝜽 via the hydrological model  (Eq. 1). The second term in
Eq. (2) is weighted by 𝛼 and set as a classical Thikhonov
regularization:

𝐽𝑟𝑒𝑔 = ‖

‖

‖

𝑩−1∕2 (𝜽 − 𝜽∗
)

‖

‖

‖

2

𝐿2

with 𝐵 the background error covariance, and 𝜽∗ the first
guess/background on 𝜽. We set 𝛼 = 10−4 for the spatially
distributed optimizations presented in this study, 𝛼 = 0
otherwise if 𝜽 ≡ 𝜽, and 𝑩 is simply defined from 𝝈𝜃 the
vector of mean deviations of𝜽, as done in Jay-Allemand et al.
(2020). Furthermore, an additional constrain is introduced
for parameter optimization such that:

𝜽𝑚𝑖𝑛 ≤ 𝜽 ≤ 𝜽𝑚𝑎𝑥 (3)
Given the hydrological model (Eq. 1) and the constrain (Eq.
3), an optimal estimate 𝜽̂ of model parameter set is obtained
from the condition:

𝜽̂ = argmin
𝜽𝑚𝑖𝑛≤𝜽≤𝜽𝑚𝑎𝑥

𝐽 (𝜽) (4)

This inverse problem 4 is tackled with different global
optimization algorithms considering a spatially uniform
control, that is low dimensional optimization problems.
For instance, optimization algorithms such as: Step-By-
Step (SBS) (steepest descent algorithm summarized in
Edijatno (1991)), Nelder–Mead and Genetic Algorithms
(GA) can be applied in this scenario. Next, a spatially
distributed control vector is sought with a VDA algorithm
(Jay-Allemand et al., 2020) adapted to such high dimen-
sional hydrological optimization problems. Considering a
spatially distributed control vector 𝜽(𝑥), its optimization is
performed with the L-BFGS-B algorithm (limited-memory
Broyden–Fletcher–Goldfarb–Shanno bound-constrained (Zhu,
Byrd, Lu and Nocedal, 1997)) adapted to high dimension.
This algorithm requires the gradient of the cost function
with respect to the sought parameters ∇𝜽𝐽 , that is obtained
by solving the adjoint model. This numerical adjoint model
has been generated with the automatic differentiation engine
TAPENADE (Hascoet and Pascual, 2013) applied to the
SMASH source code including the new models structures
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Figure 2: Distributed hydrological modeling with SMASH platform. Left: model fields from top to bottom: meteorological inputs,
param eters, internal and output flux maps. Right: pixel scale and pixel-to pixel flow operators of SMASH model structure S6
studied. Source: Colleoni et al. (2022).

and validated with standard gradient test. The background
value 𝜽∗, used as a starting point for the optimization
problem and in the regularization term, is set as in Jay-
Allemand et al. (2020), i.e. as 𝜽̄, a spatially uniform global
optimum determined with a simple global-minimization
algorithm from a uniform first guess 𝜽̄∗, the steepest descent
method summarized in Edijatno (1991). Given mildly non
linear hydrological models as those considered in this study,
this calibration approach is pertinent and sensitivity to priors
is limited as shown in Jay-Allemand et al. (2020). In case
of multi-objective optimization with a spatially uniform
control, i.e. low dimensional inverse problems, a genetic
algorithm is used.

3. Methodology
A novel calibration strategy is proposed and illustrated

in Fig. 3. It is based on the combination of hydrologi-
cal signatures and their sensitivity analysis along with the
above optimization algorithms. The computations of the
signatures are firstly performed to quantify their sensitiv-
ities to model parameters following Horner (2020). These
computations are covered by a whole-period-based studying
(continuous signatures) and an event-based analyzing, that
tries to capture the most important events to study (flood
event signatures). This step gives us a more meaningful
understanding of the parametric sensitivity, not only of the
discharge but also of the signatures and other factors that
need to be accounted as part of our minimization criterion.

Along with an analysis of signatures error, the signatures
sensitivity can be computed based on Sobol indices to help
decide which signatures can be selected to perform a multi-
criteria optimization. Finally, we conduct a multi-criteria
optimization with single-objective function or with multi-
objective function using appropriate hydrological signatures
to improve the simulation performance.

The numerical algorithms proposed here are imple-
mented in Python, on top of SMASH Fortran platform
that is interfaced in Python (Jay-Allemand et al., 2022)
making accessible its forward-inverse algorithms (forward
hydrological models, SBS and VDA calibration algorithms)
and internal variables.
3.1. Signatures computation

Several signatures describing and quantifying properties
of discharge time series are introduced in view to analyze and
calibrate hydrological models (Appendix B). Signatures are
denoted 𝑆𝑖, 𝑖 ∈ 1..𝑁𝑐𝑟𝑖𝑡, with 𝑁𝑐𝑟𝑖𝑡 being the number of dif-
ferent signature types considered. These signatures permit to
describe various aspects of the rainfall-runoff behavior such
as: flow distribution (based for instance on flow percentiles),
flow dynamics (Le Mesnil, 2021), flow separation (Nathan
and McMahon, 1990; Lyne and Hollick, 1979)), flow timing,
etc.. A so-called continuous signature is a signature that
can be computed on the whole studied period. Flood event
signatures on the other hand focus on the behavior of the
high-flows that are observed in the flood events (Fig. 4). In

Huynh et al. 2022: Preprint submitted to Elsevier Page 5 of 18



Signatures-and-sensitivity-based multi-criteria variational calibration for distributed hydrological modeling

Figure 3: Illustration of a calibration process considering
classical hydrological cost functions with/without continuous
and/or events signatures. The notations in the cost function
will be explained in 3.3.

this way, event segmentation algorithm is crucially needed
before computing the flood event signatures.

A segmentation algorithm aims to capture important
events occurring over a studied period for a given catchment.
We propose here such an algorithm for detecting flood events
with the aid of the rainfall gradient and rainfall energy (Algo-
rithm 1). Let us consider the precipitation and the discharge
at each catchment. Firstly, we detect the discharge peaks
achieved with a simple peak detection algorithm, where
several parameters can be used to impose a minimum peak
height (mph) or a minimum distance between two successive
peak (mpd), etc. (Duarte and Watanabe, 2021). For instance,
we consider those exceed the 0.999-quantile of the discharge
as important events (mph criterion) w.r.t. two successive
events are distinguished by at least 12h (mpd criterion).
Subsequently, we need to determine a starting and ending
date for each event. The starting date of event is considered
as the moment it starts raining dramatically sometime since
72h before the peak of discharge. For calculating this, we
need to compute the gradient of the rainfall and then we
choose the peaks of rainfall gradient which exceed its 0.8-
quantile. These peaks correspond to the moments when we
have a sharp increase in rainfall. However, this criterion is
not enough to choose a good moment for starting date. In
addition to gradient criterion, we need an additional criterion
called “energy criterion” that takes into account the “rainfall
energy”. The rainfall energy is computed as the sum of
squares of the rainfall observed in 12h counted from 1h
before the peak of rainfall gradient. So the starting date is
the first moment when the rainfall energy exceeds 0.2 of the
maximal rainfall energy observed in 72h before the peak of
discharge (w.r.t. gradient criterion). Finally, we aim to find

the ending date by using baseflow separation. Effectively, we
compute the difference between the discharge and its base-
flow from the peak of discharge until the end of researched
period (lasts 10 days from starting date of event). Then, the
ending date is the moment that the difference between the
discharge and its baseflow is minimal in 24 hours counted
from 1 hour before this moment. Note that the above values
are adapted to the basins and flood scales studied.
Algorithm 1 Hydrograph segmentation algorithm based on
“rainfall gradient criterion” and “rainfall energy criterion”
For each catchment, considering 2 time series (𝑇 ,𝑄) and
(𝑇 , 𝑃 ) where:
𝑇 = (𝑡1, ..., 𝑡𝑛) is time (by hour),
𝑄 = (𝑞1, ..., 𝑞𝑛) is the discharge and
𝑃 = (𝑝1, ..., 𝑝𝑛) is the rainfall.

1. Detecting peaks that exceed the 0.999-quantile of the
discharge, that can be considered as important events:
𝐸 = (𝑡𝑖)1≤𝑖≤𝑛 s.t. 𝑞𝑖 > 𝑄𝑢𝑎𝑛𝑡0.999(𝑄)

2. For each event 𝑡𝑗 ∈ 𝐸:
(a) Determining a starting date based on the “rain-

fall gradient criterion” and the “rainfall energy
criterion”:

i. Selecting rainfalls gradient those exceed
its 0.8-quantile, considered as the “rainfall
events”:
𝑅𝐸 = (𝑡𝑘)𝑡𝑘∈(𝑡𝑗−72,𝑡𝑗 )s.t. ∇𝑃 (𝑡𝑘) > 𝑄𝑢𝑎𝑛𝑡0.8(∇𝑃 ([𝑡𝑗 − 72, 𝑡𝑗]))ii. Defining the rainfall energy function:
𝑓 (𝑡𝑥) = ||(𝑝𝑥 − 1, ..., 𝑝𝑥 + 11)||2then the starting date is the first moment the
rainfall energy exceeds 0.2 of the maximal
rainfall energy:
𝑠𝑑 = min(𝑡𝑠)𝑡𝑠∈𝑅𝐸s.t. 𝑓 (𝑠) > 0.2||(𝑓 (𝑡𝑗 − 72), ..., 𝑓 (𝑡𝑗))||∞

(b) Determining an ending date based on discharge
baseflow 𝑄𝑏 = 𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤(𝑄):
𝑒𝑑 = argmin𝑡𝑒

∑𝑡𝑒+23
𝑡=𝑡𝑒−1

|(𝑄 −𝑄𝑏)(𝑡)|
s.t. 𝑡𝑗 ≤ 𝑡𝑒 ≤ 𝑠𝑑 + 10 × 24

Remark. If there exists 𝑚 + 1 (𝑚 > 0) consecutive events
(𝑠𝑑𝑢, 𝑒𝑑𝑢), ..., (𝑠𝑑𝑢+𝑚, 𝑒𝑑𝑢+𝑚) occurring “nearly simultane-
ously”, that means all of these events occur in no more than
10 days: 𝑒𝑑𝑢+𝑚 < 𝑠𝑑𝑢 + 10 × 24, then we merge these 𝑚+ 1
events into a single event (𝑠𝑑𝑢, 𝑒𝑑𝑢+𝑚).

3.2. Sobol indices
To perform a calibration process with hydrological sig-

natures, it is important to investigate the sensitivity of sim-
ulated signatures to the model parameters, to guide the
potential selection of the signature(s) which should be used
to calibrate the model. The sensitivity analysis enables us to
examine how the variation of a given output/signature can be
apportioned to a variation in model inputs (Saltelli, 2002).
In other words, this can help detecting the possibility for
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Figure 4: Example of flood events detected from hydrograph
with the segmentation algorithm.

moving the model parameters to constrain some important
features of the hydrological model via the signature(s). If
some signatures are not sensitive to the model parameters,
then it might be useless to optimize an objective function
based on these signatures.

Let us consider the 𝑚-parameters set 𝜽 = (𝑥1, ..., 𝑥𝑚).Then the simulated value of a signature 𝑆𝑖 is represented as
𝑆𝑠
𝑖 = 𝑓𝑖(𝜽). We are interested in Sobol indices called, first-

order, second-order, and so forth. The first- (depending on
𝑥𝑗), second- (depending on 𝑥𝑗 and 𝑥𝑘) Sobol indices of 𝑆𝑠

𝑖are respectively defined as follows:
𝑠1𝑗𝑖 = 𝕍 [𝔼[𝑆𝑠

𝑖 |𝑥𝑗 ]]
𝕍 [𝑆𝑠

𝑖 ]
and 𝑠2𝑗𝑘𝑖 = 𝕍 [𝔼[𝑆𝑠

𝑖 |𝑥𝑗 ,𝑥𝑘]]
𝕍 [𝑆𝑠

𝑖 ]
.

Azzini, Mara and Rosati (2021) proposed a method to
estimate the first- and total-order variance-based sensitivity
indices (also called Sobol indices) on parameter sets of
Monte-Carlo simulations via Saltelli generator (Saltelli,
2002). For the most part, estimating the second and higher
order variance-based sensitivity indices is complicated to
achieve and inconsistent in the context of high dimensional
parameter space with such algorithms that require a large
amount of Monte-Carlo simulations. To analyze the signa-
tures sensitivity with the 6-parameters model, we are thus
interested in the estimation of first order Sobol indices which
is more reliable in the present context.
3.3. Signatures-based multi-criteria optimization

Let us consider a classical objective function 𝑗𝑑 , which is
the dominant criterion (or the most constrained criterion) in
case of multi-criteria optimization, an objective function 𝑗𝑐combining continuous-signatures-based cost functions, and
𝑗𝑓 combining flood-event-signatures-based cost functions.
Then, the cost function to minimize 𝐽 can be defined as:

𝐽 ≡

{

𝛿𝑑𝑗𝑑 + 𝛿𝑐𝑗𝑐 + 𝛿𝑓 𝑗𝑓 for single-objective optimization,
(𝑗𝑑 , 𝑗𝑐 , 𝑗𝑓 ) for multi-objective optimization

(5)
where 𝛿𝑑 , 𝛿𝑐 , 𝛿𝑓 are the corresponding optimization weights
in the first case. Keep in mind that we take into account the
use of signatures in both cases but the first case is a single-
objective optimization while the second is a multi-objective
optimization.

For each signature 𝑆𝑖, denote by 𝑆𝑜
𝑖 and 𝑆𝑠

𝑖 the obser-
vation and simulation respectively. The set of continuous
and flood event signatures denoted 𝑁𝑐 and 𝑁𝑓 respectively.
Then, the components 𝑗𝑑 , 𝑗𝑐 and 𝑗𝑓 can be defined as follows:

• 𝑗𝑑 ≡ 1−𝑁𝑆𝐸 or 1−𝐾𝐺𝐸(𝛼,𝛽,𝛾) with varying weights
𝛼, 𝛽, 𝛾 (see Appendix A.2). This metric 𝑗𝑑 is consid-
ered as a constraining objective function for selecting
an optimal solution from non-inferior solutions in case
of multi-objective optimization (see Appendix C.3).

• 𝑗𝑐 ≡
⎧

⎪

⎨

⎪

⎩

∑

𝑆𝑖∈𝑁𝑐
𝜎𝑆𝑖

𝑗𝑆𝑖
𝑐 , for single-objective

multi-criteria optimization;
({𝑗𝑆𝑖

𝑐 }𝑆𝑖∈𝑁𝑐
), for multi-objective optimization

where 𝑗𝑆𝑖
𝑐 ≡

|

|

|

|

𝑆𝑠
𝑖

𝑆𝑜
𝑖
− 1

|

|

|

|

is the objective function based
on continuous signature 𝑆𝑖 and 𝜎𝑆𝑖

is the corre-
sponding optimization weight of 𝑆𝑖 in case of single-
objective function.

• 𝑗𝑓 ≡
⎧

⎪

⎨

⎪

⎩

∑

𝑆𝑖∈𝑁𝑓
𝜎𝑆𝑖

𝑗𝑆𝑖
𝑓 , for single-objective

multi-criteria optimization;
({𝑗𝑆𝑖

𝑓 }𝑆𝑖∈𝑁𝑓
), for multi-objective optimization.

In this case, and in the context of global optimization
in time, 𝑗𝑆𝑖

𝑓 ≡ 1
𝑁𝐸

∑𝑁𝐸
𝑒=1

|

|

|

|

𝑆𝑠
𝑖,𝑒

𝑆𝑜
𝑖,𝑒
− 1

|

|

|

|

defines the scalar
objective function related to flood signature 𝑆𝑖 ∈ 𝑁𝑓over the 𝑁𝐸 events selected with the segmentation
method described in 3.1. Otherwise, to perform a
season-based optimization on flood event signatures,
we can compute for the events occurring in the se-
lected season. For example, for a Spring-based opti-
mization:

𝑗𝑆𝑖
𝑓,𝑠𝑝𝑟𝑖𝑛𝑔 ≡ 1

dim
∑

𝑒∈

|

|

|

|

|

𝑆𝑠
𝑖,𝑒

𝑆𝑜
𝑖,𝑒

− 1
|

|

|

|

|

s.t. ∀𝑒 ∈  ⊂ {1, ..., 𝑁𝐸}, 𝑆𝑖,𝑒 occurs in Spring.
Hence, the optimization problems taking into account signa-
tures via the cost function defined in Eq. 5 can be developed
as Eq. 6 for a single-objective optimization, and as Eq. 7 for
a multi-objective optimization.

min
𝜽∈⊂ℝ𝑛

𝛿𝑑𝑗𝑑(𝜽) + 𝛿𝑐
∑

𝑆𝑖∈𝑁𝑐

𝜎𝑆𝑖

|

|

|

|

|

𝑆𝑠
𝑖 (𝜽)

𝑆𝑜
𝑖 (𝜽)

− 1
|

|

|

|

|

+ 𝛿𝑓
∑

𝑆𝑖∈𝑁𝑓

𝜎𝑆𝑖

1
𝑁𝐸

𝑁𝐸
∑

𝑒=1

|

|

|

|

|

𝑆𝑠
𝑖,𝑒(𝜽)

𝑆𝑜
𝑖,𝑒(𝜽)

− 1
|

|

|

|

|

(6)
Huynh et al. 2022: Preprint submitted to Elsevier Page 7 of 18



Signatures-and-sensitivity-based multi-criteria variational calibration for distributed hydrological modeling

min
𝜽∈⊂ℝ𝑛

(

𝑗𝑑(𝜽),

{

|

|

|

|

|

𝑆𝑠
𝑖 (𝜽)

𝑆𝑜
𝑖 (𝜽)

− 1
|

|

|

|

|

}

𝑆𝑖∈𝑁𝑐

,

{

1
𝑁𝐸

𝑁𝐸
∑

𝑒=1

|

|

|

|

|

𝑆𝑠
𝑖,𝑒(𝜽)

𝑆𝑜
𝑖,𝑒(𝜽)

− 1
|

|

|

|

|

}

𝑆𝑖∈𝑁𝑓

)

(7)
While the minimization problem with single-objective

function 6 is accessible for both global and distributed cali-
bration methods, performing a multi-objective optimization
as problem 7 is sophisticated for distributed calibration
considering a spatially distributed control vector adapted
to a high dimensional hydrological optimization problems,
and requiring a lot of cost gradient information. In global
calibration with multi-objective optimization approaches, a
set of feasible solutions can be found instead of an unique
optimal solution in single-objective optimization (Appendix
C). In such a way, a so-called “Pareto front” contains non-
inferior solutions (Appendix C.1) and thus a method is
proposed for selecting an optimal solution from the Pareto
as depicted in Appendix C.3.

According to Yapo et al. (1998), classical generating
techniques to sample the entire Pareto set are inefficient
with a large number of objective functions due to time
consuming (it grows rapidly at an exponential rate) and
they provided in the same paper an alternative method
“Multi-Objective Complex Evolution” (MOCOM-UA) for
implementing efficiently a global optimization algorithm in
hydrology. In addition to Strength Pareto Evolutionary Algo-
rithm (SPEA) (Zitzler and Thiele, 1999) like MOCOM-UA,
there are various multi-objective optimization techniques in-
cluding Multi-Objective Genetic Algorithm (MOGA) (Mu-
rata, Ishibuchi et al., 1995), Multiple Gradient Descent
Algorithm (MGDA) (Désidéri, 2012; Mercier, Poirion and
Désidéri, 2018), etc.. Comparing to MGDAs, MOGAs are
more effective regardless of the nature of the problem
functions because they do not require gradient information,
but instead are based on crossover and mutation operators.
“Non-dominated Sorting Genetic Algorithm II (NSGA-
II) suggested by Deb, Pratap, Agarwal and Meyarivan
(2002) is a well known GA for solving multi/many-objective
optimization problems including fast and elitist approach
(Deb et al., 2002). Namely, a fast sorting algorithm helps
optimizing the computational complexity (even with a large
population size) arising from the non-dominated sorting
procedure in every generation. Into the bargain, NSGA-
II possesses a diversity preservation property, based on a
sharing function method, that prevents the loss of good
solutions involved in the mating process. Recently, NSGA-II
has also been implemented in a Python library named 𝑝𝑦𝑚𝑜𝑜
(Blank and Deb (2020)) that is used in the present study
thanks to the Python interface of our SMASH platform.

Note that the objective functions 𝑗𝑐 and 𝑗𝑓 related to con-
tinuous and flood signatures have also been implemented in
Fortran and numerical adjoint model re-derived as needed by

the variational calibration algorithm (cf. section 2.3). 𝑗𝑓 can
be computed thanks to a temporal mask of corresponding to
flood events selected by the Python segmentation algorithm
and passed to the Fortran via the wrapped interface.

The proposed numerical algorithms are implemented in
Python, on top of SMASH Fortran platform that is interfaced
in Python making accessible its forward-inverse algorithms
(forward hydrological models, SBS and VDA calibration
algorithms) (cf. Jay-Allemand et al. (2022)).

4. Results and discussion
4.1. Signatures analysis

To start with, global calibrations using SBS algorithm
are conducted to analyze the relative error between simula-
tion and observation of the signatures. Table 2 shows that
some hydrological signatures with a significant simulation
error such as: 𝐶𝑞2, 𝐶𝑞10, 𝐶𝑞50, 𝐸𝑡𝑟𝑒 and 𝐸𝑞𝑝 need to be
constrained in the calibration process (a list of all studied
signatures with corresponding notations is presented in Ap-
pendix B). Next, we survey the sensitivity of these signa-
tures to the model parameters. We considered over 10,000
spatially uniform sets of the 6 model parameters, sampled
using Saltelli generator (Saltelli, 2002) to estimate the frist-
order Sobol indices across 141 studied catchments (Table
3). In general, continuous signatures are less sensitive to the
model than flood-event signatures. Furthermore, constrain-
ing hydrological model by flood event signatures along with
a classical calibration metric (for example with 1−𝑁𝑆𝐸 or
1−𝐾𝐺𝐸), which is basically based on continuous records of
streamflow, is ideal to balance the model between the global
score and the performance on flood events. We select for
example the peak flow (𝐸𝑞𝑝), which is one of flood event
signatures having both significant relative error and high
sensitivity (the other one is 𝐸𝑡𝑟𝑒), to perform multi-critera
calibration methods. Note that multi-criteria optimization
methods with multi signatures are absolutely reachable but
will not be shown in this study for sake of brevity and
simplify results analysis.
4.2. Signatures-based multi-criteria optimization

In this section, we discuss the performance of dif-
ferent models with i. uniform and ii. distributed calibra-
tion methods. For uniform calibration methods, we aim
to compare different calibration metrics including classi-
cal single-objective optimization (CSOO), signature-based
single-objective optimization (SSOO) and signature-based
multi-objective optimization (SMOO). For distributed meth-
ods, two strategies selected for comparison are CSOO and
SSOO. In both scenarios, the models are calibrated on 23
downstream gauges of the PICS data on the calibration
period 2006-2013. Three validation metrics are chosen to
validate the simulated results:

• on 23 downstream gauges on the validation period
2012-2019 (temporal validation, "T_Val").

• on all 141 catchments on the calibration period 2006-
2013 (spatial validation, "S_Val").
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Signature Calibration metric
𝑗𝑁𝑆𝐸
𝑑 𝑗𝐾𝐺𝐸

𝑑

Ccr 0.14[0.28, 0.38] 0.16[0.3, 0.46]
Ccrqf 0.24[0.35, 0.35] 0.26[0.4, 0.45]
Ccrbf 0.15[0.3, 0.44] 0.15[0.33, 0.54]
Ccrsc 0.23[0.4, 0.68] 0.22[0.38, 0.69]
Cq2 0.72[3.99, 21.14] 0.76[5.99, 29.98]
Cq10 0.52[2.64, 8.8] 0.52[2.87, 9.42]
Cq50 0.29[0.49, 0.85] 0.2[0.52, 0.99]
Cq90 0.21[0.37, 0.96] 0.18[0.38, 0.99]
Evqq 0.23[0.32, 0.31] 0.19[0.31, 0.37]
Evqb 0.22[0.33, 0.39] 0.22[0.33, 0.41]
Ecr 0.2[0.28, 0.26] 0.18[0.27, 0.26]

Ecrqf 0.23[0.32, 0.31] 0.19[0.31, 0.37]
Ecrbf 0.22[0.33, 0.39] 0.22[0.33, 0.41]
Ecrsc 0.12[0.19, 0.2] 0.13[0.2, 0.24]
Etre 0.48[0.96, 1.25] 0.46[0.82, 1.1]
Eqp 0.28[0.38, 0.35] 0.25[0.36, 0.41]

Table 2
Relative error between simulated and observed signatures of
the same model structure calibrated either with 1 − 𝑁𝑆𝐸 or
1−𝐾𝐺𝐸 by SBS algorithm for global optimization. The values
(in the form of .[., .]) in each case represent respectively the
median, mean and standard deviation of a signature over all
catchments downstream outlets of the dataset.

• on all 141 catchments on the validation period 2012-
2019 (spatio-temporal validation, "S-T_Val").

4.2.1. With global calibration
Firstly, the global calibration methods are performed

with NSGA for 2 single-objective-functions-based approaches
and 1 multi-objective-function-based approach. Table 4
displays the mean of different objective functions for cali-
bration and validation (with 3 validation metrics), and for
3 optimization criteria (CSOO, SSOO and SMOO) with
various cost functions. In CSOO, we interpret that the model
calibrated with 𝑗𝐾𝐺𝐸

𝑑 = 1−𝐾𝐺𝐸 produces a better result on
the peak flow (𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 ) compared to the one calibrated with
𝑗𝑁𝑆𝐸
𝑑 = 1−𝑁𝑆𝐸. This explains why KGE criterion is more

robust than NSE for constraining a hydrological model, since
it is built on the decomposition of NSE (Gupta et al., 2009),
which emphasizes relative importance of several hydrolog-
ical features. Using event signatures in addition to classical
continuous metrics in SSOO, we found that simulated peak
flow is highly improved in terms of relative error (about 15-
18 times and 1.4-1.7 times on average resp. for calibration
and temporal validation) while classical calibrated metrics
are significantly deteriorated (about 1.4-1.6 times and 1.4-
1.5 times on average resp. for calibration and temporal vali-
dation). This may arise from unbalancing problem between
global score and performance in simulating flood event
signature. To circumvent this problem, the choice of opti-
mization weights of objective functions need to be carefully
studied to balance the model performance on both short
and long time series. That may be a very time consuming
approach with numerous simulations running in order to find
appropriate optimization weights for the objective functions.
Alternatively, since global calibration algorithm does not

require any gradient information and is approached in lower
dimensional optimization problem, this unbalancing issue
can be achieved with multi-objective optimization approach.
This way keeps an acceptable level of deterioration of NSE
and KGE while enhancing significantly the simulation of
the peak flow (Fig. 5 and 6). However, this global multi-
optimization algorithm is not capable to deal with high
dimensional control vectors and the uniform setup here
led to unsatisfactory results in spatial and spatio-temporal
validation metrics. So, it is interesting to see how a SSOO
with distributed calibration, i.e.including signatures in our
VDA algorithm, can improve the model without conducting
many experiments for selection of optimization weights (so
the objective functions have the same optimization weights
as above) at the end of this section.

Interestingly, the corresponding optimal parameters ob-
tained with various optimization strategies are presented in
Fig. 7. A preliminary review points out that the distribution
over studied catchments of 𝑐𝑟 has an important difference
when performing traditional calibration (CSOO) and multi-
criteria calibration methods (SSOO and SMOO). We recall
that 𝑐𝑟 is the routing parameter in our conceptual design (Fig.
2), so it has a crucial role in producing the peak flow 𝐸𝑞𝑝.
Additionally, the sensitivity analysis in Table 3 has indicated
that 𝑐𝑟 is one of the three parameters explaining most of the
sensitivity of the signature 𝐸𝑞𝑝.
4.2.2. With distributed calibration

Now we employ SSOO technique for a distributed cali-
bration using L-BFGS-B algorithm provided a first guess by
SBS algorithm. In overall, all of obtained scores in Table 5
are significantly enhanced compared to the uniform calibra-
tion method, thanks to spatially distributed control vectors
granting more flexibility to reproduce observed discharge.
Instead of a sharp decline of 𝑗

𝑄𝑝𝑒𝑎𝑘
𝑓 as above, this relative

error slightly decreases about 1.5 times (from about 0.25
down to 0.16) in calibration and from about 0.32 down to
0.28 in temporal validation, but instead, the scores (NSE
and KGE) are slightly reduced in calibration and have an
inappreciable deterioration in temporal validation. So in this
case, we do not have the unbalancing issue between the
model performances on short and long time series when
employing SSOO. We observe clearly in Fig. 8 and 9 that
the error of simulated pick flow is significantly reduced
while the deterioration level of the scores remains tolerable,
particularly in calibration and temporal validation.

Ultimately, the scoring metrics are computed on 111
flood events picked from 23 downstream gauges (by segmen-
tation method depicted in Algorithm 1) on the calibration
period. The results plotted in Fig. 10 show that, in distributed
calibration, the score of constrained calibration metric is not
decreased but even improved from 0.80 (resp. 0.71) up to
0.83 (resp. 0.78) in median for NSE (resp. KGE). It indi-
cates that the optimum of the model parameters has moved
to another location that produces a better performance in
simulating flood events by slightly reducing the scores in
simulating the low-flow.
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Signature Model parameter
𝑐𝑖 𝑐𝑝 𝑐𝑡𝑟 𝑐𝑡𝑙 𝑐𝑟 𝑚𝑙

Ccr -0.01[-0.0, 0.01] -0.04[-0.04, 0.01] 13.46[13.46, 0.26] 0.08[0.12, 0.1] -0.0[-0.0, 0.0] 12.07[12.56, 2.75]
Ccrqf 0.33[0.63, 0.89] 2.72[3.44, 1.93] 36.2[36.13, 2.47] 1.65[1.91, 1.24] 2.18[2.88, 2.19] 23.49[23.94, 6.31]
Ccrbf -0.01[-0.0, 0.01] -0.04[-0.03, 0.01] 12.87[12.88, 0.19] 0.08[0.11, 0.09] -0.0[-0.01, 0.01] 11.74[12.12, 2.4]
Ccrsc -0.05[0.03, 0.31] 1.95[1.85, 1.21] 11.78[14.75, 10.6] 13.28[13.34, 3.96] 11.72[14.38, 9.46] 42.54[42.89, 13.98]
Cq2 0.12[-28.39, 202.72] 0.01[-3.78, 24.13] 10.05[-3753.53, 31924.79] 0.0[-7.08, 53.76] 0.0[-0.34, 13.31] -0.26[-2312.18, 18970.9]
Cq10 -0.0[0.05, 0.11] -0.0[-0.03, 0.05] 12.79[13.64, 2.53] 0.02[0.04, 0.04] -0.0[-0.0, 0.01] 9.4[7.79, 3.24]
Cq50 -0.01[-0.02, 0.01] -0.01[-0.01, 0.02] 12.63[12.63, 0.13] 0.07[0.11, 0.09] 0.0[0.0, 0.0] 10.93[11.13, 1.51]
Cq90 -0.02[-0.02, 0.01] -0.06[-0.04, 0.06] 13.05[13.17, 0.51] 0.16[0.26, 0.25] -0.02[-0.02, 0.02] 16.02[17.66, 5.87]
Evqq 0.03[0.42, 3.41] 7.28[8.16, 5.81] 30.2[30.87, 6.77] 2.75[2.89, 1.96] 1.72[2.71, 3.02] 20.5[20.12, 10.61]
Evqb 0.01[0.03, 0.13] 0.18[0.97, 1.91] 13.57[13.9, 3.73] 0.25[0.79, 1.22] -0.01[-0.02, 0.24] 18.85[21.03, 12.04]
Ecr 0.0[0.07, 0.6] 0.87[1.88, 2.76] 17.47[17.66, 3.85] 0.5[1.07, 1.44] -0.01[0.06, 0.53] 19.79[22.49, 13.01]

Ecrqf 0.03[0.42, 3.41] 7.28[8.16, 5.81] 30.2[30.87, 6.77] 2.75[2.89, 1.96] 1.72[2.71, 3.02] 20.5[20.12, 10.61]
Ecrbf 0.01[0.03, 0.13] 0.18[0.97, 1.91] 13.57[13.9, 3.73] 0.25[0.79, 1.22] -0.01[-0.02, 0.24] 18.85[21.03, 12.04]
Ecrsc 0.58[1.16, 3.11] 1.4[2.34, 3.09] 16.93[21.97, 18.64] 3.64[4.45, 3.15] 28.09[32.35, 21.69] 14.09[22.13, 19.7]
Etre -0.0[1.08, 8.07] 0.07[0.99, 3.59] 0.73[2.15, 5.65] 0.12[0.54, 1.34] 82.79[71.05, 28.65] 1.88[4.09, 5.82]
Eqp -0.04[0.12, 1.5] 3.92[4.89, 4.46] 26.82[27.19, 6.71] 1.12[1.48, 1.33] 12.09[14.21, 9.8] 13.11[14.45, 9.0]

Table 3
First-order variance-based sensitivity indices of all studied signatures by the 6 model parameters (in %). The values (in the form of
.[., .]) in each case represent respectively the median, mean and standard deviation of the sensitivity of a signature by a parameter
over all catchments.

Method Calibration metric 𝑗𝑁𝑆𝐸
𝑑 𝑗𝐾𝐺𝐸

𝑑 𝑗𝑄𝑝𝑒𝑎𝑘
𝑓

Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val

CSOO 𝑗𝑁𝑆𝐸
𝑑 0.274 0.277 0.901 0.616 0.239 0.369 0.687 0.736 0.279 0.324 0.387 0.357
𝑗𝐾𝐺𝐸
𝑑 0.352 0.330 1.048 0.795 0.183 0.323 0.665 0.721 0.267 0.280 0.379 0.344

SSOO 𝑗𝑁𝑆𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 0.447 0.418 1.056 0.889 0.377 0.476 0.759 0.853 0.014 0.189 0.346 0.372

𝑗𝐾𝐺𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 0.551 0.431 1.259 0.956 0.335 0.443 0.777 0.833 0.017 0.209 0.337 0.358

SMOO {𝑗𝑁𝑆𝐸
𝑑 , 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 } 0.341 0.351 1.020 0.845 0.271 0.420 0.703 0.803 0.087 0.215 0.336 0.391

{𝑗𝐾𝐺𝐸
𝑑 , 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 } 0.456 0.409 1.163 0.821 0.243 0.368 0.683 0.724 0.048 0.182 0.316 0.389

Table 4
Calibration, temporal, spatial and spatio-temporal validation metrics for uniform model. The mean of calibration and validation
cost values for different objective functions are displayed for each calibration metric.

Figure 5: Comparison of calibration and validation metrics (optimal fit 𝑐𝑜𝑠𝑡 = 0) for three optimization approaches (CSOO,
SSOO, SMOO) by constraining 1−𝑁𝑆𝐸 in case of global calibration. From left to right: calibration, temporal validation, spatial
validation and spatio-temporal validation.

Method Calibration metric 𝑗𝑁𝑆𝐸
𝑑 𝑗𝐾𝐺𝐸

𝑑 𝑗𝑄𝑝𝑒𝑎𝑘
𝑓

Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val

CSOO 𝑗𝑁𝑆𝐸
𝑑 0.221 0.244 0.655 0.596 0.233 0.355 0.553 0.597 0.274 0.334 0.381 0.376
𝑗𝐾𝐺𝐸
𝑑 0.239 0.231 0.802 0.702 0.140 0.292 0.617 0.701 0.226 0.295 0.365 0.364

SSOO 𝑗𝑁𝑆𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 0.251 0.241 0.831 0.639 0.231 0.305 0.586 0.612 0.183 0.298 0.392 0.383

𝑗𝐾𝐺𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓 0.297 0.245 0.964 0.671 0.190 0.300 0.617 0.647 0.152 0.271 0.376 0.387

Table 5
Calibration, temporal, spatial and spatio-temporal validation metrics for distributed model. The mean of calibration and validation
cost values for different objective functions are displayed for each calibration metric.
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Figure 6: Comparison of calibration and validation metrics (optimal fit 𝑐𝑜𝑠𝑡 = 0) for three optimization approaches (CSOO,
SSOO, SMOO) by constraining 1−𝐾𝐺𝐸 in case of global calibration. From left to right: calibration, temporal validation, spatial
validation and spatio-temporal validation.

Figure 7: Uniform parameter of the SMASH 6-parameters
structure. In each boxplot, the first column present the dis-
tribution of a parameter for 3 optimization strategies (CSOO,
SSOO, SMOO) using 𝑗𝑁𝑆𝐸

𝑑 , whereas the strategies in the
second column use 𝑗𝐾𝐺𝐸

𝑑 as the dominant (or constrained)
objective function. The boundary conditions of the model
parameters are given in Appendix D.

Regarding to the parameter space, Table 6 conveys some
statistical analysis over studied catchments for the spatially
uniform parameter sets obtained with 4 calibration metrics.
Comparing to the spatially distributed optimal parameters in
Table 7, we interpret that the mean of distributed parameters

over all catchments in the 4 cases (corresponding to 4 cali-
bration metrics) is globally coherent to the distribution of the
first guess. Some parameters are almost spatially uniform for
example the non conservative water exchange parameter 𝑚𝑙
has a small distributed deviation in median (resp. in average)
over all catchments 0.01 (resp. 0.05) (calibrated with 𝑗𝑁𝑆𝐸

𝑑 )
compared to its distributed mean in median (resp. in average)
−0.59 (resp. −4.98). Conversely, the transfer parameter 𝑐𝑡𝑙has a great distributed deviation (in median over all catch-
ments) 193.72 compared to its distributed average 347.87,
that also has a massive difference to its distributed median
114.79. Fig. 11 illustrates the spatially distributed optimal
parameters at the largest catchment Y5312010, the Argens
River, for a distributed calibration with 𝑗𝐾𝐺𝐸

𝑑 + 𝑗
𝑄𝑝𝑒𝑎𝑘
𝑓 . The

boxplots analyzing the mean and standard deviation of dis-
tributed parameter over all studied catchments are displayed
in Appendix E.

5. Conclusion
In this study, we enhanced the calibration process for

a conceptual distributed hydrological model SMASH, ap-
plied to Mediterranean floods, using the hydrological sig-
natures with various multi-criteria optimization strategies.
Continuous signatures and flood event signatures are firstly
computed and analyzed. Subsequently, sensitivity analysis is
used to help selecting appropriate signatures for constrain-
ing the model. Ultimately, signatures-based multi-criteria
optimization approaches are performed and have demon-
strated their robustness and reliability while improving the
simulated peak flood event without excessively losing the
NSE and KGE. In particular, for distributed calibration,
along with preferable results on the signature, the scoring
metrics (NSE and KGE) computed on flood events are
even enhanced compared to the model calibrated without
using the signatures. It shows that the model constrained by
the signature has a better performance in simulating flood
event and thus more delicate than traditional calibration
approaches, specially in the context of flash flood prediction.
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Figure 8: Comparison of calibration and validation metrics (optimal fit 𝑐𝑜𝑠𝑡 = 0) for two optimization approaches (CSOO, SSOO)
by constraining 1 −𝑁𝑆𝐸 in case of distributed calibration. From left to right: calibration, temporal validation, spatial validation
and spatio-temporal validation.

Figure 9: Comparison of calibration and validation metrics for two optimization approaches (CSOO, SSOO) by constraining
1 − 𝐾𝐺𝐸 in case of distributed calibration. From left to right: calibration, temporal validation, spatial validation and spatio-
temporal validation.

Interestingly, the parameter spaces in different models are
also compared to help understand the optimum movement
from traditional calibration approaches to signatures-based
calibration approaches.

Future work will aim to (i) upgrade the variational cal-
ibration algorithm with Bayesian approach and global sen-
sitivity metrics, including for spatially distributed controls,
using adjoint model, as well as (ii) perform extended tests

on an even larger sample of catchments and signatures, with
complementary data, with various model structures.

Parameter Calibration metric
𝑗𝑁𝑆𝐸
𝑑 𝑗𝑁𝑆𝐸

𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘
𝑓 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐾𝐺𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓

𝑐𝑖 14.71[20.3, 26.22] 16.93[20.83, 26.48] 17.6[27.15, 33.07] 17.27[30.17, 35.83]
𝑐𝑝 169.99[291.17, 434.58] 146.04[310.14, 505.68] 151.87[286.79, 483.33] 141.56[289.69, 466.99]
𝑐𝑡𝑟 171.76[286.6, 269.5] 162.66[313.49, 304.83] 266.32[431.2, 355.04] 267.21[436.83, 360.62]
𝑐𝑡𝑙 347.87[812.15, 1274.12] 250.42[1366.73, 2789.22] 383.51[1413.93, 2749.35] 262.89[1337.96, 2795.16]
𝑐𝑟 41.32[52.63, 34.05] 40.94[50.97, 30.97] 41.33[51.2, 30.29] 40.24[50.2, 27.58]
𝑚𝑙 -0.59[-4.98, 8.21] 0.0[-3.81, 7.34] -0.0[-3.62, 7.31] -0.0[-3.28, 6.39]

Table 6
Uniform optimal parameters calibrated by SBS algorithm with 4 calibration metrics for each catchment on its downstream gauge.
The values (in the form of .[., .]) in each case represent respectively the median, mean and standard deviation of the optimal
parameter values over all catchments of the dataset.
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Figure 10: Comparison of scoring metrics computed on 111 events picked from 23 downstream gauges on the period 2006-2013
for all studied models, by constraining 1 −𝑁𝑆𝐸 (left) and 1 −𝐾𝐺𝐸 (right).

Parameter Calibration metric
𝑗𝑁𝑆𝐸
𝑑 𝑗𝑁𝑆𝐸

𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘
𝑓 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐾𝐺𝐸
𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘

𝑓

𝑐𝑖 15.45[20.22, 26.34] 10.91[20.14, 26.75] 17.6[27.19, 33.16] 17.3[30.32, 36.05]
𝑐𝑖 14.71[20.3, 26.22] 16.93[20.83, 26.48] 17.6[27.15, 33.07] 17.27[30.17, 35.83]
𝜎𝑐𝑖 0.22[0.91, 1.46] 0.07[1.13, 4.16] 0.13[0.57, 1.28] 0.05[0.82, 3.09]
𝑐𝑝 161.81[286.05, 435.48] 145.79[314.19, 518.0] 156.65[288.75, 476.53] 148.27[296.94, 485.79]
𝑐𝑝 169.99[291.17, 434.58] 146.04[310.14, 505.68] 151.87[286.79, 483.33] 141.56[289.69, 466.99]
𝜎𝑐𝑝 38.52[60.58, 59.64] 8.95[37.57, 44.15] 31.08[53.49, 57.35] 12.03[46.82, 102.47]
𝑐𝑡𝑟 174.6[287.44, 270.08] 158.48[317.5, 311.03] 266.09[429.0, 353.73] 267.12[447.27, 372.32]
𝑐𝑡𝑟 171.76[286.6, 269.5] 162.66[313.49, 304.83] 266.32[431.2, 355.04] 267.21[436.83, 360.62]
𝜎𝑐𝑡𝑟 13.88[28.84, 35.82] 3.23[25.3, 57.2] 5.68[24.28, 60.74] 1.45[24.39, 74.56]
𝑐𝑡𝑙 114.79[675.7, 1276.32] 127.09[1322.22, 2806.59] 180.63[1332.45, 2784.42] 146.96[1322.17, 2803.08]
𝑐𝑡𝑙 347.87[812.15, 1274.12] 250.42[1366.73, 2789.22] 383.51[1413.93, 2749.35] 262.89[1337.96, 2795.16]
𝜎𝑐𝑡𝑙 193.72[355.92, 433.62] 34.67[139.21, 252.41] 69.91[222.54, 388.17] 31.82[61.87, 81.06]
𝑐𝑟 41.37[52.08, 34.42] 41.37[52.08, 34.42] 41.37[52.08, 34.42] 41.37[52.08, 34.42]
𝑐𝑟 41.32[52.63, 34.05] 40.94[50.97, 30.97] 41.33[51.2, 30.29] 40.24[50.2, 27.58]
𝜎𝑐𝑟 4.66[6.01, 5.04] 1.45[5.17, 10.17] 3.01[5.31, 10.29] 1.34[5.08, 13.82]
𝑚̃𝑙 -0.59[-4.98, 8.21] 0.0[-3.72, 7.42] 0.0[-3.61, 7.31] -0.0[-3.27, 6.39]
𝑚𝑙 -0.59[-4.98, 8.21] 0.0[-3.81, 7.34] -0.0[-3.62, 7.31] -0.0[-3.28, 6.39]
𝜎𝑚𝑙 0.01[0.05, 0.09] 0.0[0.17, 0.73] 0.02[0.05, 0.09] 0.0[0.08, 0.34]

Table 7
Analysis of spatially distributed parameter sets of the models corresponding to 4 calibration metrics. First, spatial median (.̃),
average (.) and standard deviation (𝜎.) for each parameter field are calculated for each catchment, then their median, mean and
standard deviation over all catchments are represented in the form of .[., .].

Figure 11: Spatially distributed optimal parameters at the
Argens River (Y5312010), by minimizing 𝑗𝐾𝐺𝐸

𝑑 + 𝑗𝑄𝑝𝑒𝑎𝑘
𝑓 .

A. Classical calibration metrics in hydrology
A.1. Nash–Sutcliffe efficiency (NSE)

𝑁𝑆𝐸 = 1 −
∑𝑇

𝑡=0(𝑄(𝑡) −𝑄∗(𝑡))2
∑𝑇

𝑡=0(𝑄∗(𝑡) −𝑄∗)2

where 𝑄(𝑡) is the simulated discharge at time 𝑡, 𝑄∗(𝑡) is the
observed discharge at time 𝑡 and 𝑄∗ is the mean observed
discharge.
A.2. Kling–Gupta efficiency (KGE)

𝐾𝐺𝐸 = 1 −
√

𝛼(𝑟 − 1)2 + 𝛽( 𝜎
𝜎∗

− 1)2 + 𝛾(
𝜇
𝜇∗ − 1)2

Huynh et al. 2022: Preprint submitted to Elsevier Page 13 of 18



Signatures-and-sensitivity-based multi-criteria variational calibration for distributed hydrological modeling

Notation Signature Description Formula Unit

Ccr

Runoff coefficients

Coefficient relating the amount of runoff to the amount of
precipitation received

∫ 𝑡∈𝐔 𝑄(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Ccrqf Coefficient relating the amount of high-flow to the amount
of precipitation received

∫ 𝑡∈𝐔 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Ccrbf Coefficient relating the amount of low-flow to the amount
of precipitation received

∫ 𝑡∈𝐔 𝑄𝑏(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Ccrsc Coefficient relating the amount of high-flow to the amount
of runoff

∫ 𝑡∈𝐔 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑄(𝑡)𝑑𝑡
-

Cq2

Flow percentiles 2%, 10%, 50% and 90%-quantiles from flow duration curve

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.02)

𝑚𝑚Cq10 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.1)
Cq50 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.5)
Cq90 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.9)

Table 8
List of all studied continuous signatures.

Notation Signature Description Formula Unit

Evqq Flood flow Amount of quickflow in flood event ∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡 𝑚𝑚
Evqb Base flow Amount of baseflow in flood event ∫ 𝑡∈𝐄 𝑄𝑏(𝑡)𝑑𝑡 𝑚𝑚

Ecr

Runoff coefficients

Coefficient relating the amount of runoff to the amount of
precipitation received

∫ 𝑡∈𝐄 𝑄(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Ecrqf Coefficient relating the amount of high-flow to the amount
of precipitation received

∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Ecrbf Coefficient relating the amount of low-flow to the amount
of precipitation received

∫ 𝑡∈𝐄 𝑄𝑏(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Ecrsc Coefficient relating the amount of high-flow to the amount
of runoff

∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑄(𝑡)𝑑𝑡
-

Etre Lag time Difference time between the peak runoff and the peak
rainfall argmax𝑡∈𝐄 𝑄(𝑡) − argmax𝑡∈𝐄 𝑃 (𝑡) ℎ

Eqp Peak flow Peak runoff in flood event max𝑡∈𝐄 𝑄(𝑡) 𝑚𝑚

Table 9
List of all studied flood event signatures.

where 𝑟 is the linear correlation between observations and
simulations, 𝜎 and 𝜎∗ are the standard deviation in simula-
tions and observations, respectively, 𝜇 and 𝜇∗ are the mean
discharge in simulations and observations, respectively, and
𝛼, 𝛽, 𝛾 are the optimization weight parameters.

B. List of studied signatures
Denote 𝑃 (𝑡) and 𝑄(𝑡) are the rainfall and runoff at time

𝑡 ∈ 𝐔, where 𝐔 is the studied period. Then 𝑄𝑏(𝑡) and 𝑄𝑞(𝑡)
are the baseflow and quickflow computed using a classical
technique for streamflow separation (please refer to Lyne and
Hollick (1979) and Nathan and McMahon (1990) for more
details).
B.1. Continuous signatures

The continuous signatures are calculated on the whole
studied period as Table 8.
B.2. Flood event signatures

For an event occurring in 𝐄 ⊂ 𝐔, the flood event
signatures are calculated as Table 9.

C. Multi-objective optimization for spatially
uniform model

We look into multi-objective optimization for a global
calibration of spatially uniform parameters of the distributed

model , i.e. a low dimensional control 𝜽. The multi-
objective calibration is simply defined as the optimization
problem:

min
𝜽∈⊂ℝ𝑛

(𝑗1(𝜽), ..., 𝑗𝑚(𝜽)) (8)
where 𝜽 is the 𝑛-dimensional vector of model parameters
in the feasible space  ⊂ ℝ𝑛 and 𝑗1, ..., 𝑗𝑚 are the 𝑚 single-
objective functions to be simultaneously minimized.
C.1. Pareto front

In single-objective optimization, the Pareto optimal so-
lution is unique (in term of objective space) but in multi-
objective problem, it common to have several solutions that
can not be defined which one is the best. If the optimization
problem is non-dominated, or non-inferior (each objective
function is its own entity, so no individual can be better
off without making at least one individual worse off), then
we call that Pareto optimality, or Pareto efficiency. A Pareto
front (in term of parameter space) is a set of all Pareto
efficient solutions that need to be estimated. Let us consider
two feasible solutions: 𝜽1,𝜽2 ∈ . Then, 𝜽1 is said to Pareto
dominate 𝜽2 if the following properties hold:

1. ∀𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽1) ≤ 𝑗𝑖(𝜽2);2. ∃𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽1) < 𝑗𝑖(𝜽2).
We call  the Pareto set representing all of Pareto solutions.
By definition, a Pareto solution 𝜽∗ ∈  of problem 8 must
fill the two following conditions:
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1. ∄𝜽′ ∈  ⧵  ,∃𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽′) < 𝑗𝑖(𝜽∗);2. ∄𝜽′′ ∈  ,𝜽′′ dominates 𝜽∗.
The first statement indicates that there does not exist other
point in the feasible space that reduces at least one objective
function while keeping others unchanged, so the Pareto set is
the optimal set. The second says that, no other point exists in
the Pareto set that decreases one objective function without
increasing another one, so it is impossible to distinguish
any solution as being better than the other in the Pareto
set. Fig. 12 illustrates this for a simple problem where we
have 2-objective functions 𝑗1, 𝑗2. The Pareto-front (in term
of objective space) represents all of non-dominated optimal
solutions. It implies that, it is impossible to move from any
point in the feasible space and simultaneously decrease the
two objective functions without violating a constraint.

Figure 12: Illustration of Pareto-front in term of objective
space.

C.2. Overview of GA
GA is a “heuristic algorithm” (or search heuristic) in

optimization, inspired by the Theory of Natural Evolution,
whose selection operators include “crossover” and “muta-
tion”. Basically, the process of a GA and a MOGA consist
of the following 3 phases:

1. Population initialization. The population is randomly
initialized based on the problem range and constraint.
The size of the population determines also the number
of solutions, called “pop-size”.

2. Parents selection (sorting). A fitness function is de-
fined to calculate the fitness score (also called Pareto
ranking in multi-objective optimization) that deter-
mines how fit an individual is to the problem. Then,
the fitness score decides the probability of selecting
an individual as a parent to reproduce offspring popu-
lation.

3. Mating. For each pair of parent to be mated, new
offspring are created by exchanging the genes of par-
ents among themselves (crossover operator). To main-
tain the diversity within the population and prevent
premature convergence, some of the bits in the gene
of certain new offspring can be flipped with a low
random probability (mutation operator). Offspring are
created until their pop-size is equal to the pop-size of
previous generation.

C.3. Selection of an optimal solution from Pareto
front

We aim to select an optimal solution that is acceptable
for every objective within a constraint on principal objective
function. Many strategies can be chosen to perform such
a selection, based for instance on the sensitivity ratio that
is the ratio of the average variabilities of a certain non-
inferior solution to the corresponding value of the objective
function in the Pareto front (Wang, Zhao, Wu and Wu, 2017),
or the Euclidean distance from the ideal solution (Wang
and Rangaiah, 2017). A simple additive weighting (SAW)
method in Wang and Rangaiah (2017) can be used in our case
by adding a normalization operator and assigned weightage
for the objective functions.

Considering an objective matrix (𝑗𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛, where
𝑚 is the number of non-dominated solutions, 𝑛 is the number
of objective functions. Then each row 𝑖 represents the 𝑖𝑡ℎ
solution set of the Pareto-front and each column 𝑗 repre-
sents all non-inferior solutions of the 𝑗𝑡ℎ objective function.
Denote 𝑐 be the index of the classical objective function
(for example 1 − 𝑁𝑆𝐸 or 1 − 𝐾𝐺𝐸), which is the most
constrained function to find an unique optimal solution from
Pareto-front. This algorithm is detailed in the following three
phases:

• Objective matrix normalization (𝐹𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛:

𝐹𝑖𝑗 =
𝑓+
𝑗 − 𝑓𝑖𝑗

𝑓+
𝑗 − 𝑓−

𝑗

where 𝑓+
𝑗 = max1≤𝑖≤𝑚 𝑓𝑖𝑗 and 𝑓−

𝑗 = min1≤𝑖≤𝑚 𝑓𝑖𝑗 .
• Assigning weightage for normalized objective matrix

(𝐺𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛:
𝑑 = 𝑓+

𝑐 − 𝑓−
𝑐

𝑤𝑗 =

{

𝑒𝑑 , if 𝑗 = 𝑐
𝑒 − 𝑒𝑑 , otherwise.

𝐺𝑖𝑗 = 𝑤𝑗 × 𝐹𝑖𝑗

• Finding optimal solution 𝜽:
𝜽 = (𝑓𝑘1, ..., 𝑓𝑘𝑛)

where 𝑘 = argmax1≤𝑖≤𝑚
(

∑𝑛
𝑗=1𝐺𝑖𝑗

)

.

D. Calibration bounds
The parameter vector of SMASH model structure S6 is

𝜽(𝑥) ≡
(

𝑐𝑖(𝑥), 𝑐𝑝(𝑥), 𝑐𝑡𝑟(𝑥), 𝑐𝑟(𝑥), 𝑚𝑙(𝑥), 𝑐𝑡𝑙(𝑥)
)𝑇 and bound

constrains used in optimization (Eq. 3) are set with values
given in Table 10.
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𝑐𝑖 𝑐𝑝 𝑐𝑡𝑟 𝑐𝑟 𝑚𝑙 𝑐𝑡𝑙
Lower boundary 1 1 1 1 -20 1
Upper boundary 100 2000 1000 200 5 10000

Table 10
Boundary conditions of SMASH 6-parameters model.

Figure 13: Distributed parameter space of the SMASH 6-
parameters structure. In each boxplot, the first column present
the mean of a parameter over studied catchment for 2
optimization strategies (CSOO, SSOO) using 𝑗𝑁𝑆𝐸

𝑑 , whereas
the strategies in the second column use 𝑗𝐾𝐺𝐸

𝑑 as the dominant
(or constrained) objective function.

E. Analysis of parameter space for distributed
calibration
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