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7 A B S T R A C T8
9

Classical calibration methods in hydrology typically rely on a single cost function computed10

on long-term streamflow series. Even when hydrological models achieve acceptable scores in11

NSE and KGE, imbalances can still arise between overall model performance and its ability12

to simulate flood events, particularly flash floods. Enhancing multi-criteria calibration methods13

with multi-scale signatures to improve distributed flood modeling remains a challenge. In this14

study, the potential of hydrological signatures computed continuously and at the scale of flood15

events, are employed within various multi-criteria calibration approaches to attain a more16

efficient hydrological model. We present a novel sensitivity and signatures-based calibration17

framework, implemented in the variational data assimilation algorithm of SMASH platform,18

which we apply to 141 catchments mostly located in the French Mediterranean region. Our19

approach involves computing several signatures, including flood event signatures, using an20

automated flood segmentation algorithm. We select suitable signatures for constraining the21

model based on their global sensitivity with the input parameters. We then perform two22

multi-criteria calibration strategies using the selected signatures, including a single-objective23

optimization approach, which transforms the multi-criteria problem into a single-objective24

function, and a multi-objective optimization approach, which uses a simple additive weighting25

method to select an optimal solution from a set of non-inferior solutions. Our results show26

significant improvements in both calibration and temporal validation metrics, especially for27

flood signatures, demonstrating the robustness and delicacy of our signatures-based calibration28

framework for enhancing flash flood forecasting systems.29

30

1. Introduction31

Numerical hydrological models are used extensively to simulate catchments responses to atmospheric signals and32

are a key component of floods forecasting systems where accuracy in terms of peak location, amplitude and timing is33

crucial. As a matter of facts, hydrological models, whatever their complexity and spatialization, consist in more or less34

empirical representations of flows through watersheds compartments and contain parameters that cannot be inferred35

directly from the available observations but can only be meaningfully estimated through a calibration procedure (e.g.36

Gupta et al. (2006); Vrugt et al. (2008)). Such procedures aim to improve the model capability in reproducing the37

available observations of hydrological responses dynamics by optimizing model parameters.38

Nevertheless, the whole construction process of a hydrological model is faced with the issue of equifinality:39

distinct model structures and/or parameter sets can lead to similar (in a sense to be defined) simulations. The40

equifinality concept has been popularized in hydrology by Beven (1993) while the issues of uncertainty in determining41
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environmental model structures and estimating their parameters were known (e.g. Beck (1987); Yeh (1986)). For a42

given hydrological model structure, the calibration of its parameters is in general an ill-posed inverse problem with43

non unique solutions and the definition of an optimization algorithm and of a calibration metric is an essential modeling44

decision. Indeed, it determines how hydrological information is seen and learn in the calibration process and it can45

substantially affect the quality and consistency of model simulations.46

In hydrology, most calibration approaches attempt to optimize input parameters of a model such that they result in47

a minimal misfit between simulated and observed discharge. Nevertheless, because no single metric can exhaustively48

represent this misfit, the calibration of a hydrological model is "inherently multi-objective" as remarked by Gupta49

et al. (1998). Several performance metrics have been proposed over the past decades in the literature for hydrological50

modeling. The classical quadratic Nash-Sutcliffe efficiency (NSE) Nash and Sutcliffe (1970) (cf. Appendix A.1) has51

been used for long time. The Kling–Gupta (KGE) (cf. Appendix A.2) proposed in Gupta et al. (2009) and based52

on a decomposition of the NSE has also become widely used. Other metrics, in form of signature measures (see53

review in McMillan (2021)), have been proposed in the literature for model evaluation (e.g. Yilmaz et al. (2008)) and54

used in model optimization (e.g. Roux et al. (2011); Shafii and Tolson (2015); Mostafaie et al. (2018); Sahraei et al.55

(2020); Wu et al. (2021) and references therein). Hydrological signatures can be used to derive application-specific56

metrics such as for high flows in Mizukami et al. (2019) or Roux et al. (2011). Moreover, hydrological signatures are57

a useful tool to effectively evaluate models and diagnose the role of their components in explaining the discrepancy58

between the simulated and observed behavior (Gupta et al., 2009), especially when combined with global sensitivity59

analysis (Horner, 2020). Nonetheless, there is still a need for automated methods capable of computing signatures on60

observed and modeled hydrological responses, at multiple time scales with the underlying difficulties of consistent61

segmentation of flood events as highlighted in Tarasova et al. (2018), of computing global sensitivity analysis of62

simulated signatures with respect to the model parameters (Horner, 2020), and finally of performing signature based63

parametric optimization.64

Although the concept of flood event is widely used in hydrology, there is no clear consensus on approaches for65

flood detection from continuous streamflow time series, as pointed out in Tarasova et al. (2018). Several studies have66

suggested segmentation algorithms for detecting flood events (refer to the references in Tarasova et al. (2018)). For67

instance, Li et al. (2022); Astagneau et al. (2021) used simple segmentation methods respectively involving fixed time68

windows before and after rainfall events or discharge thresholds to detect events. Meanwhile, Tarasova et al. (2018)69

developed an algorithm incorporating, baseflow separation technique (see also Pelletier and Andréassian (2020)),70

rainfall attribution methods and an iterative procedure to identify single-peak components of multiple-peak events.71

In this study, we propose an automated segmentation algorithm, consisting of, peak detection in discharge series,72

catchment rainfall time series analysis through a combination of rainfall gradients and rainfall energy criterion, which73
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enables a robust determination of flood start time on contrasted catchment-floods, and a classical baseflow separation74

for determining the end of an event.75

Hydrological calibration problems that incorporate multiple metrics, including multi-scale signatures, can be76

considered as multi-criteria optimization problems. Generally, three categories of methods are employed for solving77

multi-criteria optimization problems in various domains: (i) transforming the multi-criteria problem into a single-78

objective optimization problem (Ross et al., 2015; El-Ghandour and Elbeltagi, 2014; Veluscek et al., 2015); (ii)79

obtaining a non-inferior solution set (Pareto front) by solving the multi-objective optimization problem (Khorram et al.,80

2014; Tavakkoli-Moghaddam et al., 2011; Torres-Treviño et al., 2011); (iii) selecting a unique solution after obtaining81

the Pareto optimal solution set by adding constraints based on specific preferences (Chibeles-Martins et al., 2016; Wu82

et al., 2015). The state-of-the-art in multi-criteria optimization in hydrology is commonly accomplished through the83

first two approaches mentioned earlier. For instance, a simple approach on the choice of calibration metrics for flood84

modeling, including NSE, weighted KGEs, and annual peak flow biais, has been proposed for daily mHm and VIC85

models on 492 US catchments by Mizukami et al. (2019). For event-based flash flood modeling at high resolution, a86

metric that accounts for the shape of flash flood hydrographs, particularly their timing and maximum peak flow, has87

been studied in Roux et al. (2011). Nevertheless, generalizing these methods for multi-scale signatures and integrating88

them into variational data assimilation algorithms remain significant challenges. Research on calibration with multi-89

objective functions to generate a set of non-dominated solutions has also been conducted, as seen in studies by Yapo90

et al. (1998); Guo et al. (2014); Oliveira et al. (2021); Mostafaie et al. (2018). However, the selection of an optimal91

solution from the non-dominated set has not received much attention. Our goal in this work is to comprehensively92

investigate all feasible multi-criteria optimization methods using a more general approach. This research will address93

4 aspects that have received relatively little attention in prior studies: (i) the need for an automated segmentation method94

applicable to large contrasted catchment-floods samples and capable to capture hydrological information at the scale of95

flash flood events; (ii) a global analysis of simulated errors across various hydrological signatures and their sensitivity96

with the model parameters; (iii) the need for a more intelligent approach to select the Pareto optimal solution in the97

case of optimization with multi-objective functions; and (iv) the computation of the cost function based on signatures98

within variational data assimilation algorithms.99

In this work, we focus on multi-criteria calibration metrics with single-objective functions and with multi-objective100

functions for uniform parameters, then a multi-criteria calibration with single-objective function for distributed101

parameters of a distributed model aimed at flood modeling. Note that multi-objective optimization is a widely used102

method for multi-criteria calibration, which attempts to simultaneously minimize multi-objective functions to obtain103

a set of optimal solutions (also called Pareto solution) rather than a single solution. To address such a optimization104
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problem in the present context, where the optimization of multiple conflicting objectives is often encountered, multi-105

objective genetic algorithms (MOGA) have been shown to be effective (Murata et al., 1995). Compared to multiple106

gradient descent algorithms (Désidéri, 2012; Mercier et al., 2018), MOGAs do not require gradient information and107

are therefore suitable for a wide range of objective functions. Instead, they rely on crossover and mutation operators,108

making them effective regardless of the nature of the problem functions. Non-dominated sorting genetic algorithm109

(NSGA), suggested by Deb et al. (2002), is a well known MOGA for solving multi/many-objective optimization110

problems, including fast and elitist approach (Deb et al., 2002). Namely, a fast sorting algorithm helps optimizing111

the computational complexity (even with a large population size) arising from the non-dominated sorting procedure in112

every generation. Into the bargain, NSGA possesses a diversity preservation property, based on a sharing function113

method, that prevents the loss of good solutions involved in the mating process. Recently, NSGA has also been114

implemented in the pymoo Python library (Blank and Deb, 2020), that is used in the present study thanks to the115

Python interface of our SMASH platform.116

This study proposes an improved signature-based calibration approach for hydrological models. The approach117

employs hydrological signatures computed at the scale of flood events to enhance multi-criteria calibration. The118

proposed algorithm originally combines automated segmentation of flood events and signatures computation within119

a variational data assimilation (VDA) algorithm from Jay-Allemand et al. (2020) enabling high dimensional spatially120

distributed calibration, now with multi-criteria metrics adapted to floods. Classical global calibration algorithms have121

also been upgraded that way. These upgrades, including new cost functions and adjoint model update, have been122

implemented into the SMASH platform, which solvers are differentiable. Using the proposed algorithms, we investigate123

over a quite large dataset of Mediterranean flash floods the parametric sensitivity of a parsimonious distributed124

hydrological model for a large array of signatures from the literature, as well as the benefit of using a signature-based125

flood specific metric in calibration, and especially in performing variational spatially distributed optimization which126

has seldom been done to our best knowledge.127

The remaining sections of this paper are organized as follows: section 2 describes our methodology for computing128

various hydrological signatures and our multi-criteria calibration algorithms, along with an overview of the SMASH129

forward model. In section 3, we present and analyze our results on signatures and calibration, including a summary of130

the data and numerical experiments. Finally, in section 4, we conclude our work and outline potential future directions.131

2. Methodology132

We propose a novel calibration strategy that leverages hydrological signatures and their sensitivity analysis in133

combination with the optimization algorithms discussed above. Our approach is illustrated in Fig. 1 and addresses the134

challenges of model calibration in the presence of multiple objectives and complex hydrological processes.135
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Figure 1: Flowchart of the multi-criteria calibration process using hydrological signatures. The different cost functions are
denoted by 𝑗𝑑 , 𝑗𝑐 and 𝑗𝑓 , while the corresponding optimal weights are denoted by 𝛿𝑑 , 𝛿𝑐 and 𝛿𝑓 . The notations used in the
cost function will be explained in 2.4.

The computations of the signatures are first performed to quantify their sensitivities with the model parameters136

following Horner (2020). These computations involve performing both whole-period-based analysis to obtain contin-137

uous signatures and event-based analysis to capture the most significant events (flood event signatures). Through this138

analysis, we gain a more meaningful understanding of the parametric sensitivity, not just for discharge but also for other139

factors that need to be considered as part of our minimization criterion. Furthermore, we evaluate the sensitivity of140

signature error using variance-based sensitivity analysis (Sobol indices) to determine the most appropriate signatures141

for multi-criteria optimization. Based on these results, we conduct a multi-criteria optimization with single-objective142

or multi-objective functions, utilizing suitable hydrological signatures to improve the simulation performance.143

The numerical algorithms proposed here are implemented in Python, on top of SMASH Fortran platform that144

is interfaced in Python (Jay-Allemand et al., 2022a) making accessible its forward-inverse algorithms (forward145

hydrological models, SBS and VDA Jay-Allemand et al. (2020) calibration algorithms) and internal variables.146

The following subsections of this section detail the different elements of our methodology: 2.1 defines the147

hydrological model structure, the objective function and the proposed calibration algorithms; 2.2 explains which148

signatures are computed and how, including a description of the proposed hydrograph segmentation algorithm; 2.3149

describes the method for computing global sensitivities of simulated hydrological signatures; 2.4 details the formulation150

of the multi-criteria cost functions including multi-scale signatures and the multi-objective optimization problems.151

2.1. SMASH: An overview of the forward model and calibration algorithms152

SMASH is a computational software framework dedicated to Spatially distributed Modelling and ASsimilation for153

Hydrology. It aims to tackle flexible spatially distributed hydrological modeling, signatures and sensitivity analysis,154

as well as high dimensional inverse problems using multi-source observations. This model is designed to simulate155

discharge hydrographs and hydrological states at any spatial location within a basin and reproduce the hydrological156
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response of contrasted catchments, especially aiming at floods and low-flows modeling, by taking advantage of spatially157

distributed meteorological forcings, physiographic data and hydrometric observations.158

First, the forward spatially distributed hydrological modeling problem is formulated as follows. Let Ω ⊂ ℝ2 be a
2D spatial domain (catchment) and 𝑡 > 0 be the physical time. A regular lattice Ω covers Ω and 𝐷(𝑥) is the drainage
plan obtained from terrain elevation processing. The number of active cells within a catchment Ω is denoted 𝑁𝑥. Then
the hydrological model is a dynamic operator  mapping observed input fields of rainfall and evapotranspiration
𝑷
(

𝑥, 𝑡′
), 𝑬 (

𝑥, 𝑡′
), ∀ (𝑥, 𝑡′) ∈ Ω × [0, 𝑡] onto discharge field 𝑄(𝑥, 𝑡) such that:

𝑄 (𝑥, 𝑡) = 
[

𝑷
(

𝑥, 𝑡′
)

,𝑬
(

𝑥, 𝑡′
)

,𝒉 (𝑥, 0) ,𝜽 (𝑥) , 𝑡
]

,∀𝑥 ∈ Ω, 𝑡′ ∈ [0, 𝑡] (1)

with 𝒉 (𝑥, 𝑡) the 𝑁𝑠-dimensional vector of model states 2D fields and 𝜽 the 𝑁𝑝-dimensional vector of model parameters159

2D fields. In the following, 𝜽 is also called control vector in optimization context.160

Then the forward hydrological model structure is defined as follows. In this study, a parsimonious 6 parameters161

model structure from Colleoni et al. (2022) is used (Fig. 2). For a given cell 𝑖 of coordinates 𝑥 ∈ Ω, in the proposed162

model S6, four reservoirs ,  , 𝑟 and 𝑙 of respective capacity 𝑐𝑖, 𝑐𝑝, 𝑐𝑡𝑟 and 𝑐𝑡𝑙, are considered for simulating,163

respectively, the interception, the production of runoff and its transfer within a cell. Their state vector is denoted164

𝒉(𝑥, 𝑡) ≡
(

𝒉𝑖(𝑥, 𝑡),𝒉𝑝(𝑥, 𝑡),𝒉𝑡𝑟(𝑥, 𝑡),𝒉𝑟(𝑥, 𝑡),𝒉𝑡𝑙(𝑥, 𝑡)
)𝑇 , and the parameter vector of SMASH model structure S6 is165

𝜽(𝑥) ≡
(

𝑐𝑖(𝑥), 𝑐𝑝(𝑥), 𝑐𝑡𝑟(𝑥), 𝑐𝑟(𝑥), 𝑚𝑙(𝑥), 𝑐𝑡𝑙(𝑥)
)𝑇 . Hence the size of state vector is 𝑁𝑠 ×𝑁𝑥 and the size of parameter166

vector that is optimized in the following is 𝑁𝑝 × 𝑁𝑥. Considering tens of cells or more over a simulated catchments167

domain Ω, the calibration of 𝜽 is a high dimensional inverse problem. All details related to hydrological model operator168

and model description are explained in Colleoni et al. (2022). The numerical model operates at hourly time step 𝑑𝑡 = 1ℎ169

and on a regular grid at 𝑑𝑥 = 1𝑘𝑚.170

Now, the calibration problem and optimization algorithms are presented, starting by the definition of a multi-criteria171

objective function enabling to account for multi-scale signatures.172

In order to calibrate the hydrological model based on the simulated and observed discharge at gauged cells 𝑥𝑘 ∈ Ω,
𝑘 ∈ 1, .., 𝑁𝑔, denoted as 𝑄𝑘(𝑡) and 𝑄∗

𝑘(𝑡), respectively, we define the objective convex function as shown in Eq. 2.

𝐽 (𝜽) = 𝐽𝑜𝑏𝑠(𝜽) + 𝛼𝐽𝑟𝑒𝑔(𝜽) (2)

where the observation cost function 𝐽𝑜𝑏𝑠 = 1
𝑁𝑔

∑𝑁𝑔
𝑘=1 𝑗

∗
𝑘 measuring the misfit, via several adapted metrics that can

include signatures as detailed later, between simulated and observed discharge. In this study, 𝑁𝑔 = 1, that is for single
gauge optimization. Note that simulated discharge 𝑄𝑘(𝑡) = 

[

𝑷
(

𝑥, 𝑡′
)

,𝑬
(

𝑥, 𝑡′
)

,𝒉 (𝑥, 0) ,𝜽 (𝑥)
]

,∀𝑥 ∈ Ω𝑘, 𝑡′ ∈

[0, 𝑡] with Ω𝑘 ⊂ Ω denoting the spatial domain including all upstream cells of a gauge at 𝑥𝑘, depends on the control
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Figure 2: Distributed hydrological modeling with SMASH platform. Model fields from top to bottom: meteorological inputs,
parameters, internal and output flux maps (left). Pixel scale and pixel-to pixel flow operators of SMASH model structure
S6 studied (right). Source: Colleoni et al. (2022).

vector 𝜽 via the hydrological model  (Eq. 1). The second term in Eq. (2) is weighted by 𝛼 and set as a classical
Thikhonov regularization 𝐽𝑟𝑒𝑔 = ‖

‖

‖

𝑩−1∕2 (𝜽 − 𝜽∗
)

‖

‖

‖

2

𝐿2
with 𝑩 the background error covariance, and 𝜽∗ the first

guess/background on 𝜽. We set 𝛼 = 10−4 for the spatially distributed optimizations presented in this study, 𝛼 = 0

otherwise if 𝜽 ≡ 𝜽, and 𝑩 is simply defined from 𝝈𝜃 the vector of mean deviations of 𝜽, as done in Jay-Allemand et al.
(2020). The optimal estimate 𝜽̂ of the model parameter set can be obtained by minimizing the objective function 𝐽 in
Eq. 1, subject to an additional bound constrain on the model parameters, which can be expressed as Eq. 3.

𝜽̂ = argmin
𝜽𝑚𝑖𝑛≤𝜽≤𝜽𝑚𝑎𝑥

𝐽 (𝜽) (3)

This inverse problem 3 is tackled with different global optimization algorithms considering a spatially uniform173

control, that is low dimensional optimization problems. For instance, optimization algorithms such as: Step-By-174

Step (SBS) (steepest descent algorithm summarized in Edijatno (1991)), Nelder–Mead and Genetic Algorithms175

(GA) can be applied in this scenario. Next, a spatially distributed control vector is sought with a VDA algorithm176

(Jay-Allemand et al., 2020) adapted to such high dimensional hydrological optimization problems. Considering a177

spatially distributed control vector 𝜽(𝑥), its optimization is performed with the L-BFGS-B algorithm (limited-memory178

Broyden–Fletcher–Goldfarb–Shanno bound-constrained (Zhu et al., 1997)) adapted to high dimension. This algorithm179

requires the gradient of the cost function with respect to the sought parameters ∇𝜽𝐽 , that is obtained by solving the180

adjoint model. This numerical adjoint model has been generated with the automatic differentiation engine TAPENADE181
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(Hascoet and Pascual, 2013) applied to the SMASH source code including the new models structures and validated182

with standard gradient test. The background value 𝜽∗, used as a starting point for the optimization problem and in the183

regularization term, is set as in Jay-Allemand et al. (2020), i.e. as 𝜽̄, a spatially uniform global optimum determined with184

a simple global-minimization algorithm from a uniform first guess 𝜽̄∗. Given mildly non linear hydrological models185

as those considered in this study, this calibration approach is pertinent and sensitivity to priors is limited as shown in186

Jay-Allemand et al. (2020).187

2.2. Signatures computation188

Several signatures describing and quantifying properties of discharge time series are introduced in view to analyze189

and calibrate hydrological models (an exhaustive list is given in Appendix B). Signatures are denoted as𝑆𝑖, 𝑖 ∈ 1..𝑁𝑐𝑟𝑖𝑡,190

with 𝑁𝑐𝑟𝑖𝑡 being the number of different signature types considered. These signatures allow for the description of191

various aspects of the rainfall-runoff behavior, such as flow distribution (e.g. based on flow percentiles), flow dynamics192

(Le Mesnil, 2021), flow separation (Nathan and McMahon, 1990; Lyne and Hollick, 1979), and flow timing, among193

others. A so-called continuous signature is a signature that can be computed over the entire study period. Flood event194

signatures on the other hand focus on the behavior of the high-flows that are observed in flash flood events (Fig. 3). In195

this way, event segmentation algorithm is crucially needed before computing the flood event signatures.196

We propose here an automated segmentation algorithm for detecting flood events with the aid of the rainfall197

gradient, rainfall energy and baseflow separation (Algorithm 1). First, we identify event peak discharges using a peak198

detection algorithm, which allows for several parameters to be set, such as minimum peak height (mph) or minimum199

distance between two successive peaks (mpd), among others (Duarte and Watanabe, 2021). For instance, we consider200

events that exceed the 0.995-quantile of the discharge as important events (mph criterion), and events are considered201

to be distinct if they are separated by at least 12 hours (mpd criterion). Subsequently, we determine the starting and202

ending dates for each event. The starting date of the event is considered to be the moment when the rain starts to increase203

dramatically, which is sometime 72 hours before the peak discharge. To calculate this, we compute the gradient of the204

rainfall and choose the peaks of rainfall gradient that exceed the 0.8-quantile. These peaks correspond to the moments205

when there is a sharp increase in rainfall. However, we also require an additional criterion called the "energy criterion",206

which takes into account the "rainfall energy" for a more robust detection of flood start time. The rainfall energy is207

computed as the sum of squares of the rainfall observed in a 24-hour period, counted from 1 hour before the peak of208

rainfall gradient. The starting date is the first moment when the rainfall energy exceeds 0.2 of the maximal rainfall209

energy observed in the 72-hour period before the peak discharge, based on the gradient criterion. Finally, we aim to210

find the ending date by using baseflow separation. We compute the difference between the discharge and its baseflow211

from the peak discharge until the end of study period (which lasts for 10 days from the starting date of the event). The212
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ending date is the moment when the difference between the discharge and its baseflow is minimal in a 48-hour period,213

counted from 1 hour before this moment. Note that these values are adapted to the basins and flood scales studied.214

Algorithm 1 Hydrograph segmentation algorithm
For each catchment, considering 2 time series (𝑇 ,𝑄) and (𝑇 , 𝑃 ) where:
𝑇 = (𝑡1, ..., 𝑡𝑛) is time (by hour),
𝑄 = (𝑞1, ..., 𝑞𝑛) is the discharge and
𝑃 = (𝑝1, ..., 𝑝𝑛) is the rainfall.

1. Detecting peaks that exceed the 0.995-quantile of the discharge, that can be considered as important events:
𝐸 = (𝑡𝑖)1≤𝑖≤𝑛 s.t. 𝑞𝑖 > 𝑄𝑢𝑎𝑛𝑡0.995(𝑄)

2. For each event 𝑡𝑗 ∈ 𝐸:
(a) Determining a starting date based on the “rainfall gradient criterion” and the “rainfall energy criterion”:

i. Selecting rainfalls gradient those exceed its 0.8-quantile, considered as the “rainfall events”:
𝑅𝐸 = (𝑡𝑘)𝑡𝑘∈(𝑡𝑗−72,𝑡𝑗 ) s.t. ∇𝑃 (𝑡𝑘) > 𝑄𝑢𝑎𝑛𝑡0.8(∇𝑃 ([𝑡𝑗 − 72, 𝑡𝑗]))

ii. Defining the rainfall energy function:
𝑓 (𝑡𝑥) = ||(𝑝𝑥 − 1, ..., 𝑝𝑥 + 23)||2then the starting date is the first moment the rainfall energy exceeds 0.2 of the maximal rainfall energy:
𝑠𝑑 = min(𝑡𝑠)𝑡𝑠∈𝑅𝐸 s.t. 𝑓 (𝑡𝑠) > 0.2||(𝑓 (𝑡𝑗 − 72), ..., 𝑓 (𝑡𝑗))||∞

(b) Determining an ending date based on discharge baseflow 𝑄𝑏 = 𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤(𝑄):
𝑒𝑑 = argmin𝑡𝑒

∑𝑡𝑒+47
𝑡=𝑡𝑒−1

|(𝑄 −𝑄𝑏)(𝑡)| s.t. 𝑡𝑗 ≤ 𝑡𝑒 ≤ 𝑠𝑑 + 10 × 24

Remark. If there exists 𝑚 + 1 (𝑚 > 0) consecutive events (𝑠𝑑𝑢, 𝑒𝑑𝑢), ..., (𝑠𝑑𝑢+𝑚, 𝑒𝑑𝑢+𝑚) occurring “nearly simultane-
ously”, that means all of these events occur in no more than 10 days: 𝑒𝑑𝑢+𝑚 < 𝑠𝑑𝑢 + 10 × 24, then we merge these
𝑚 + 1 events into a single event (𝑠𝑑𝑢, 𝑒𝑑𝑢+𝑚).

Figure 3: Example of flood events detected from hydrograph using the segmentation algorithm.

2.3. Signatures sensitivity215

To perform a calibration process with hydrological signatures, it is important to investigate the sensitivity of
simulated signatures with the model parameters, to guide the potential selection of the signatures which should be used
to calibrate the model. The sensitivity analysis enables us to examine how the variation of a given output/signature
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can be apportioned to a variation in model inputs (Saltelli, 2002). If some signatures are not sensitive with the model
parameters, then it may not have any significant impact to optimize an objective function based on these signatures.
In this context, we consider a hydrological model  with 𝑚 spatially uniform parameters 𝜽̄ ≡ (𝜽1, ...,𝜽𝑚). Then the
simulated value of a signature 𝑆𝑖, calculated from the simulated discharges via a discharge-to-signature mapping 𝑓𝑖, is
represented as 𝑆𝑠

𝑖 ≡ 𝑓𝑖◦
(

𝑷 ,𝑬,𝒉, 𝜽̄
). We are interested in Sobol indices called first-order and total-order. The first-

(depending on 𝜽𝑗) and total- (depending on 𝜽∼𝑗 , i.e. all parameters except 𝜽𝑗) Sobol indices of the simulated signature
𝑆𝑠
𝑖 are respectively defined as follows:

𝑠(1𝑗)𝑖 =
𝕍 [𝔼[𝑆𝑠

𝑖 |𝜽𝑗]]
𝕍 [𝑆𝑠

𝑖 ]
=

𝑉𝑗
𝑉

and 𝑠(𝑇 𝑗)𝑖 =
𝔼[𝕍 [𝑆𝑠

𝑖 |𝜽∼𝑗]]
𝕍 [𝑆𝑠

𝑖 ]
= 1 −

𝕍 [𝔼[𝑆𝑠
𝑖 |𝜽∼𝑗]]

𝕍 [𝑆𝑠
𝑖 ]

= 1 −
𝑉∼𝑗
𝑉

where 𝑉𝑗 (respectively, 𝑉∼𝑗) is the variance of the expectation of output signature𝑆𝑠
𝑖 conditioned by the input parameter216

𝜽𝑗 (respectively, 𝜽∼𝑗 , i.e. all sampled inputs except 𝜽𝑗). To estimate these indices, Azzini et al. (2021) proposed a217

method based on the Saltelli generator (Saltelli, 2002), which is implemented in the SALib Python library (Iwanaga218

et al., 2022; Herman and Usher, 2017). This method, that is shown to be relatively accurate in a recent benchmark (Puy219

et al., 2022), allows us to estimate the first-, second- and total-order variance-based sensitivity indices using Monte220

Carlo simulations. However, in our specific application with high-dimensional parameter spaces, we have encountered221

significant challenges in estimating the second-order variance-based sensitivity indices due to their computationally222

intensive nature (Saltelli, 2002; Campolongo et al., 2011). To achieve accurate results, a large number of Monte Carlo223

simulations are required, which can be time-consuming and computationally demanding. Therefore, for the purpose of224

this study, we focus on estimating the first- and total-order Sobol indices, which provide a sufficiently efficient means225

of capturing information about interaction effects while retaining an acceptable computational cost.226

2.4. Multi-criteria calibration using hydrological signatures227

This section defines the calibration objective functions and how they account for the multi-scale signatures that are228

provided by the segmentation algorithm detailed previously.229

First, we define cost function parts corresponding respectively to classical metrics, continuous signatures and
event based signatures. Let us consider a classical objective function 𝑗𝑑 , which is the dominant criterion (or the most
constrained criterion) in case of multi-criteria optimization, an objective function 𝑗𝑐 combining continuous-signatures-
based cost functions, and 𝑗𝑓 combining flood-event-signatures-based cost functions. Then, the cost function to be
minimized, denoted 𝐽 , can be defined as Eq. 4.

𝐽 ≡
⎧

⎪

⎨

⎪

⎩

𝛿𝑑𝑗𝑑 + 𝛿𝑐𝑗𝑐 + 𝛿𝑓 𝑗𝑓 for single-objective optimization,
(𝑗𝑑 , 𝑗𝑐 , 𝑗𝑓 ) for multi-objective optimization

(4)
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where 𝛿𝑑 , 𝛿𝑐 , 𝛿𝑓 are the corresponding optimization weights in the first case. Keep in mind that we take into account the230

use of signatures in both cases but the first case is a single-objective optimization while the second is a multi-objective231

optimization.232

Then we detail how each cost function part is computed from signatures. For each signature 𝑆𝑖, denote by 𝑆𝑜
𝑖 and233

𝑆𝑠
𝑖 the observation and simulation respectively. The set of continuous and flood event signatures denoted 𝑁𝑐 and 𝑁𝑓234

respectively. Then, the components 𝑗𝑑 , 𝑗𝑐 and 𝑗𝑓 can be defined as follows:235

• 𝑗𝑑 ≡ 1−𝑁𝑆𝐸 or 1−𝐾𝐺𝐸(𝛼,𝛽,𝛾) with varying weights 𝛼, 𝛽, 𝛾 (see Appendix A.2). This metric 𝑗𝑑 is considered236

as a constraining objective function for selecting an optimal solution from non-inferior solutions in case of237

multi-objective optimization (see Appendix C.3).238

• 𝑗𝑐 ≡
⎧

⎪

⎨

⎪

⎩

∑

𝑆𝑖∈𝑁𝑐
𝜎𝑆𝑖

𝑗𝑆𝑖
𝑐 , for single-objective multi-criteria optimization;

({𝑗𝑆𝑖
𝑐 }𝑆𝑖∈𝑁𝑐

), for multi-objective optimization
239

where 𝑗𝑆𝑖
𝑐 ≡

|

|

|

|

𝑆𝑠
𝑖

𝑆𝑜
𝑖
− 1

|

|

|

|

is the objective function based on continuous signature 𝑆𝑖 and 𝜎𝑆𝑖
is the corresponding240

optimization weight of 𝑆𝑖 in case of single-objective function.241

• 𝑗𝑓 ≡
⎧

⎪

⎨

⎪

⎩

∑

𝑆𝑖∈𝑁𝑓
𝜎𝑆𝑖

𝑗𝑆𝑖
𝑓 , for single-objective multi-criteria optimization;

({𝑗𝑆𝑖
𝑓 }𝑆𝑖∈𝑁𝑓

), for multi-objective optimization.
242

In this case, and in the context of global optimization in time, 𝑗𝑆𝑖
𝑓 ≡ 1

𝑁𝐸

∑𝑁𝐸
𝑒=1

|

|

|

|

𝑆𝑠
𝑖,𝑒

𝑆𝑜
𝑖,𝑒
− 1

|

|

|

|

defines the scalar
objective function related to flood signature 𝑆𝑖 ∈ 𝑁𝑓 over the 𝑁𝐸 events selected with the segmentation method
described in Algorithm 1. Otherwise, to perform a season-based optimization on flood event signatures, we can
compute for the events occurring in the selected season. For example, for a Spring-based optimization:

𝑗𝑆𝑖
𝑓,𝑠𝑝𝑟𝑖𝑛𝑔 ≡ 1

dim
∑

𝑒∈

|

|

|

|

|

𝑆𝑠
𝑖,𝑒

𝑆𝑜
𝑖,𝑒

− 1
|

|

|

|

|

s.t. ∀𝑒 ∈  ⊂ {1, ..., 𝑁𝐸}, 𝑆𝑖,𝑒 occurs in Spring.

Finally, these cost functions enable to formulate, after the single objective calibration problem 3, the following
multi-objectives calibration problems. The optimization problems taking into account signatures via the cost function
defined in Eq. 4 can be developed as Eq. 5 for a single-objective optimization, and as Eq. 6 for a multi-objective
optimization.

min
𝜽∈⊂ℝ𝑛

𝛿𝑑𝑗𝑑(𝜽) + 𝛿𝑐
∑

𝑆𝑖∈𝑁𝑐

𝜎𝑆𝑖

|

|

|

|

|

𝑆𝑠
𝑖 (𝜽)

𝑆𝑜
𝑖 (𝜽)

− 1
|

|

|

|

|

+ 𝛿𝑓
∑

𝑆𝑖∈𝑁𝑓

𝜎𝑆𝑖

1
𝑁𝐸

𝑁𝐸
∑

𝑒=1

|

|

|

|

|

𝑆𝑠
𝑖,𝑒(𝜽)

𝑆𝑜
𝑖,𝑒(𝜽)

− 1
|

|

|

|

|

(5)
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min
𝜽∈⊂ℝ𝑛

(

𝑗𝑑(𝜽),

{

|

|

|

|

|

𝑆𝑠
𝑖 (𝜽)

𝑆𝑜
𝑖 (𝜽)

− 1
|

|

|

|

|

}

𝑆𝑖∈𝑁𝑐

,

{

1
𝑁𝐸

𝑁𝐸
∑

𝑒=1

|

|

|

|

|

𝑆𝑠
𝑖,𝑒(𝜽)

𝑆𝑜
𝑖,𝑒(𝜽)

− 1
|

|

|

|

|

}

𝑆𝑖∈𝑁𝑓

)

(6)

While the minimization problem with single-objective function 5 is accessible for both global and distributed243

calibration methods, performing a multi-objective optimization as problem 6 is sophisticated for distributed calibration244

considering a spatially distributed control vector adapted to a high dimensional hydrological optimization problems,245

and requiring a lot of cost gradient information. In global calibration with multi-objective optimization approaches, a246

set of feasible solutions can be found instead of a unique optimal solution in single-objective optimization (Appendix247

C). In such a way, a so-called Pareto front contains non-inferior solutions (Appendix C.1) and thus a method is proposed248

for selecting an optimal solution from the Pareto as depicted in Appendix C.3.249

Note that the objective functions 𝑗𝑐 and 𝑗𝑓 related to continuous and flood signatures have also been implemented250

in Fortran. This implementation imposes strict positivity of their components (𝑗𝑆𝑖
𝑐 and 𝑗𝑆𝑖

𝑓 ) numerically to ensure251

that the total cost 𝐽 remains convex and differentiable. The numerical adjoint model has been also re-derived as252

needed by the variational calibration algorithm (refer to section 2.1). The cost function based flood event signatures253

𝑗𝑓 can be computed thanks to a temporal mask of corresponding flood events selected by the segmentation algorithm,254

implemented in the Python, and passed to the Fortran via the wrapped interface.255

3. Data and numerical results analysis256

This section first presents the catchment-flood dataset used in this study. Next, flow signatures are analyzed via the257

comparison of observed and simulated signatures, in terms sensitivity with parameters, and finally some are selected258

for signature-based model calibration. The last part analyzes the performances of model calibration with classical and259

signature-based metrics.260

3.1. Catchment information and data sources261

A relatively large dataset of catchment-floods mostly located in the French mediterranean region is used. This262

dataset stems from Jay-Allemand (2020) and contains time series of hydro-meteorological variables and time invariant263

catchment attributes for four high rainfall-flow areas in France, identified as study areas of the PICS research project1. It264

encompasses 141 catchments including 23 outlet gauges, which are mostly located in the French Mediterranean region265

(Fig. 4). This is a subset of a larger dataset of 4,190 French catchments from INRAE-HYCAR research unit (Brigode266

et al., 2020; Delaigue et al., 2020). The hydrological model inputs consist of observation data, covering a period of267

about 13 years (2006 to 2019), that includes hourly distributed discharge and rainfall. Discharge data are collected by268

1https://pics.ifsttar.fr
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the French Ministry of Environment covering the period of the forcing data and have been extracted from the (Hydro)269

platform2. The rainfall grids are the radar observation reanalysis ANTILOPE J+1 provided by Météo-France at a270

grid resolution of 1 km2 (Champeaux et al., 2009). The potential evapotranspiration (PET) is obtained by applying a271

simple formula (Oudin et al., 2005) to SAFRAN3 (Quintana-Seguí et al., 2008) temperature grids at 8 km resolution an272

empirically desaggregated at hourly time step and 1 km spatial resolution, i.e. at the same spatio-temporal resolution273

than rainfall. Note that observation data, rainfall grids and discharge time series, over the selected catchments have few274

missing data as detailed in Table 1, so that it can be neglected when performing the computations and analysis in this275

study. Table 1 contains catchment information such as the river name, surface, code, number of upstream gauges, and276

missing rates in the outlet gauges. Raster maps, at 1 km resolution, of upstream drained area and D8 flow directions277

have been obtained by processing fine DEM provided by IGN (Institut Geographique National).

Figure 4: Spatial distribution of 141 catchments of the PICS dataset, consisting of 23 outlet gauges and 118 upstream
gauges on the map of France with four regions denoted by different colors.

278

3.2. Sensitivity analysis and selection of signatures for model calibration279

To start with, the relative error is analyzed between observed signatures and simulated ones with a model calibrated280

using SBS algorithm and spatially uniform parameters. Table 2 shows that some hydrological signatures with a281

significant simulation error such as: 𝐶𝑓𝑝2, 𝐶𝑓𝑝10, 𝐶𝑓𝑝50, 𝐸𝑙𝑡 and 𝐸𝑝𝑓 that could be better constrained with a282

signature-based calibration process as investigated in next subsection (a list of all studied signatures with corresponding283

notations is presented in Appendix B).284

Next, we survey the global sensitivity of these signatures with the model parameters. We considered over 10,000285

spatially uniform sets of the 6 model parameters, sampled using Saltelli generator (Saltelli, 2002) to estimate the286

total-order Sobol indices across 23 gauged catchments (catchments downstream outlets of the dataset). Based on the287

2http://www.hydro.eaufrance.fr/
3"Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige" in French

Page 13 of 32

http://www.hydro.eaufrance.fr/
http://www.hydro.eaufrance.fr/


Table 1
General information about 23 outlet gauges of the PICS data. Code, river name, surface, missing rate of rainfall (respectively,
discharge) in outlet gauge during the period 2006-2019, and number of upstream are represented by the columns from left
to right.

Code River name Surface (𝑘𝑚2) Missing rates (%) Total upstream gauges

H3201010 Le Loing 2302 0.14 (3.68) 8
V3524010 La Cance 381 0.14 (4.31) 3
V3744010 Le Doux 621 0.14 (4.02) 2
V4154010 L’Eyrieux 649 0.14 (7.38) 3
V5064010 L’Ardèche 2264 0.14 (4.22) 9
V5474015 La Cèze 1112 0.14 (3.76) 6
V7164015 Le Gardon 1093 0.14 (16.62) 10
Y1232010 L’Aude 1828 0.14 (3.74) 11
Y1364010 Le Fresquel 935 0.14 (3.74) 4
Y1415020 L’Orbiel 242 0.14 (3.74) 2
Y1564010 L’Orbieu 589 0.14 (3.77) 3
Y1605050 La Cesse 251 0.14 (4.64) 1
Y2332015 L’Hérault 2208 0.14 (7.22) 12
Y2584010 L’Orb 1336 0.14 (4.04) 11
Y3204040 Le Lez 168 0.14 (15.55) 3
Y3444020 Le Vidourle 503 0.14 (7.97) 4
Y3534010 Le Vistre 496 0.14 (4.42) 1
Y4624010 Le Gapeau 535 0.14 (3.79) 6
Y5312010 L’Argens 2512 0.14 (5.08) 10
Y5444010 La Giscle 201 0.14 (9.96) 2
Y5534030 La Siagne 492 0.14 (5.30) 5
Y5615030 Le Loup 289 0.14 (3.79) 1
Y6434010 L’Estéron 442 0.14 (7.70) 1

results presented in Table 3, it can be observed that the non conservative water exchange parameter 𝑚𝑙 and the transfer288

parameter 𝑐𝑡𝑟 exhibit the highest sensitivities to the studied signatures, both in terms of first-order and total-order. Our289

analysis suggests that these two parameters have the most significant impact on the output signatures as a result of290

their interactions with other inputs. This is in coherence with highest sensitivities found for soil depth and subsurface291

flow parameters of an event flash flood model found in Garambois et al. (2013, 2015) on some catchments of the292

present set. Conversely, we found that parameters such as the interception 𝑐𝑖 and the production of runoff 𝑐𝑝 have293

little to no impact on the simulated signatures. We also observed that continuous signatures exhibit lower sensitivities294

than flood-event signatures in both first-order and total-order effects. Furthermore, constraining hydrological model by295

flood event signatures along with a classical calibration metric (e.g. 1−𝑁𝑆𝐸 or 1−𝐾𝐺𝐸), which is based primarily296

on continuous records of streamflow, is ideal to balance the model between the global score and the performance on297

flood events. We select for example the peak flow, denoted as 𝐸𝑝𝑓 , which is one of flood event signatures having both298

significant relative error and high sensitivity, to perform multi-critera calibration methods. Note that multi-criteria299

optimization methods with multiple signatures are absolutely reachable but will not be shown in this study for sake of300

brevity and simplify results analysis.301
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Table 2
Relative error between simulated and observed signatures of the same model structure calibrated either with 1 −𝑁𝑆𝐸 or
1 −𝐾𝐺𝐸 by SBS algorithm for global optimization. The values (in the form of . [., .]) in each case represent respectively
the median, mean and standard deviation of a signature over gauged catchments.

Notation Signature type
Relative error on simulated signature
Cal. with 𝑗𝑁𝑆𝐸

𝑑 Cal. with 𝑗𝐾𝐺𝐸
𝑑

Crc

Continuous runoff coefficients

0.14 [0.28, 0.38] 0.16 [0.3, 0.46]
Crchf 0.24 [0.35, 0.35] 0.26 [0.4, 0.45]
Crclf 0.15 [0.3, 0.44] 0.15 [0.33, 0.54]

Crch2r 0.23 [0.4, 0.68] 0.22 [0.38, 0.69]

Cfp2

Flow percentiles

0.72 [3.99, 21.14] 0.76 [5.99, 29.98]
Cfp10 0.52 [2.64, 8.8] 0.52 [2.87, 9.42]
Cfp50 0.29 [0.49, 0.85] 0.2 [0.52, 0.99]
Cfp90 0.21 [0.37, 0.96] 0.18 [0.38, 0.99]

Eff Flood flow 0.23 [0.32, 0.31] 0.19 [0.31, 0.37]
Ebf Base flow 0.22 [0.33, 0.39] 0.22 [0.33, 0.41]

Erc

Flood event runoff coefficients

0.2 [0.28, 0.26] 0.18 [0.27, 0.26]
Erchf 0.23 [0.32, 0.31] 0.19 [0.31, 0.37]
Erclf 0.22 [0.33, 0.39] 0.22 [0.33, 0.41]

Erch2r 0.12 [0.19, 0.2] 0.13 [0.2, 0.24]

Elt Lag time 0.48 [0.96, 1.25] 0.46 [0.82, 1.1]
Epf Peak flow 0.28 [0.38, 0.35] 0.25 [0.36, 0.41]

Note also that global sensitivity analysis can be performed with local derivatives based approaches. A link between302

global Sobol indices and local derivatives has been proposed by Sobol and Kucherenko (2010) (refer also to Lamboni303

et al. (2013)). Global sensitivity matrices in three dimensions (sample size, parameters number, time) and sensitivity304

statistics, based on local derivatives computed by finite differences have been proposed in Gupta and Razavi (2018);305

Razavi and Gupta (2019) for geophysical models and applied to HBV-SASK lumped hydrologic model. Note that the306

variational data assimilation algorithm upgraded in the present work uses accurate local (in parameter space) cost307

function gradients, global in time and spatially distributed, computed with the adjoint method. Such method enables308

to compute accurate spatial sensitivity maps even for high dimensional parameter spaces (e.g. Monnier et al. (2016))309

and deepening sensitivity analysis with our differentiable and spatially distributed hydrological model, along with310

accounting for sensitivity indices into the VDA algorithm, is a very interesting direction intentionally left for further311

research.312

3.3. Performance comparison of classical and signature-based calibration metrics313

In this section, we compare the performance of different calibrated models obtained using spatially uniform314

and distributed optimization methods with different calibration metrics including signature based ones. For spatially315

uniform calibration methods, we aim to compare different calibration metrics including classical single-objective316

optimization (CSOO), signature-based single-objective optimization (SSOO) and signature-based multi-objective317

optimization (SMOO). For spatially distributed calibration methods, two strategies selected for comparison are CSOO318

and SSOO. In both spatially uniform or distributed calibration scenarios, the models are calibrated on 23 outlet gauges319
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Table 3
Median across gauged catchments of first- (respectively, total-) order variance-based sensitivity indices of the studied
signatures to the model parameters.

Signature
Model parameter

𝑐𝑖 𝑐𝑝 𝑐𝑡𝑟 𝑐𝑡𝑙 𝑐𝑟 𝑚𝑙

Crc -0.0 (0.0001) -0.0004 (0.0004) 0.1336 (1.2998) 0.0006 (0.0002) -0.0 (0.0) 0.1167 (1.3778)
Crchf 0.0038 (0.0103) 0.0268 (0.1155) 0.3739 (0.8506) 0.0153 (0.0123) 0.0367 (0.1513) 0.2245 (0.7919)
Crclf -0.0 (0.0001) -0.0004 (0.0003) 0.1299 (1.3018) 0.0006 (0.0001) -0.0 (0.0) 0.1142 (1.3844)

Crch2r -0.0004 (0.0017) 0.0193 (0.0255) 0.1014 (0.1426) 0.1099 (0.2055) 0.1833 (0.2449) 0.3984 (0.5481)
Cfp2 0.0014 (0.056) 0.0002 (0.0024) 0.1283 (1.6008) 0.0 (0.0) 0.0 (0.001) -0.0026 (1.2871)
Cfp10 -0.0 (0.0001) -0.0002 (0.0001) 0.128 (1.3353) 0.0002 (0.0) 0.0 (0.0) 0.092 (1.3922)
Cfp50 -0.0001 (0.0001) -0.0001 (0.0001) 0.1267 (1.315) 0.0005 (0.0001) 0.0 (0.0) 0.1043 (1.3933)
Cfp90 -0.0002 (0.0001) -0.0006 (0.0015) 0.1329 (1.2483) 0.001 (0.0006) -0.0001 (0.0002) 0.1512 (1.3817)
Eff 0.0002 (0.0059) 0.0699 (0.1939) 0.306 (0.7807) 0.0242 (0.022) 0.0321 (0.1389) 0.1872 (0.7303)
Ebf -0.0001 (0.001) 0.0014 (0.0159) 0.144 (1.1914) 0.0018 (0.0019) -0.0002 (0.0056) 0.162 (1.3146)
Erc -0.0001 (0.0015) 0.0076 (0.0314) 0.18 (1.1633) 0.0028 (0.0031) -0.0001 (0.0011) 0.1705 (1.2433)

Erchf 0.0002 (0.0059) 0.0699 (0.1939) 0.306 (0.7807) 0.0242 (0.022) 0.0321 (0.1389) 0.1872 (0.7303)
Erclf -0.0001 (0.001) 0.0014 (0.0159) 0.144 (1.1914) 0.0018 (0.0019) -0.0002 (0.0056) 0.162 (1.3146)

Erch2r 0.0057 (0.0099) 0.0123 (0.0426) 0.0873 (0.2124) 0.0256 (0.0552) 0.4387 (0.5797) 0.1171 (0.2255)
Elt -0.0002 (0.0116) -0.0004 (0.0293) 0.0043 (0.087) 0.0009 (0.0048) 0.8832 (0.953) 0.0127 (0.0568)
Epf -0.0008 (0.0026) 0.0357 (0.1235) 0.2505 (0.9199) 0.0081 (0.0074) 0.1099 (0.2632) 0.1257 (0.8049)

of the PICS data on the calibration period 2006-2013. The validation of calibrated models performances is done in320

space and time following the three setups:321

• on 23 outlet gauges on the validation period 2013-2019 (temporal validation, T_Val),322

• on 118 upstream gauges on the calibration period 2006-2013 (spatial validation, S_Val),323

• on 118 upstream gauges on the validation period 2013-2019 (spatio-temporal validation, S-T_Val).324

3.3.1. Spatially uniform calibrations with NSGA325

We first perform global calibrations using NSGA for two single-objective-function-based approaches and one326

multi-objective-function-based approach. Table 4 displays the mean of different objective functions for calibration327

and validation (with 3 validation metrics), and for 3 optimization criteria (CSOO, SSOO and SMOO) with various328

cost functions. In CSOO, we interpret that the model calibrated with 𝑗𝐾𝐺𝐸
𝑑 = 1 − 𝐾𝐺𝐸 produces a better result on329

the peak flow 𝑗𝐸𝑝𝑓
𝑓 , compared to the one calibrated with 𝑗𝑁𝑆𝐸

𝑑 = 1−𝑁𝑆𝐸. This explains why KGE criterion is more330

robust than NSE for constraining a hydrological model, since it is built on the decomposition of NSE (Gupta et al.,331

2009), which emphasizes relative importance of several hydrological features. This finding is consistent with that of332

Mizukami et al. (2019). The authors calibrated daily models over numerous US catchments with multiple metrics,333

including NSE, weighted KGEs, annual peak flow bias (APFB), and they found that KGE resulted in better estimates334

of annual peak flows than NSE. Additionally, the best reproduction of annual peak flows was achieved with APFB, but335

this was at the expense of other high flow metrics.336
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Table 4
Calibration, temporal, spatial and spatio-temporal validation metrics with spatially uniform calibrations with three strategies
(CSOO, SSOO, SMOO) and global algorithms (SBS or NSGA), (optimal fit for 𝑐𝑜𝑠𝑡 = 0). The mean of calibration and
validation cost values for different objective functions are displayed for each calibration metric - mean is computed over
the catchment set: over the 23 outlet gauges for Cal and T_Val, over the remaining 118 upstream gauges for S_Val and
S-T_Val.

Method Calibration metric
𝑗𝑁𝑆𝐸
𝑑 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐸𝑝𝑓
𝑓

Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val

CSOO
𝑗𝑁𝑆𝐸
𝑑 0.274 0.277 0.901 0.616 0.239 0.369 0.687 0.736 0.279 0.324 0.387 0.357

𝑗𝐾𝐺𝐸
𝑑 0.352 0.330 1.048 0.795 0.183 0.323 0.665 0.721 0.267 0.280 0.379 0.344

SSOO
𝑗𝑁𝑆𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2 0.447 0.418 1.056 0.889 0.377 0.476 0.759 0.853 0.014 0.189 0.346 0.372

𝑗𝐾𝐺𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2 0.551 0.431 1.259 0.956 0.335 0.443 0.777 0.833 0.017 0.209 0.337 0.358

SMOO
{𝑗𝑁𝑆𝐸

𝑑 , 𝑗𝐸𝑝𝑓
𝑓 } 0.341 0.351 1.020 0.845 0.271 0.420 0.703 0.803 0.087 0.215 0.336 0.391

{𝑗𝐾𝐺𝐸
𝑑 , 𝑗𝐸𝑝𝑓

𝑓 } 0.456 0.409 1.163 0.821 0.243 0.368 0.683 0.724 0.048 0.182 0.316 0.389

Using event signatures in addition to classical continuous metrics in SSOO, we found that simulated peak flow is337

highly improved in terms of relative error (about 15-18 times and 1.4-1.7 times on average, respectively, for calibration338

and temporal validation) while classical calibrated metrics are significantly deteriorated (about 1.4-1.6 times and 1.4-339

1.5 times on average, respectively, for calibration and temporal validation). This may arise from imbalances between340

global score and performance in simulating flood event signature. To address this issue, careful consideration of341

the optimization weights assigned to objective functions is necessary in order to achieve a balance between model342

performance on short and long-term series. It should be noted that this approach can be time-consuming, as it requires343

numerous simulations to determine the appropriate optimization weights for the objective functions, typically using a344

L-curve approach. Alternatively, the use of global calibration algorithms, which do not require gradient information345

and can be solved using lower-dimensional optimization problems, can also address these imbalances through the346

application of a multi-objective optimization approach. This approach offers the advantage of keeping acceptable levels347

of deterioration of NSE and KGE while significantly improving the simulation of peak flow as shown by multi-objective348

SMOO results in Fig. 5 and 6.349

However, this global multi-objective optimization algorithm is not capable to deal with high dimensional control350

vectors and the spatially uniform parameter setup here (under-parameterization) led to unsatisfactory results in spatial351

and spatio-temporal validation metrics. Therefore, a distributed calibration approach, such as using our VDA algorithm352

accounting for signatures, could improve the model performances. This approach maintains the same optimization353

weights as described above, and its performance will be evaluated in the subsequent section.354

As shown in Fig. 7, the corresponding optimal parameters obtained using various optimization strategies are355

presented. Based on our preliminary analysis, it is evident that the distribution over studied catchments of 𝑐𝑟 has an356

important difference when performing traditional calibration (CSOO) and multi-criteria calibration methods (SSOO357

and SMOO). We recall that 𝑐𝑟 is the routing parameter in our conceptual design (Fig. 2), so it has a crucial role in358
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Figure 5: Comparison, with spatially uniform parameters, of calibration and validation metrics (optimal fit for 𝑐𝑜𝑠𝑡 = 0)
for three optimization approaches (CSOO, SSOO, SMOO) by constraining 1 −𝑁𝑆𝐸 in case of global algorithms (SBS or
NSGA). From left to right: calibration (Cal), temporal validation (T_Val), spatial validation (S_Val) and spatio-temporal
validation (S-T_Val).

Figure 6: Comparison, with spatially uniform parameters, of calibration and validation metrics (optimal fit 𝑐𝑜𝑠𝑡 = 0) for
three optimization approaches (CSOO, SSOO, SMOO) by constraining 1 − 𝐾𝐺𝐸 in case of global algorithms (SBS or
NSGA). From left to right: calibration (Cal), temporal validation (T_Val), spatial validation (S_Val) and spatio-temporal
validation (S-T_Val).

producing the peak flow 𝐸𝑝𝑓 . Additionally, the sensitivity analysis in Table 3 has indicated that 𝑐𝑟 is one of the three359

parameters explaining most of the sensitivity of the peak flow.360

The above result on the importance of lateral flow components in a flood hydrological model is in coherence361

with existing works, for example as shown in Garambois et al. (2013) on few catchments-flood events used in the362

present study, in addition to high sensitivity to subsurface flow parameter (see also Douinot et al. (2018)) the temporal363

sensitivity of kinematic wave compound friction parameters in a distributed flash flood model increases with flood364

magnitude. Improving hydraulic meaningfulness of hydrological models is an important topic since it can improve365

floods discharge modeling in high resolution catchment-flood models (e.g. Bout and Jetten (2018); Li et al. (2021);366
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Kirstetter et al. (2021) with shallow water models and simplifications) but also improve internal state-flux coherence367

and realism as required for instance to assimilate remote sensing observables of river suface such as height and width368

(e.g. Paiva et al. (2011); Pujol et al. (2020, 2022)).369

Figure 7: Analysis of spatially uniform calibrated parameters over the whole catchment sample. In each scatterplot, the
first column present the distribution of a parameter for 3 optimization strategies (CSOO, SSOO, SMOO) using 𝑗𝑁𝑆𝐸

𝑑 ,
whereas the strategies in the second column use 𝑗𝐾𝐺𝐸

𝑑 as the dominant (or constrained) objective function. The boundary
conditions of the model parameters are given in Appendix D.

3.3.2. Spatially distributed calibrations with VDA algorithm370

Now, spatially distributed calibrations with the VDA algorithm using multi-criteria cost function including371

signatures are performed. We employ SSOO technique for a distributed calibration using L-BFGS-B algorithm372

provided a first guess by SBS algorithm. In overall, all of obtained scores in Table 5 are significantly enhanced compared373

to the uniform calibration method, thanks to spatially distributed control vectors granting more flexibility to reproduce374

observed discharge. Instead of a sharp decline of 𝑗𝐸𝑝𝑓
𝑓 as above, this relative error slightly decreases about 1.5 times375

(from about 0.25 down to 0.16) in calibration and from about 0.32 down to 0.28 in temporal validation, but instead,376

the scores (NSE and KGE) are slightly reduced in calibration and have an inappreciable deterioration in temporal377

validation. So in this case, we do not have imbalances between the model performances on short and long-term series378

when employing SSOO. We observe clearly in Fig. 8 and 9 that the error of simulated pick flow is significantly reduced379

while the deterioration level of the scores remains tolerable, particularly in calibration and temporal validation.380

Ultimately, the scoring metrics are computed on 111 flood events picked from 23 outlet gauges (by segmentation381

method depicted in Algorithm 1) on the calibration period. The results plotted in Fig. 10 show that, in distributed382

calibration, the score of constrained calibration metric is not decreased but even improved from 0.80 (respectively,383

0.71) up to 0.83 (respectively, 0.78) in median for NSE (respectively, KGE). It indicates that the optimum of the model384

parameters has moved to another location that produces a better performance in simulating flood events by slightly385

reducing the scores in simulating the low-flow.386
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Table 5
Calibration, temporal, spatial and spatio-temporal validation metrics with spatially distributed control vectors. The mean
of calibration and validation cost values for different objective functions are displayed for each calibration metric.

Method Calibration metric
𝑗𝑁𝑆𝐸
𝑑 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐸𝑝𝑓
𝑓

Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val Cal T_Val S_Val S-T_Val

CSOO
𝑗𝑁𝑆𝐸
𝑑 0.221 0.244 0.655 0.596 0.233 0.355 0.553 0.597 0.274 0.334 0.381 0.376

𝑗𝐾𝐺𝐸
𝑑 0.239 0.231 0.802 0.702 0.140 0.292 0.617 0.701 0.226 0.295 0.365 0.364

SSOO
𝑗𝑁𝑆𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2 0.251 0.241 0.831 0.639 0.231 0.305 0.586 0.612 0.183 0.298 0.392 0.383

𝑗𝐾𝐺𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2 0.297 0.245 0.964 0.671 0.190 0.300 0.617 0.647 0.152 0.271 0.376 0.387

Figure 8: Comparison, with spatially distributed parameters, of calibration and validation metrics (optimal fit 𝑐𝑜𝑠𝑡 = 0) for
two optimization approaches (CSOO, SSOO) by constraining 1−𝑁𝑆𝐸 in case of distributed calibration. From left to right:
calibration (Cal), temporal validation (T_Val), spatial validation (S_Val) and spatio-temporal validation (S-T_Val).

Figure 9: Comparison, with spatially distributed parameters, of calibration and validation metrics for two optimization
approaches (CSOO, SSOO) by constraining 1 − 𝐾𝐺𝐸 in case of distributed calibration. From left to right: calibration
(Cal), temporal validation (T_Val), spatial validation (S_Val) and spatio-temporal validation (S-T_Val).

Regarding to the parameter space, Table 6 presents statistical analysis of the spatially uniform parameter sets387

obtained using 4 calibration metrics for the studied catchments. Comparing to the spatially distributed optimal388
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Figure 10: Comparison of scoring metrics computed on 111 events picked from 23 outlet gauges on the calibration period
2006-2013 for the five optimization strategies, by constraining 1 −𝑁𝑆𝐸 (left) and 1 −𝐾𝐺𝐸 (right).

parameters in Table 7, we interpret that the mean of distributed parameters over all catchments in the 4 cases389

(corresponding to 4 calibration metrics) is globally coherent to the distribution of the first guess. Several parameters are390

almost spatially uniform (e.g. the non conservative water exchange parameter 𝑚𝑙 has a small distributed deviation in391

median (respectively, in average) over all catchments 0.01 (respectively, 0.05) (calibrated with 𝑗𝑁𝑆𝐸
𝑑 ) compared to its392

distributed mean in median (respectively, in average) −0.59 (respectively, −4.98)). Conversely, the transfer parameter393

𝑐𝑡𝑙 has a great distributed deviation (in median over all catchments) 193.72 compared to its distributed average 347.87,394

that also has a massive difference to its distributed median 114.79. Fig. 11 illustrates the spatially distributed optimal395

parameters at the largest catchment (the Argens River), for a distributed calibration with 𝑗𝐾𝐺𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2.396

Reducing the over-parameterization in distributed hydrological models calibration problems through spatial397

constrains while enhancing regional parameters consistency remains a key issue, especially for flash flood prediction398

at ungauged locations (e.g. classical post-regionalization in Garambois et al. (2015) on French Mediterranean flash399

floods). This issue can be tackled with calibration approaches accounting for physiographic descriptors through400

regularizations (e.g. De Lavenne et al. (2019); Jay-Allemand et al. (2022b) in multi-gauges calibration problems)401

or through pre-regionalization mappings, such as the multi-scale parameter regionalization approach (MPR) from402

Samaniego et al. (2010), used for example in Mizukami et al. (2017). In addition to exploiting the information of403

multi-scale signatures in calibration with the present VDA algorithm, the use of a pre-regionalization scheme, i.e.404

"strong constrains" in the forward model in form of a mapping between physiographic covariables and conceptual405

hydrological parameter fields, represent an interesting perspective for future research.406
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Table 6
Uniform optimal parameters calibrated by SBS algorithm with 4 calibration metrics for each catchment on its outlet gauge.
The values (in the form of . [., .]) in each case represent respectively the median, mean and standard deviation of the
optimal parameter values over all catchments of the dataset.

Parameter
Calibration metric

𝑗𝑁𝑆𝐸
𝑑 𝑗𝑁𝑆𝐸

𝑑 ∕2 + 𝑗𝐸𝑝𝑓
𝑓 ∕2 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐾𝐺𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2

𝑐𝑖 14.71 [20.3, 26.22] 16.93 [20.83, 26.48] 17.6 [27.15, 33.07] 17.27 [30.17, 35.83]

𝑐𝑝 169.99 [291.17, 434.58] 146.04 [310.14, 505.68] 151.87 [286.79, 483.33] 141.56 [289.69, 466.99]

𝑐𝑡𝑟 171.76 [286.6, 269.5] 162.66 [313.49, 304.83] 266.32 [431.2, 355.04] 267.21 [436.83, 360.62]

𝑐𝑡𝑙 347.87 [812.15, 1274.12] 250.42 [1366.73, 2789.22] 383.51 [1413.93, 2749.35] 262.89 [1337.96, 2795.16]

𝑐𝑟 41.32 [52.63, 34.05] 40.94 [50.97, 30.97] 41.33 [51.2, 30.29] 40.24 [50.2, 27.58]

𝑚𝑙 -0.59 [-4.98, 8.21] 0.0 [-3.81, 7.34] -0.0 [-3.62, 7.31] -0.0 [-3.28, 6.39]

Table 7
Analysis of spatially distributed parameter sets of the models corresponding to 4 calibration metrics. First, spatial median
(.̃), average (.) and standard deviation (𝜎.) for each parameter field are calculated for each catchment, then their median,
mean and standard deviation over all catchments are represented in the form of . [., .].

Parameter
Calibration metric

𝑗𝑁𝑆𝐸
𝑑 𝑗𝑁𝑆𝐸

𝑑 ∕2 + 𝑗𝐸𝑝𝑓
𝑓 ∕2 𝑗𝐾𝐺𝐸

𝑑 𝑗𝐾𝐺𝐸
𝑑 ∕2 + 𝑗𝐸𝑝𝑓

𝑓 ∕2

𝑐𝑖 15.45 [20.22, 26.34] 10.91 [20.14, 26.75] 17.6 [27.19, 33.16] 17.3 [30.32, 36.05]

𝑐𝑖 14.71 [20.3, 26.22] 16.93 [20.83, 26.48] 17.6 [27.15, 33.07] 17.27 [30.17, 35.83]

𝜎𝑐𝑖 0.22 [0.91, 1.46] 0.07 [1.13, 4.16] 0.13 [0.57, 1.28] 0.05 [0.82, 3.09]

𝑐𝑝 161.81 [286.05, 435.48] 145.79 [314.19, 518.0] 156.65 [288.75, 476.53] 148.27 [296.94, 485.79]

𝑐𝑝 169.99 [291.17, 434.58] 146.04 [310.14, 505.68] 151.87 [286.79, 483.33] 141.56 [289.69, 466.99]

𝜎𝑐𝑝 38.52 [60.58, 59.64] 8.95 [37.57, 44.15] 31.08 [53.49, 57.35] 12.03 [46.82, 102.47]

𝑐𝑡𝑟 174.6 [287.44, 270.08] 158.48 [317.5, 311.03] 266.09 [429.0, 353.73] 267.12 [447.27, 372.32]

𝑐𝑡𝑟 171.76 [286.6, 269.5] 162.66 [313.49, 304.83] 266.32 [431.2, 355.04] 267.21 [436.83, 360.62]

𝜎𝑐𝑡𝑟 13.88 [28.84, 35.82] 3.23 [25.3, 57.2] 5.68 [24.28, 60.74] 1.45 [24.39, 74.56]

𝑐𝑡𝑙 114.79 [675.7, 1276.32] 127.09 [1322.22, 2806.59] 180.63 [1332.45, 2784.42] 146.96 [1322.17, 2803.08]

𝑐𝑡𝑙 347.87 [812.15, 1274.12] 250.42 [1366.73, 2789.22] 383.51 [1413.93, 2749.35] 262.89 [1337.96, 2795.16]

𝜎𝑐𝑡𝑙 193.72 [355.92, 433.62] 34.67 [139.21, 252.41] 69.91 [222.54, 388.17] 31.82 [61.87, 81.06]

𝑐𝑟 41.37 [52.08, 34.42] 41.37 [52.08, 34.42] 41.37 [52.08, 34.42] 41.37 [52.08, 34.42]

𝑐𝑟 41.32 [52.63, 34.05] 40.94 [50.97, 30.97] 41.33 [51.2, 30.29] 40.24 [50.2, 27.58]

𝜎𝑐𝑟 4.66 [6.01, 5.04] 1.45 [5.17, 10.17] 3.01 [5.31, 10.29] 1.34 [5.08, 13.82]

𝑚̃𝑙 -0.59 [-4.98, 8.21] 0.0 [-3.72, 7.42] 0.0 [-3.61, 7.31] -0.0 [-3.27, 6.39]

𝑚𝑙 -0.59 [-4.98, 8.21] 0.0 [-3.81, 7.34] -0.0 [-3.62, 7.31] -0.0 [-3.28, 6.39]

𝜎𝑚𝑙 0.01 [0.05, 0.09] 0.0 [0.17, 0.73] 0.02 [0.05, 0.09] 0.0 [0.08, 0.34]

Figure 11: Spatially distributed optimal parameters (𝜽̂(𝑥) ≡
(

𝑐𝑖(𝑥), 𝑐𝑝(𝑥), 𝑐𝑡𝑟(𝑥), 𝑐𝑟(𝑥), 𝑚𝑙(𝑥), 𝑐𝑡𝑙(𝑥)
)𝑇

) for the Argens River
basin, obtained by minimizing 𝑗𝐾𝐺𝐸

𝑑 ∕2 + 𝑗𝐸𝑝𝑓
𝑓 ∕2.
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4. Conclusion407

In this study, we enhanced the calibration process of the conceptual distributed hydrological model SMASH408

for Mediterranean floods by incorporating hydrological signatures and various multi-criteria optimization strategies.409

Firstly, we computed and analyzed both continuous signatures and flood event signatures. Subsequently, we used410

sensitivity analysis to select appropriate signatures for constraining the model. Finally, we performed signatures-based411

multi-criteria optimization approaches, which demonstrated their robustness and reliability in improving simulated412

peak flood events without significantly compromising the NSE and KGE. Notably, for distributed calibration, the413

model constrained by the signature performed better in simulating flood events and achieved higher NSE and KGE414

scores compared to the model calibrated without using signatures. These results highlight the superiority of signature-415

based calibration approaches, particularly in flash flood prediction. Furthermore, we compared the parameter spaces416

of different models to provide insights into the optimal transition from traditional calibration approaches to signature-417

based calibration methods.418

Our proposed calibration strategy addresses the need for an intelligent approach to model calibration in the presence419

of multiple objectives and complex hydrological processes. This approach offers a new perspective on calibration420

that accounts for not only classical discharge metrics but also multi-scale hydrological signatures that can provide421

a more comprehensive assessment of model performance. This approach could be reinforced via the use of multi-422

source information such as from remotely sensed data products and of multi-gauge streamflow series in regionalization423

problems. The segmentation algorithm could be tested on larger flood samples, also including catchment rainfall424

moments (Zoccatelli et al., 2011; Emmanuel et al., 2015) describing rainfall paterns for floods analysis (e.g. Garambois425

et al. (2014); Saharia et al. (2021)) and in order to prepare learning sets for training hybrid flood modeling-correction426

approaches.427

Future work will aim to (i) upgrade the variational calibration algorithm with Bayesian approach in context of428

equifinality and with penalization based on global sensitivity metrics that could be derived from local derivatives,429

including for spatially distributed controls using adjoint model, and also with improved spatial constrains through430

physiographic descriptors-to-parameters fields mappings (pre-regionalization); as well as to (ii) perform extended tests431

and analysis on larger samples of catchments and signatures, with complementary data using various model structures.432
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A. Classical calibration metrics in hydrology433

A.1. Nash–Sutcliffe efficiency (NSE)434

𝑁𝑆𝐸 = 1 −
∑𝑇

𝑡=0(𝑄(𝑡) −𝑄∗(𝑡))2
∑𝑇

𝑡=0(𝑄∗(𝑡) −𝑄∗)2

where 𝑄(𝑡) is the simulated discharge at time 𝑡, 𝑄∗(𝑡) is the observed discharge at time 𝑡 and 𝑄∗ is the mean observed435

discharge.436

A.2. Kling–Gupta efficiency (KGE)437

𝐾𝐺𝐸 = 1 −
√

𝛼(𝑟 − 1)2 + 𝛽( 𝜎
𝜎∗

− 1)2 + 𝛾(
𝜇
𝜇∗ − 1)2

where 𝑟 is the linear correlation between observations and simulations, 𝜎 and 𝜎∗ are the standard deviation in438

simulations and observations, respectively, 𝜇 and 𝜇∗ are the mean discharge in simulations and observations,439

respectively, and 𝛼, 𝛽, 𝛾 are the optimization weight parameters.440

B. List of studied signatures441

Denote 𝑃 (𝑡) and 𝑄(𝑡) are the rainfall and runoff at time 𝑡 ∈ 𝐔, where 𝐔 is the study period. Then 𝑄𝑏(𝑡) and 𝑄𝑞(𝑡)442

are the baseflow and quickflow computed using a classical technique for streamflow separation (please refer to Lyne443

and Hollick (1979) and Nathan and McMahon (1990) for more details).444

B.1. Continuous signatures445

The continuous signatures are calculated over the entire study period as Table 8.446

B.2. Flood event signatures447

For an event occurring in 𝐄 ⊂ 𝐔, the flood event signatures are calculated as Table 9.448

C. Multi-objective optimization with spatially uniform control vectors449

We look into multi-objective optimization for a global calibration of spatially uniform parameters of the distributed
model , i.e. a low dimensional control 𝜽. The multi-objective calibration is simply defined as the optimization
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Table 8
List of all studied continuous signatures.

Notation Signature Description Formula Unit

Crc

Runoff coefficients

Coefficient relating the amount of runoff to the amount of
precipitation received

∫ 𝑡∈𝐔 𝑄(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Crchf Coefficient relating the amount of high-flow to the amount
of precipitation received

∫ 𝑡∈𝐔 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Crclf Coefficient relating the amount of low-flow to the amount
of precipitation received

∫ 𝑡∈𝐔 𝑄𝑏(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑃 (𝑡)𝑑𝑡
-

Crch2r Coefficient relating the amount of high-flow to the amount
of runoff

∫ 𝑡∈𝐔 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐔 𝑄(𝑡)𝑑𝑡
-

Cfp2

Flow percentiles 2%, 10%, 50% and 90%-quantiles from flow duration curve

𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.02)

𝑚𝑚
Cfp10 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.1)
Cfp50 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.5)
Cfp90 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑄(𝑡), 0.9)

Table 9
List of all studied flood event signatures.

Notation Signature Description Formula Unit

Eff Flood flow Amount of quickflow in flood event ∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡 𝑚𝑚
Ebf Base flow Amount of baseflow in flood event ∫ 𝑡∈𝐄 𝑄𝑏(𝑡)𝑑𝑡 𝑚𝑚

Erc

Runoff coefficients

Coefficient relating the amount of runoff to the amount of
precipitation received

∫ 𝑡∈𝐄 𝑄(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Erchf Coefficient relating the amount of high-flow to the amount
of precipitation received

∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Erclf Coefficient relating the amount of low-flow to the amount
of precipitation received

∫ 𝑡∈𝐄 𝑄𝑏(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑃 (𝑡)𝑑𝑡
-

Erch2r Coefficient relating the amount of high-flow to the amount
of runoff

∫ 𝑡∈𝐄 𝑄𝑞(𝑡)𝑑𝑡

∫ 𝑡∈𝐄 𝑄(𝑡)𝑑𝑡
-

Elt Lag time Difference time between the peak runoff and the peak
rainfall argmax𝑡∈𝐄 𝑄(𝑡) − argmax𝑡∈𝐄 𝑃 (𝑡) ℎ

Epf Peak flow Peak runoff in flood event max𝑡∈𝐄 𝑄(𝑡) 𝑚𝑚

problem:

min
𝜽∈⊂ℝ𝑛

(𝑗1(𝜽), ..., 𝑗𝑚(𝜽)) (7)

where 𝜽 is the 𝑛-dimensional vector of model parameters in the feasible space  ⊂ ℝ𝑛 and 𝑗1, ..., 𝑗𝑚 are the 𝑚 single-450

objective functions to be simultaneously minimized.451

C.1. Pareto front452

In single-objective optimization, the Pareto optimal solution is unique (in terms of objective space) but in multi-453

objective problem, it common to have several solutions that can not be defined which one is the best. If the optimization454

problem is non-dominated, or non-inferior (each objective function is its own entity, so no individual can be better off455

without making at least one individual worse off), then we call that Pareto optimality, or Pareto efficiency. A Pareto456

front (in terms of parameter space) is a set of all Pareto efficient solutions that need to be estimated. Let us consider457

two feasible solutions: 𝜽1,𝜽2 ∈ . Then, 𝜽1 is said to Pareto dominate 𝜽2 if the following properties hold:458
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1. ∀𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽1) ≤ 𝑗𝑖(𝜽2);459

2. ∃𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽1) < 𝑗𝑖(𝜽2).460

We call  the Pareto set representing all of Pareto solutions. By definition, a Pareto solution 𝜽∗ ∈  of problem 7 must461

fill the two following conditions:462

1. ∄𝜽′ ∈  ⧵  ,∃𝑖 ∈ {1, ..., 𝑚}, 𝑗𝑖(𝜽′) < 𝑗𝑖(𝜽∗);463

2. ∄𝜽′′ ∈  ,𝜽′′ dominates 𝜽∗.464

The first statement indicates that there does not exist other point in the feasible space that reduces at least one objective465

function while keeping others unchanged, so the Pareto set is the optimal set. The second says that, no other point exists466

in the Pareto set that decreases one objective function without increasing another one, so it is impossible to distinguish467

any solution as being better than the other in the Pareto set. Fig. 12 illustrates this for a simple problem where we have468

2-objective functions 𝑗1, 𝑗2. The Pareto front (in terms of objective space) represents all of non-dominated optimal469

solutions. It implies that, it is impossible to move from any point in the feasible space and simultaneously decrease the470

two objective functions without violating a constraint.

Figure 12: Illustration of Pareto front in terms of objective space.

471

C.2. Overview of GA472

GA is a “heuristic algorithm” (or search heuristic) in optimization, inspired by the Theory of Natural Evolution,473

whose selection operators include “crossover” and “mutation”. Basically, the process of a GA and a MOGA consist of474

the following 3 phases:475

1. Population initialization. The population is randomly initialized based on the problem range and constraint. The476

size of the population determines also the number of solutions, called “pop-size”.477

2. Parents selection (sorting). A fitness function is defined to calculate the fitness score (also called Pareto ranking478

in multi-objective optimization) that determines how fit an individual is to the problem. Then, the fitness score479

decides the probability of selecting an individual as a parent to reproduce offspring population.480
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3. Mating. For each pair of parent to be mated, new offspring are created by exchanging the genes of parents481

among themselves (crossover operator). To maintain the diversity within the population and prevent premature482

convergence, some of the bits in the gene of certain new offspring can be flipped with a low random probability483

(mutation operator). Offspring are created until their pop-size is equal to the pop-size of previous generation.484

C.3. Selection of an optimal solution from Pareto front485

We aim to select an optimal solution that is acceptable for every objective within a constraint on principal objective486

function. Many strategies can be chosen to perform such a selection (e.g. based on the sensitivity ratio that is the ratio487

of the average variabilities of a certain non-inferior solution to the corresponding value of the objective function in488

the Pareto front (Wang et al., 2017), or the Euclidean distance from the ideal solution (Wang and Rangaiah, 2017)).489

A simple additive weighting (SAW) method in Wang and Rangaiah (2017) can be used in our case by adding a490

normalization operator and assigned weightage for the objective functions.491

Considering an objective matrix (𝑗𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛, where 𝑚 is the number of non-dominated solutions, 𝑛 is the492

number of objective functions. Then each row 𝑖 represents the 𝑖𝑡ℎ solution set of the Pareto front and each column493

𝑗 represents all non-inferior solutions of the 𝑗𝑡ℎ objective function. Denote 𝑐 be the index of the classical objective494

function (for example 1−𝑁𝑆𝐸 or 1−𝐾𝐺𝐸), which is the most constrained function to find a unique optimal solution495

from Pareto front. This algorithm is detailed in the following three phases:496

1. Objective matrix normalization (𝐹𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛:

𝐹𝑖𝑗 =
𝑓+
𝑗 − 𝑓𝑖𝑗

𝑓+
𝑗 − 𝑓−

𝑗
where 𝑓+

𝑗 = max
1≤𝑖≤𝑚

𝑓𝑖𝑗 and 𝑓−
𝑗 = min

1≤𝑖≤𝑚
𝑓𝑖𝑗

2. Assigning weightage for normalized objective matrix (𝐺𝑖𝑗)1≤𝑖≤𝑚,1≤𝑗≤𝑛:

𝐺𝑖𝑗 = 𝑤𝑗 × 𝐹𝑖𝑗 where 𝑤𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑒𝑑 , if 𝑗 = 𝑐

𝑒 − 𝑒𝑑 , otherwise.
and 𝑑 = 𝑓+

𝑐 − 𝑓−
𝑐

3. Finding optimal solution 𝜽:

𝜽 = (𝑓𝑘1, ..., 𝑓𝑘𝑛) where 𝑘 = arg max
1≤𝑖≤𝑚

( 𝑛
∑

𝑗=1
𝐺𝑖𝑗

)

.

D. Calibration bounds497

The parameter vector of SMASH model structure S6 is 𝜽(𝑥) ≡ (

𝑐𝑖(𝑥), 𝑐𝑝(𝑥), 𝑐𝑡𝑟(𝑥), 𝑐𝑟(𝑥), 𝑚𝑙(𝑥), 𝑐𝑡𝑙(𝑥)
)𝑇 and bound498

constrains used in optimization (Eq. 3) are set with values given in Table 10.499
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Table 10
Boundary conditions of SMASH 6-parameters model.

𝑐𝑖 𝑐𝑝 𝑐𝑡𝑟 𝑐𝑟 𝑚𝑙 𝑐𝑡𝑙
Lower boundary 1 1 1 1 -20 1
Upper boundary 100 2000 1000 200 5 10000
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